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Multimedia Data Mining for Automatic Diabetic Retinopathy Screening

Gwénolé Quellec, Mathieu Lamard, Béatrice Cochener, Etienne Decencière,

Bruno Lay, Agnès Chabouis, Christian Roux, Guy Cazuguel

Abstract— This paper presents TeleOphta, an automatic sys-
tem for screening diabetic retinopathy in teleophthalmology
networks. Its goal is to reduce the burden on ophthalmologists
by automatically detecting non referable examination records,
i.e. examination records presenting no image quality problems
and no pathological signs related to diabetic retinopathy or any
other retinal pathology. TeleOphta is an attempt to put into
practice years of algorithmic developments from our groups.
It combines image quality metrics, specific lesion detectors
and a generic pathological pattern miner to process the visual
content of eye fundus photographs. This visual information is
further combined with contextual data in order to compute an
abnormality risk for each examination record. The TeleOphta
system was trained and tested on a large dataset of 25,702
examination records from the OPHDIAT screening network
in Paris. It was able to automatically detect 68% of the
non referable examination records while achieving the same
sensitivity as a second ophthalmologist. This suggests that it
could safely reduce the burden on ophthalmologists by 56%.

I. INTRODUCTION

Retinal pathologies are the main cause of vision impair-

ment. The early detection of these pathologies helps stopping

or slowing down their progress and increases the chances of

healing. In order to achieve early detection, systematic mass

screening is necessary. Telemedical networks are emerging

as one of the main tools to reach this objective. In par-

ticular, many networks are devoted to the early detection

of Diabetic Retinopathy (DR), a complication of diabetes

mellitus [1], [2], [3], [4]. However, the decreasing number

of ophthalmologists and the increasing incidence of diabetes

[5] limits the development of these networks. A tool able to

automatically detect healthy cases would reduce the burden

on ophthalmologists and therefore foster the development

of teleophthalmology networks. This is the objective of

TeleOphta.

TeleOphta is a project funded by the French National

Research Agency since 2009. It relies on retinal image
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processing and data mining methodologies developed in the

past few years by the Centre for Mathematical Morphology

[6], [7], [8], in Paris, and by the LaTIM Laboratory [9], [10],

[11], [12], in Brest, France. The project benefits from a large

amount of data collected in the OPHDIAT telemedical net-

work for diabetic retinopathy screening [3]. It resulted into a

system able to automatically classify an examination record,

acquired in the OPHDIAT network, as ”non referable” or ”to

be referred to a specialist”.

II. CLINICAL APPLICATION - CHALLENGES AND

PROPOSED STRATEGY

The development of image processing methods for the

analysis of eye fundus photographs has been very active in

the last 15 years [13], [14]. The first studies involved rela-

tively small and homogeneous databases. However, teleoph-

thalmology networks involve tens of screening centers (29

centers in OPHDIAT). It implies that several image charac-

teristics, such as quality, size or lighting conditions change

greatly from one examination to another. Besides, the number

of images per examination record also varies greatly (from

1 to 19 in OPHDIAT). In order to bridge the gap between

academic solutions and clinical applications, image analysis

algorithms should be able to deal with these heterogeneities.

Retinal experts do not rely exclusively on fundus pho-

tographs to make a referral decision. They also take contex-

tual information into account: the patient’s age, the patient’s

diabetes history, whether or not the patient is pregnant, etc.

In fact, experts cannot reliably produce referral decisions

without contextual information. Similarly, to produce reliable

referral decisions, automatic systems must take contextual in-

formation into account. This was the second major challenge

the project had to face.

Another challenge is the variety of retinal pathologies in

DR screening centers. An automatic system that can only

detect DR, even perfectly, cannot be used reliably in a

screening network: ophthalmologists won’t trust a system

that misses patients with a retinal pathology, even if this

is not the target pathology.

In TeleOphta, lesion detectors and image quality metrics

are combined with image mining and heterogeneous data

mining algorithms in order to overcome these three chal-

lenges. The overall system was trained, in a very large

screening dataset provided by the OPHDIAT network, to

reliably reproduce the referral decision process of retinal

experts. The system is summarized in Fig. 1.
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Fig. 1: Outline of the TeleOphta system

III. LESION DETECTION

Microaneurysms (MA) and exudates (EX) are usually the

first signs of DR in eye fundus photographs [13]. So their

detection is of primary importance. Algorithms developed by

both research groups in the past few years were improved to

increase their robustness. These improvements were assisted

by larger and more heterogeneous datasets of manually

segmented images (see section VI).

A. Microaneurysm Detection

Two MA detectors are used in TeleOphta: the first one is

based on mathematical morphology [8], the second is based

on template matching in wavelet spaces [9]. New efforts were

mostly directed towards the first detector [15]: in particular,

the feature extraction and classification steps were improved.

In the new version, MA candidates are obtained with an

alternate sequential filter that extracts small structures. Then,

local, geometrical and contextual features are extracted from

each candidate. Finally, a pathological probability is assigned

to each candidate by a random forest classifier [16] trained

on a large manually annotated dataset (see section VI).

B. Exudate Detection

The robustness of our previous EX detector [7] was also

improved [17]. As a preprocessing step, the improved detec-

tor searches for structures that can be erroneously considered

as exudates: the optic disk, hazes at the border of the field

of view, reflections in the middle of blood vessels, bright

artifacts caused by camera lenses, etc. Then, EX candidates

are extracted through morphological ultimate opening and

features are extracted from each candidate. Finally, a patho-

logical probability is assigned to each candidate by a random

forest classifier trained on a large manually annotated dataset.

IV. MINING PATHOLOGICAL PATTERNS IN

IMAGES

We have seen in the previous section how microaneurysms

and exudates can be finely detected in images. We present in

this section a general solution to roughly detect the remaining

signs of DR, and of other retinal pathologies. The proposed

solution relies on wavelet-based image characterizations de-

veloped in previous works [18].

Each image in an examination record is divided into

patches. Then, a vector of image characterizations, called

signature, is extracted from each patch. A machine learning

algorithm was designed to recognize those signatures that

only appear in pathological examination records [19]. This

algorithm relies on the multiple-instance learning paradigm.

In order to detect various pathological patterns, several sizes

of patches are used simultaneously. A global pathological

index is then derived for the examination record as a whole:

it combines local pathological scores computed in image

patches individually [11]. The algorithm is summarized in

Fig. 2. In order to push the classification performance

further, the shape of the wavelet filters used to extract image

characterizations is tuned by a genetic algorithm [18], [20].

Note that, unlike the MA and EX detectors, this signature-

based detector is not supervised by manual segmentations.

Instead, it is supervised by the decision attached to exami-

nation records as a whole: whether or not the patient should

be referred to an ophthalmologist.

V. CLASSIFYING EXAMINATION RECORDS

Now that the visual content of images has been character-

ized, we present how image characterizations are combined

with contextual data (age, weight, diabetes type, etc.) in order

to decide whether or not a patient should be referred to an

ophthalmologist. This classification problem has two main

challenges. First, we need to process a varying number of
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Fig. 2: Pathological pattern mining 

lesion detections per examination record. Second, we need to 
process sparse contextual data. The workflow is summarized 
in Fig. 1. 

A. Lesion-based Pathological Score 

To address the first challenge, we first compute a single 
pathological score per examination record and per lesion 
detector. In that purpose, the joint cumulative distribution 
function (CDF) of the lesion probabilities and of the lesion 
sizes is built for each examination record. This CDF is 
then mapped to a single pathological score using a linear 
discriminant analysis [21]. The mapping process is tuned to 
maximize classification performance in a large training set 
(see section VII). 

Using a trained classifier for the distribution of lesion 
probabilities and sizes, rather than counting the number 
of lesions above a hard probability threshold for instance, 
increases the robustness of the lesion detectors. It is a simple 
way to make any lesion detector aware of the variety of 
images in real-live teleophthalmology networks. 

B. Heterogeneous Information Fusion 

The second step consists in classifying a sparse vector of 
heterogeneous descriptors: one pathological score per lesion 
detector, one signature-based pathological score, six quality 
metrics [21] and up to 27 contextual information fields 
(see section VI). Solutions based on decision trees [22] and 
the Dezert-Smarandache theory [12] have been proposed in 
previous works. A novel solution based on Apriori, the most 
popular algorithm for association rule mining [23], proved 
more efficient in this study. Rules associating a subset of 
descriptors with a referral decision (e.g. {70 <= age < 
75, diabetes_type = NIDDM, MA_score > 0.75} --+ 
ref er _to_ophthalmologist) are mined in a training set (see 
section VII). Their sensitivity and specificity are measured 
in the training set. In order to classify a new examination 
record, all the relevant association rules are selected. Then, 
based on the sensitivity and specificity of the selected rules, 
an abnormality risk is computed for the new record. This 
solution is particularly well suited to sparse data. 

VI. DATASETS 

The TeleOphta project has produced several datasets. All 
these datasets were collected in the OPHDIAT screening 
network. 

The main dataset, called e-ophtha, is the anonymized 
extraction of all examination records collected in the screen­
ing network during the years 2008 and 2009. It consists 
of 25,702 examination records, each containing four eye 
fundus photographs on average (two per eye) and up to 
27 contextual information fields: 9 demographic information 
fields and 18 diabetes-related information fields. For practical 
reasons related to network bandwidth, all images were JPEG­
compressed. Each examination record also comes with the 
referral decision provided by the OPHDIAT reader as well 
as the severity of DR in each eye. 

Five hundred examination records, randomly selected from 
e-ophtha, were read by a second OPHDIAT reader. The 
dataset is referred to as e-ophtha "double read". 

For the purpose of training the lesion detectors, lesions 
were manually outlined by an ophthalmologist in randomly 
selected images. These annotations were checked afterwards 
by a second ophthalmologist. Two datasets of manually 
annotated images were created. The first one, called e-ophtha 
EX, consists of 47 pathological images with 12,278 manually 
segmented exudates, as well as 35 healthy images. The sec­
ond dataset, called e-ophtha MA, consists of 148 pathological 
images with 1,306 manually segmented microaneurysms, as 
well as 233 healthy images. 

VII. EVALUATION AND RESULTS 

Algorithms designed by both research groups were im­
plemented by the ADCIS image processing company. The 
resulting system was evaluated in e-ophtha. The dataset was 
divided randomly into a training set and a test set of equal 
sizes. A Receiver Operating Characteristic (ROC) curve was 
built by varying a threshold on the abnormality risk provided 
by the system. The optimal threshold was chosen so that the 
sensitivity of the system equals the sensitivity of the second 
expert reader in e-ophtha "double read". 
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Fig. 3: Performance of the TeleOphta system

In e-ophtha ”double read”, the second expert reader

achieved a sensitivity of 80.9% (and a specificity of 81.5%).

The ROC curve obtained for the TeleOphta system in the test

subset of e-ophtha is reported in Fig. 3. It can be seen that,

for a sensitivity of 80.9%, the system achieves a specificity of

68.0%. Given the prevalence of referable patients in e-ophtha

(24.9%), it implies that the system could safely reduce by

55.8% the number of patients that must be seen by a human

reader (68.0% × 75.1% + 19.1% × 24.9%).

VIII. CONCLUSION

We have presented TeleOphta, a novel strategy to relieve

the burden on ophthalmologists in Diabetic Retinopathy

(DR) screening networks. Thanks to multimedia data mining

in a large screening dataset, the system was able to deal

with image heterogeneities and with the variety of retinal

pathologies in such screening networks. To our knowledge,

TeleOphta is the first DR screening tool that combines visual

and contextual information to generate referral decisions.

A ROC analysis performed in a large screening dataset

validates the relevance of the proposed approach and the

system will soon be ready for clinical trials.
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