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Este documento es el soporte de un curso dado en Calama, Chile, desde el 24 al 28 de Noviembre 2014. Concerniente a los asistentes: todo profesional involucrado en Geotecnia, que nunca haya estudiado Geoestadística, pero que la usarán como una herramienta en el futuro próximo.

Esta es la razón por la cual la parte de geostadística de este curso sólo tiene como objetivo presentar las bases geoestadísticas -variograma, kriging -, lo suficiente como para llevar a cabo un estudio original de la Frecuencia de Fracturas (FF). Este estudio ha sido presentado durante el último congreso Caving celebrado en Chile en Junio de 2014, cuya publicación se incluye al final del documento.

El curso se divide en dos partes: la teoría por un lado, y por otro lado la aplicación utilizando el progama Isatis, amablemente ofrecido sin costo por la empresa Geovariances (licencia de un mes de duración). La aplicación tiene como objetivo reproducir el estudio descrito en la publicación.

La parte del curso propio de la Geotecnia es el capítulo C titulado " Geotechnics specificity" (Especificaciones Geotécnicas) en el cual se detalla la frecuente problemática encontrada en Geotecnia, que atemoriza tanto a los técnicos como a los geoestadísticos: la falta de aditividad de la mayoría de las variables regionalizadas encontradas en Geotecnia; la direccionalidad de ciertas medidas (por ejemplo, la dirección del sondaje de la muestra influencia la medida así como la permeabilidad; y finalmente, el problema de cambio de escala, el cual puede no ser lineal, pero no solamente eso: el concepto de la extensión, de una muestra a un bloque, que una propiedad dada tiene y que en algún momento no tiene sentido por sí misma. Por ejemplo, ¿qué interpretación podemos darle al IRS (Intact Rock Strength) a la escala del bloque deducido a partir de muestras, sabiendo que la medida en la muestra se realiza a mano utilizando un martillo? Debemos imaginar un gigante con un martillo gigante que golpea con violencia un bloque tan grande como la oficina donde escribo la presente introducción?

La pregunta está abierta, así como para el PLT (Point Loading Test). En el curso sólo detallaremos el trabajo realizado en FF y RQD ( Rock Quality Design).

En comparación a la Geología o el Petróleo, no existen tantas aplicaciones de Geoestadística en el área de la Geotechnia debido a las razones mencionadas anteriores, pero mis personales tres años de trabajo a tiempo parcial en este dominio, me lleva a la siguiente conclusión: si manejamos correctamente las anteriores dificultades inusuales mencionadas, la física subyacente del fenómeno es tan fuerte que algunas propiedades increíbles emergen desde las estadísticas, increíbles en el sentido que son conmensuradas con el tamaño de las dificultades superadas, lo que lleva a conceptos muy originales como Concentración Direccional, Coeficientes de Correlación Regionalizados y Fracturas Independientes , conceptos que están desafortunadamente fuera del marco limitado de este curso.

Geostatistics for Geotechnicians

Introduction

This document is the support of a course done in Calama, Chile, from November 24 th to 28 th 2014. It concerns ab initio attendees, all professional in Geotechnique, who never study Geostatistics, but are going to use it in a next future. This is the reason why the geostatistical part of the course just aims at presenting the geostatistical bases -variogram, kriging -, enough to conduct an original study of Fracture Frequency (FF). This study has been presented during the last Caving congress held in Chile in June 2014 and the paper is included at the end of the document.

The course is separated in two parts, theory in one hand, and application by using the Isatis software kindly given for free by Geovariances company (one month duration license). The application aims at reproducing the study described in the paper.

The part of the course proper to Geotechnique is the chapter C entitled "Geotechnics specificity" where we detail the problematic often encountered in Geotechnics that afraid so much the technicians and the geostatisticians: the lack of additivity of most of the regionalized variable encountered in Geotechnique; the directionality of some types of measures (i.e. the sample direction influences the measure like for the permeability); and finally, the change of scale problem which can be not linear, but not only: the concept of the extension from a sample to a block of a given property has sometime no sense by itself. For example, what interpretation can we give to Intact Rock strength (IRS) at block scale deduced from samples, knowing that the sample measure is done by hand using a hammer? Must we imagine a giant using a gigantic hammer to hit with violence a block as large as the office where I write the present introduction?

The question is open, as well as for Point Loading Test (PLT), and we only detail in the course the work done on FF and Rock Quality Design (RQD).

In comparison with Geology or Petroleum, there are not so many applications of Geostatistics in Geotechnique because of the previous mentioned reasons but my personal three years of partial time work on the domain leads me to this conclusion: if we correctly handle the previous mentioned unusual difficulties, the underlying physic of the phenomenon is so strong that some incredible properties emerges from the statistics, incredible in the sense that they are commensurate with the size of the difficulties surmounted, leading to very original concepts like Directional Concentration, Regionalized Correlation Coefficients and Independent Fractures, concepts that are unfortunately outside the restricted framework of this course. 
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Introduction

One of the most important attribute used in the Rock Mass Rating (RMR) is the Fracture Frequency (FF), basically the ratio of a number of fractures counted by the geologist divided by the sample length. But the calculation is not that simple because it happens often that a significant part of the sample is crushed, making the fractures counting impossible, and FF becomes the ratio of two quantities that both change from a location to another one in the deposit, making difficult its evaluation, whether at sample or block scales -in other words, this ratio is not additive [START_REF] Carrasco | Additivity, Metallurgical Recovery, and Grade[END_REF]. To get around this difficulty, the usual practice consists in using an additive formula that combines fractures number and crush length. The aim of this paper is:

 Analyzing the geostatistical link between fracturing and crushing,

 Proposing an unbiased way to estimate FF,  Introducing the concept of crushing probability.

Formalization

Let us scheme a sample to set the vocabulary (Figure 1).

Figure 1 Scheme presenting the useful variables, Crush Length and Fractures Number

In the following, all the samples are supposed to have the same length (1.5 meter). For simplification, one will consider just one location "x" (center of gravity of the sample) for L NC , L C and N fract . The quantities L NC , L C and N fract , counted by 1.5m length, are additive and can be estimated by the basic geostatistical method called "kriging" [START_REF] Matheron | Principles of Geostatistics[END_REF]. N fract plays the role of a "fractures accumulation", the equivalent of the "metal accumulation" in conventional mining i.e. the product of the grade by the thickness of the vein.

The quantity:

fract true NC N ( ) FF ( ) L ( ) x x x  (1)
is the key frequency as it represents the true fractures frequency in the non-crushed part of the material. But it is not additive: when x moves in the space, fract N ( )

x and NC L ( )

x change and the average frequency between two measurements located at x 1 and x 2 is:

fract 1 fract 2 true 1 2 NC 1 NC 2 N ( ) N ( ) FF ( ) L ( ) L ( ) xx xx xx   
This latter ratio is equal to the average of true 1

FF ( )

x and true 2 FF ( )

x only if NC 1 NC 2 L ( ) L ( ) xx 
. So a direct "kriging" of true 0

FF ( )

x for any x 0 , using surrounding measurements true FF ( )

i
x , is not possible. This is the reason why practices consist in using the formula:

fract C corrected N ( ) aL ( ) FF ( ) 1.5 xx x   (2)
In (2), the coefficient "a" represents an arbitrary quantity supposed to give more or less importance to crushing in comparison with fracturing (a=40 in our case). By this way, the geotechnician incorporates the information given by crushing. (2) has also the advantage to combine additive quantities that can be estimated separately and then combined:

fract C ** corrected N ( ) .L ( ) FF ( ) 1.5 x a x x   (3)
In (3), the exponent "*" denotes various estimates.

To understand what the coefficient "a" represents, let us develop (2):

NC C NC C corrected NC C NC C L ( )FF ( ) L ( ) L ( )FF ( ) L ( )FF ( ) FF ( ) L ( ) L ( ) L ( ) L ( ) true true crushed x x x a x x x x x x x x x    (2')
Presented in this way, (2') appears as an additive formula combining two frequencies, "a" being the one associated with crushing (now written crushed FF ). This latter quantity must be at least greater than any observable FF true and we will detail this point in the following. First, let us analyse the link between fracturing and crushing.

Observation of a natural phenomenon

We start by the examination of two samples: Figure 2a presents a drill core where the crush length is only 11 cm with just one fracture in the non crushed part; figure 2b presents the contrary: crush length is important (74 cm over 1.5 m) and 16 fractures in the remaining part. Is it a particular example or is there a statistical link between N fract and L C ? We have analysed 13,000 samples (1.5 m length) coming from an underground mine in a 1000x2300x1000 m 3 box along x, y, z. (Figure 3). The scatter diagram between N fract and L C (Figure 4a) leads to mixed conclusions:

 The correlation coefficient is important (0.75),  70% of the population lies inside the confidence interval defined by the conditional expectation curve, the remaining part does not present significant correlation. [START_REF] Wackernagel | Multivariate Geostatistics[END_REF]. Two important consequences result from this experimental property:

 It is not useful to use cokriging [START_REF] Wackernagel | Multivariate Geostatistics[END_REF] for estimating N fract or L C ,  The ratio of both estimates obtained by kriging is non biased (see Appendix).

This latter property leads immediately to the method for estimating the non additive quantity FF true at a block scale V located at coordinates x:

fract NC * true N ( ) FF ( ) L ( ) K x x K x V V V  (4)
In (4), exponent K denotes the estimate of the variable by kriging, using a set of around 50 surrounding samples that change when the location x changes ( "moving neighbourhood", Chilès&Delfiner 1999). The samples used for numerator and denominator must be the same to preserve the non bias of the ratio. when V x is sized 10x10x9m 3 . Geotechnicians prefer the reverse of the frequency because it represents the average size of non fractured core. When this quantity is small, the strength of the rock is bad and a low RMR is associated with the block. Another consequence of intrinsic correlation between both terms of the ratio is that estimating the ratio or its reverse is the same problem. Generally, this is not the case. For example, the reverse of an additive grade is not additive.

Crushing percentage or probability

Formula ( 4) is a ratio of two estimations that can be used separately. When we divide the denominator by the sample length, we can obtain an unbiased and optimal estimate of the crushing proportion: The intrinsic correlation between crushing and fracturing leads to the optimal and unbiased estimate of formula (2) at block scale for example:

NC * L ( ) P ( ) 1 sample length K x cx V V  (5)
* fract C corrected N ( ) aL ( ) FF ( ) 1.5 KK xx x VV V   (6) Figure 5b shows a cross section of * 1 FF ( ) corrected x V
, a combination of figure 5a and figure 5d, with the result that the West damaged zone is reinforced by accounting for crushing proportions.

Crushing frequency inference

Development (2') shows that the coefficient "a" used in ( 2) and ( 6) plays the role of a fracture frequency associated with crushing and named FF crushed . In our case, for some reasons unknown when writing this paper, this quantity was set to 40 and the question is: could this parameter be obtained experimentally?

Let us consider the scatter diagram between L c and FF true calculated using the 13,000 samples at our disposal (Figure 6). When L C increases, FF true increases, this is a consequence of the correlation between crushing and fracturing (the number of fractures are in average more numerous when crushing length is important). The increasing rate is not linear but hyperbolic because we divide N fract by a quantity that tends to zero when L C increase.

If we suppose that: 

Conclusions

Analysis of usual practices and properties of the two variables involved in the Fracture Frequencythe Crush length and the Fracture numberdoes not require including both quantities in a single arbitrary formula. Analysis of a data set showed that both variables are statistically highly correlated as well as spatially and they share the same variogram. This circumstance makes possible to estimate directly the real interesting quantity that is the ratio of fractures number divided by the sample length really analysed and shortcuts the lack of additivity of this ratio. The resulting estimate is unbiased, a basic requirement when evaluating a quantity. On the other hand, the crushing phenomena must be estimated separately, giving a crushing proportion (at block scale) or a crushing probability (at point support scale) that must be incorporated in RMR in the same way as FF and other geotechnical attributes.

All these possibilities depend directly on the mutual behaviour of Fractures number and Crush length and any study on the subject should start by the geostatistical analysis of these two variables. A more detailed analysis of their link, and another case study, that will be published in the next future, showed that the present observed correlation is not due to hazard: fracturing sometime contributes to crushing, sometime not, depending on the mutual organization of the fractures. Finally, with such studies, we evaluate the mechanical properties of the rock.
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  x 0 ) =  1 z(x 1 ) +  2 z(x 2 ) +  3 z(x 3 ) +  4 z(x 4 ) +  5 z(x 5 )

Figure 2

 2 Figure 2 Two samples (a) Few crushing and fractures (b) important crushing, numerous fractures

Figure 3

 3 Figure 3 Planes presenting projections of the data

Figure 4 (

 4 Figure 4 (a) Scatter diagram between crush length (L C , horizontal axis) and Fractures number (N fract ). Line represents the linear regression of N fract against L C , as well as the conditional expectation curve. Red dotted lines represent the standard deviation around the conditional curve. (b-c-d) Resp. N fract , L c , and N fract cross L c variograms. Points are experimental, continuous curves the intrinsic model (all the variograms are proportional)

Figure

  Figure 5a presents a map of

Figure 5

 5 Figure 5 (a) Map of inverse True Fracture Frequency using block kriging. (b) Map of inverse Usual Fracture Frequency that incorporates crushing estimate and arbitrary frequency for crushing equal to 40. (c) Same as (b) but with crushing frequency inferred from statistics and set to 80. (d) Crushing proportions at block scale estimated by kriging Figure 5d shows a cross section of the result with important crushing proportions at the West of the domain, that correspond to a well known damage zone due to a major fault.

Figure 6

 6 Figure 6 Scatter diagram between crush length (LC, horizontal axis) and FFtrue as defined by (1). Solid line represents the conditional expectation curve; dotted segment represents a conservative extrapolation



  The crushing phenomenon appears where True FF is high, On average crushed FF is independent from C L , then crushed FFcan be characterised by its average (reference to the conditional expectation curve) and must be at least equal to the limit of True FF when C L tends to 1.5m.

  . There is still a part of the sample that is not crushed, in contrary to the previous hypothesis and crushed FF must be at least greater than the maximum of , this result is extremely sensitive to the hypothesis on the non linear regression modeling. The mapping of the Fracture Frequency obtained when we replace 45 by 85 in (2) is presented in figure5c. Compared to the map using the traditional formula (Figure5 b), the West damage zone is reinforced because the influence of crushing is multiplied by more than two.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

2.1 Bivariate calculation (intrinsic correlation verification)

3.1 Bivariate fitting (intrinsic correlation)

1/FF mapping
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