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Decentralized model predictive control for smooth coordination of
automated vehicles at intersection

Xiangjun Qian1, Jean Gregoire1, Arnaud De La Fortelle1,2, and Fabien Moutarde1

Abstract— We consider the problem of coordinating a set of
automated vehicles at an intersection with no traffic light. The
priority-based coordination framework is adopted to separate
the problem into a priority assignment problem and a vehicle
control problem under fixed priorities. This framework ensures
good properties like safety (collision-free trajectories, brake-safe
control) and liveness (no gridlock). We propose a decentralized
Model Predictive Control (MPC) approach where vehicles solve
local optimization problems in parallel, ensuring them to cross
the intersection smoothly. The proposed decentralized MPC
scheme considers the requirements of efficiency, comfort and
sustainability and ensures the smooth behaviors of vehicles.
Moreover, it maintains the system-wide safety property of
the priority-based framework. Simulations are performed to
illustrate the benefits of our approach.

I. INTRODUCTION

Currently, traffic lights are installed in many intersections
to coordinate conflicting traffic flows and ensure the road
safety. However, there is a rising concern on the efficiency
and safety of these system with regards to automated driving.
More than 44% of crashes in the United States are reported
within the intersection [1]; traffic lights can induce unneces-
sary delays that undermine traffic efficiency (i.e. throughput).

Recent advances in embedded sensors, V2X communica-
tion and on-board computing have enabled the emergence of
automated and cooperative vehicles. Therefore some inter-
section management techniques that require no traffic light
have been recently proposed, as briefly presented below.

Planning-based approaches [2], [3], [4], [5], [6] compute
in a first phase collision-free trajectories for all vehicles
(often in a centralized and sequential way); then in a second
phase vehicles are assumed to follow the trajectories to
cross the intersection (this control phase is decentralized).
Note that in case of too large a deviation with respect to
the planned trajectory, replanning is mandatory: planning-
based approaches are not reactive. In [2], the optimal speed
profiles for a two-vehicle intersection are analytically studied
assuming simple vehicle behaviors, while the extension to a
multi-vehicle intersection is subject to future work. In [3],
constrained nonlinear optimization techniques are deployed
to plan trajectories for vehicles entering the intersection. The
control goal is to optimize a predefined cost function and
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the collision avoidance requirement is coded as nonlinear
constraints in the optimization problem. In [5], a reservation-
based scheme is proposed to avoid the computational com-
plexity of collision constraints. Each vehicle requires an
exclusive time and space from the intersection controller and
crosses the intersection without violating the reservation.

Though planning-based approaches may have good prop-
erties since trajectories can be optimized in advance, a major
weakness lies in the difficulty to follow the instructions (to
stay in the neighborhood of the planned trajectory), when
facing changing environments or control uncertainties [7].
Failing to respect planned trajectories means not to respect
the assumptions, including the collision-free assumption and
should — if properly handled — trigger an emergency action
such as a general stop (that could even be unsafe, there is
usually no proof that a general sudden brake is collision
free, but practically with some safety margin it can be). And
worse, nothing proves the state reached after the emergency
action is not a gridlock.

To enable the quick response to changes and uncertainties,
reactive approaches [8], [9] have also been proposed. Instead
of programming complete trajectories, vehicles calculate
their current control decisions with respect to other vehicles’
states and environmental information. In [8], every vehicle
uses a navigation function to decide the current control input.
The navigation function includes a collision avoidance term
which enables a vehicle to respond to maneuvers of other
vehicles. A major difficulty of reactive approaches lies in
the deadlock avoidance: without global coordination, it is
difficult to get a proof that deadlocks are avoided.

In our previous work [10], [11], [12], a priority-based
coordination scheme was proposed that give a balance be-
tween planning-based approaches and reactive approaches.
The problem of coordinating multiple vehicles at intersection
is separated into two parts: high-level planning of priorities
and low-level reactive control of vehicles. The planning of
priorities decides the relative orders of vehicles to cross the
intersection (and so ensures collision-free maneuvers). It has
been mathematically proven, under mild assumptions, that it
is possible to ensure the intersection to be deadlock-free [10]
by selecting priorities satisfying some technical conditions.
Since priorities represent a broad set of trajectories (pre-
cisely an homotopy class), it is possible to build a control
preserving this priority. Moreover it has been shown that
such a control satisfying another technical condition has the
property to be brake-safe: this implies (but is stronger) that
a global emergency braking maneuver is collision-free. To
demonstrate the feasibility of the framework, a ”bang-bang”



priority-preserving control law has been proposed [10].
The ”bang-bang” control law is reactive and simple to

compute. However, it leads to non-smooth vehicle behav-
iors, and to unnecessary energy consumption. Moreover, the
control law requires vehicles to maximally brake if priority
violations are imminent; however we could anticipate the
future violations and brake earlier: if a child crosses the
road the first vehicle has to brake hard but the following
vehicles could anticipate. These drawbacks make the ”bang-
bang” control law inappropriate in the real world.

Some recent works [9], [13], [14] adopt the Model Pre-
dictive Control (MPC) approach to coordinate vehicles at
the intersection. MPC optimizes a predefined cost function
over a finite time horizon to produce a sequence of control
inputs. Only the first control step is implemented. In [13],
a centralized MPC algorithm is proposed. Vehicles in the
vicinity of the intersection are considered together. The
current step control inputs are calculated by optimizing a
global cost function. The risk of collision is encoded as
a term in the cost function. In [9], a decentralized MPC
algorithm is also introduced. Each vehicle solves a local
optimization problem to get the control input. A simple
linear constraint is introduced to avoid collisions between
conflicting vehicles. Advantages of MPC algorithms are
twofold. On one hand, the notion of cost function allows
the incorporation of multiple criteria in the control process.
On the other hand, MPC optimizes the current timeslot while
keeping future timeslots into account.

Contribution: In this paper, we propose a novel decen-
tralized MPC control approach under the priority-based coor-
dination framework. Comparing to [9], [13], our innovation
resides in two folds
• The approach is seamlessly integrated in a well designed

framework with provable collision-free and deadlock-
free properties.

• We propose a novel numerical scheme that allows vehi-
cles to predict precisely the future states of conflicting
vehicles, which helps the optimization of ego vehicles’
maneuvers.

Section II presents the system model and basic assump-
tions. Section III formulates the priority-based framework.
Section IV presents the MPC based priority-preserving con-
trol law. Section V illustrate the benefits of our approach
through simulations. Finally, section VI concludes the paper
and discusses the perspectives .

II. SYSTEM MODEL

We consider the task of coordinating a collection of
vehicles N to cross the intersection. Every vehicle i ∈ N
is constrained to forward-only motion along a fixed path
(Figure 1a) γi ⊂ R2 and xi ∈ R is its curvilinear coordinate
along the path. Vehicle dynamics are simplified as a second
order integrator. Given vehicle i, vi = ẋi is the speed of
vehicle and ui = ẍi the acceleration. We bound the speed
and the acceleration: vi ∈ Vi = [0, vi] and ui ∈ Ui = [ui, ui].
Let si = (xi, vi)

′ ∈ Si denote the state of a vehicle and

s = {si}i∈N denote the system state. We assume the control
input is updated in discrete time ∆T :

∀k ∈ N,∀t ∈ [k∆T, (k + 1)∆T ), ui(t) ≡ ui(k∆T ) (1)

With slight abuse of notation, we let ui(k), vi(k), xi(k)
and si(k) respectively represent the control, speed, position
and state of vehicle i at time k∆T . The discrete-time state
equation can then be given by

si(k + 1) = f(si(k), ui(k)) (2)

where

f(si(k), ui(k)) =

(
1 ∆T
0 1

)
si(k) +

(
1
2∆T 2

∆T

)
ui(k) (3)

We assume vehicles are equipped with sensors and com-
munication devices that provides information of itself and
other vehicles (absolute positions, velocities, accelerations,
etc). We assume two-way communication between vehicles
can be established with small delay ( much smaller than ∆T )
through protocols like Dedicated Short-Range Communica-
tions [15], [16]. We assume the initial vehicle configurations
will not generate unavoidable collision.
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Fig. 1: The left drawing depicts an intersection with two
automated vehicles to coordinate. The right drawing presents
the obstacle region and the completed obstacle region of
vehicles i and j.

III. PRIORITY-BASED COORDINATION FRAMEWORK

We adopt the priority-based framework [11], [10] as the
solution approach to the coordination problem. The general
idea of the framework is to plan relative priorities between
vehicles to cross the intersection and then control each
vehicle to stay in the brake-safe sets with regards to prior
vehicles. A vehicle i’s state is in the brake-safe set with
regards to another vehicle j if an unpredictable event happens
that makes vehicle j to maximally brake, vehicle i is still
capable of braking without colliding to the first. The property
of brake-safe set ensure the system to be robust to a wide
class of uncertainties (emergency brake of other vehicles,
etc). In this section, we reformulate this framework, and use
it as the foundation of our proposal.

A. Reformulation of the framework

We define the obstacle region Xobs
ij ⊂ R2 (Figure 1b)

as the set of configurations (xi, xj) where i and j collide.
We technically require Xobs

ij to be an open set. For every
couple of vehicles with a non-empty obstacle region, one



vehicle necessarily passes before or after the other one,
which naturally emerges the notion of priority. We define
Xobs

j�i ≡ Xobs
ij + R− × R+ (Figure 1b) as the set of bad

configurations that may inevitably lead to the violation of the
priority j � i, called completed obstacle region. Specially,
Figure 2 illustrates the completed obstacle region of two
vehicles on the same path. To describe the priorities between
all vehicles, we can define an oriented priority graph G
whose vertices are V (G) := N and edges (j, i) ∈ E(G).
Each vertex represents a vehicle and the oriented edge
between two nodes represents the priority relation between
them.
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Fig. 2: Vehicle i and j are on the same path. Their completed
obstacle region is illustrated in the right figure

The priority-based framework separates the coordination
task into two parts:
• Design a feasible priority graph.
• Control the vehicles in a way that priorities are re-

spected.
The assignment of priorities is itself a complex task, given

potentially very high number of possible priority graphs
(2(N−1)N/2). Fortunately, simple heuristic algorithms are
available [10], [17] to compute a fairly efficient priority
graph. In this paper, we assume the priority graph is given
and we focus on the control of vehicles under fixed priorities.

Let k 7→ Φi(k, si, ui) denote the discrete-time state flow
of the vehicle i starting from the initial state si and driven
by the control signal ui. We define a projection operator
πx(s) = x. We then define Φx,i = πx(Φi) that returns the
evolution of the vehicle’s position on the path. For vehicle i
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Fig. 3: The left drawing shows the brake trajectory
(Φx,i(k, si, ui),Φx,j(k, sj , uj)) of a brake-safe state. All
configurations are outside the completed obstacle region.
The right drawing shows a non brake-safe state where some
configurations on the brake trajectory are inside the region.

and vehicle j � i, given the current state of vehicle j as sj ,
the brake-safe set of vehicle i with respect to vehicle j can

be given by a set-valued function Bj�i(sj) as

Bj�i(sj) = {si ∈ Si|
∀k ≥ 0, (Φx,i(k, si, ui),Φx,j(k, sj , uj)) /∈ Xobs

j�i}
(4)

Figure 3 provides an illustration of the brake-safe state.
Noticeably, the brake-safe state is more strict than inevitable
collision state defined in [18] or escape set defined in [19].

Remark 1: Strictly speaking, priority violations may oc-
cur between two consecutive time steps, as a side-effect
of continuous system discretization. This problem can be
avoided by adding proper margin on the completed obstacle
region. The size of the margin is at the order of O(vi∆T ).
The margin vanishes if ∆T → 0.

In order to respect priorities, a feasible control input of
vehicle i at current timeslot should guarantee the vehicle
to stay in the brake-safe set at next timeslot. We refer all
feasible controls as the priority-preserving control inputs.
Mathematically, the set of priority-preserving inputs is given
as a set-valued function

UG
i (sj�i) = {ui ∈ Ui|
∀(j, i) ∈ E(G),Φi(1, si, ui) ∈ Bj�i(Φj(1, sj , uj))}

(5)

where sj�i = (sj)j�i||j=i includes the states of prior
vehicles as well as the ego vehicle state.

We can prove that UG
i (sj�i) is either an empty set, if

there exists no control input allowing vehicle i to stay
in the brake-safe set at next time step; or it is a closed
interval [ui, sup(UG

i (sj�i))], where sup(UG
i (sj�i)) is the

upper bound of the priority-preserving input. This property
serves as an important preliminary for the proposed MPC
approach.

B. A ”bang-bang” priority-preserving control law

A simple priority-preserving control law is introduced in
the previous work [10]. Let gGi denote the control law. For
vehicle i, assuming that the system state at current timeslot
is s, we give gGi as :

gGi (s) =

{
ui if ui ∈ UG

i (sj�i)
ui if ui /∈ UG

i (sj�i)
(6)

The control law assumes vehicle either maximally ac-
celerates or maximally decelerates. At each time step, a
vehicle observes the system state, and maximally accelerates
if maximal acceleration is priority-preserving. Otherwise it
maximally brakes.

C. Problem under consideration and the proposed approach

The ”bang-bang” control law proposed in section III-B
demonstrate the reactivity of the priority-based framework.
Vehicles base their next step control inputs on the current
system state, allowing them to constantly react to the chang-
ing environment and avoid collisions. However, the ”bang-
bang” law produces non-smooth vehicle behaviors, which
in turn leads to bad passenger experience and large fuel
consumption.



The challenge is to find a control law that is not only
priority-preserving and reactive, but also considers the practi-
cal needs of efficiency, comfort and sustainability. Moreover,
this control should still be decentralized. Each vehicle makes
its own control decision.

To tangle the problem, we propose a model predictive
control approach that formulates our problem to an optimal
control cycle subject to system dynamics and constraints on
system state and control input. In the rest of this paper,
we describe our approach and present some preliminary
simulation results.

IV. THE MODEL PREDICTIVE APPROACH

A. High-level view of the approach

We propose a decentralized solution where vehicles solve
optimization problems locally, allowing them to safely cross
the intersection. Figure 4 presents the high-level view of
proposed approach. At the beginning of each timeslot, the
automated vehicle performs the following three steps to
decide the control input to be implemented:

1) The vehicle observes current system state and predicts
the evolution of the states of prior vehicles on a finite
time horizon.

2) The vehicle calculates a sequence of control inputs by
optimizing a predefined cost function under a series of
constraints.

3) The vehicle only implements the first control input
from the sequence calculated from the second step.
The optimization process restarts at next timeslot.

The first and second steps are two important points to
be described in detail. For the sake of clarity, we firstly
present the formulation of the optimization problem (step 2).
In the second place, we come back to discuss the problem
of predicting future states of prior vehicles (step 1).

B. Optimization problem formulation

We consider a vehicle i, its initial state s at time k = 0, and
the fixed priority graph G. Let K denote the steps of looking-
forward. The local model predictive control problem can
then be formulated as a constrained nonlinear optimization
problem:

min
ui

Ji(si, ui) = min
ui

K∑
k=0

Li(si(k), ui(k)) (7)

subject to

si(0) = s (8)

Step 1: System 
state observation 

and prediction

Step 2: Formulation 
and Calculation of 
local MPC problem

Step 3: 
Implementation of 

the first control 
input

Fig. 4: Overview of the proposed approach

si(k) ∈ Si,ui(k) ∈ Ui,

k = 0...K
(9)

si(k + 1) =f(si(k), ui(k)),

k = 0...K − 1
(10)

ui(k) ∈UG
i (sj�i(k)),

k = 0...K
(11)

where Ji denotes the cost function to be minimized by
selecting proper sequence of control input ui(k), k = 0...K.
Li denotes the so-called running cost during the interval ∆T .
We may select a quadratic running cost as

Li(k) = ci,1(vtargeti − vi(k))2 + ci,2ui(k)2 (12)

where the first term is the efficiency cost (gap between cur-
rent speed and targetd speed) and the second term penalizes
the control signal. We may consider other metrics to evaluate
the cost rather the one proposed here. For example, one could
directly aim to minimize the fuel consumption during the
crossing.

(8) and (9) respectively define the initial equality con-
straint and the boundary condition constraint. Equation (10)
is the state transition constraint that describes the time-
dependent evolution of the system.

To ensure the control input to be always priority-
preserving, we enforce the priority-preserving constraint at
each time step k = 0, ...,K in (11).

Remark 2: It is possible to only enforce the priority-
preserving constraint at current time k = 0. The resulted
control is still priority-preserving as we only take ui(0) as
the control input. It allows the vehicle to avoid the priority
violation (or collision) at the very last moment. Similar
design can be found in [9], [20]. Here, we opt to enforce
priority-preserving constraint at future time steps as it allows
the vehicle to react earlier to possible priority violations in
the future.

We are able to propose the following sufficient condition
for the existence of solution of the optimization problem:

Theorem 1: The optimization problem (7)-(11) has solu-
tion if the current vehicle state is brake-safe with regards to
prior vehicles.

The proof is intuitive. A vehicle in brake-safe state ensures
UG
i (sj�i(k)) to be closed intervals, for all k = 0...K, which

in turn guarantees the solution space to be non-empty.

C. Predicting the future states of prior vehicles

In our proposed MPC approach, interactions among ve-
hicles are fully encoded in the priority-preserving con-
straint (11): a vehicle should stay in the brake-safe state with
regards to prior vehicles at any moment. This actually means
that the vehicle should at least know the current states of
prior vehicles (see Remark 2) to ensure its brake safety. In
the second place, a vehicle may predict the future states of
prior vehicles so that the ego vehicle control can be further
optimized.



The knowledge of current system state are assumed to be
available (section II) through sensors and V2X communica-
tions. Thus the problem is reduced to predict the future states
of prior vehicles.

In fact, assuming acyclic priorities, it is possible to obtain
an ”exact” prediction of prior vehicles’ future states by
sequentially solving local MPC problems. We may consider
an example of three vehicles presented in Figure 5b. The
priority relations are 1 � 2, 1 � 3 and 2 � 3. At the
beginning, we may easily solve the local MPC problem for
vehicle 1 to obtain its states for future K steps, since vehicle
1 has no prior vehicle. Assuming negligible calculation time
and communication delay, the future states of vehicle 1 are
then immediately transmitted to vehicle 2 and 3. In the
sequel, vehicle 2 can then solve the optimization problem by
enforcing the priority-preserving constraint (11) with respect
to vehicle 1. The future states of vehicle 2 are then again
transmitted to vehicle 3. Vehicle 3 may finally calculate its
trajectory for next K steps. In the end, the predictions are
exact and all vehicles obtain their optimal trajectories.

We refer this sequential scheme as MPC*. MPC* can
actually achieve user optimal for all vehicles under given
priorities. However, such scheme is difficult to implement
in real world, considering limited computation capacity and
non-trivial communication delay.

To approximate MPC*, we may adopt a simple linear
prediction scheme to estimate future states. We assume prior
vehicles maintain constant velocities during the considered
time horizon. Future states can then be calculated through
system dynamics equation. This approach is of low com-
plexity and requires no additional communication effort. We
refer this approach as MPC0

We argue that it is still possible to benefit from the
calculations of other vehicles, even if the computation and
communication delay are no longer negligible (while still
smaller than ∆T ). We observe that although vehicles re-
calculate the control sequence at each time step, the dif-
ference of two sequences in two adjacent steps are not
significant. Assuming the current timeslot is k0, we may
then use the result of k0 − 1 to predict future states of prior
vehicles. Considering vehicle i, j and j � i, at timeslot k0,
the observation of the state of vehicle j is sobj . Vehicle j has
shared the optimization outcome at time k0− 1 to vehicle i,
denoting as uprj (k0+k), k = −1, ...,K−1. The estimation of
vehicle j’s state ŝj over the prediction horizon k = 0, ...,K
can be written as

ŝj(k0 + k) =
sobj k = 0

f(ŝj(k − 1), uprj (k0 + k)) k < K − 1

f(ŝj(k − 1), 0)) k = K

(13)

Three cases are considered in (13). Current state of vehicle
j is simply estimated as the observation sobj . The predicted
control inputs are available for steps k ≤ K − 1, thus the
estimation of the future states until K − 1 is based on the
information provided by j. Finally, for step K, the estimation

is based on the assumption that vehicle j maintains constant
speed.

We refer the proposed approach as MPC1. We expect that
with the additional information, MPC1 can exhibit a better
performance than MPC0 in terms of efficiency.

Remark 3: Our scheme can be easily extended to consider
communication loss or delays. Assuming that the latest
information received from vehicle j is uprj (k0 + k), k =
−τ, ...,K − τ , we may then simply use the subsequence
uprj (k0 + k), k = 0, ...,K − τ as the inputs of prediction. If
τ is larger than K, then our scheme actually falls back to
MPC0.
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Fig. 5: Illustration of the intersection scenario (left) and the
corresponding priority graph (right)

V. SIMULATION

We present simulation results illustrating the benefits of
the proposed approach. We consider a system of three
vehicles (Figure 5). Vehicles are labeled by numbers 1, 2 and
3. We determine the priorities as 1 � 2 , 1 � 3 and 2 � 3.
The initial spatial localizations of vehicles are represented
in the Figure (L1 = 40 m L2 = 65 m and L3 = 10 m).
Vehicles are supposed to be identical such that Vi = [0, 8]
(m/s) and Ui = [−6, 3] (m/s2) for all i ∈ {1, 2, 3}. The
initial velocities of three vehicles are set to 8 m/s. The
parameters of the cost function are set to vtargeti = 8 m/s,
ci,1 = 1 and ci,2 = 6 for all i ∈ {1, 2, 3}. The length of
a timeslot is set to ∆T = 0.4 s and the steps of looking-
forward is set to 15. For the sake of simplicity, vehicles are
assumed to be within a round protection zone with diameter
d = 5 m.

We run simulations with three different control strategies:
the ”bang-bang” (BB) law, MPC0 and MPC1. To solve
the constrained nonlinear optimization problems in MPC0

and MPC1, we adopt the sequential quadratic programming
algorithm provided by Matlab fmincom function. We record
the velocities and accelerations of vehicles until t = 21.6 s,
when all vehicles have crossed the intersection.

As vehicle 1 has no prior vehicle, it can cross the intersec-
tion under the targeted speed profile. Vehicle 2 is forced to
decelerate and then re-accelerate to give the right-of-way to
vehicle 1. Vehicle 3 should also decelerate and re-accelerate
to respect the priority of vehicle 2. Figure 6 illustrates the
evolution of position, velocity and acceleration of vehicle 2
under three control strategies. We observe that MPC0 and
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Fig. 6: Vehicle 2: position (left), velocity (middle) and acceleration (right) profiles under three different control strategies.
MPC schemes anticipate possible priority violations and decelerate earlier. MPC schemes have smooth profiles. MPC0 and
MPC1 are equivalent to MPC* as vehicle 1 maintains constant speed.

(a) (b) (c)

Fig. 7: Vehicle 3: position (left), velocity (middle) and acceleration (right) profiles under three different control strategies.
MPC1 leads to less velocity drop than MPC0 thanks to more precise prediction of prior vehicles.

MPC1 allow vehicle 2 to have smooth velocity curves. The
proposed MPC strategies also enable vehicle 2 to anticipate
the risk of collision and decelerate earlier. The profiles of
vehicle 2 under MPC0 and MPC1 are identical. In fact, for
vehicle 2, MPC0 and MPC1 are equivalent to MPC*, as
vehicle 1 maintains constant speed. From Figure 7, we see
that vehicle 3 has less velocity drop under MPC1 than MPC0.
As MPC1 provides a better estimation of vehicle 2’s state
evolution than MPC0, vehicle 3 can brake in a less aggressive
way while still ensure the brake safety. From Table I, we note
that delays introduced by MPC approaches are slightly larger
than the bang-bang control as a trade-off of getting smoother
behavior. MPC1 introduces less delay than MPC0 for vehicle
3 with the help of its anticipatory behavior.

We may further compare the fuel consumptions of three
approaches. We adopt the simplified fuel consumption model
proposed in [21]. The instant fuel consumption rate is
formulated as

f(v) = b0+b1v+b2v
2+b3v

3+[a(e0+e1v+e2v
2)]a>0 (14)

where v and a are respectively the instant velocity and
acceleration of vehicle. The term a(c0 + c1v + c2v

2) only
takes effects if a > 0, otherwise it equals to zero. The
parameters are given as b0 = 0.160, b1 = 2.45 × 10−2,
b2 = −7.42 × 10−4, b3 = 5.98 × 10−5, e0 = 0.072,

e1 = 9.68× 10−2 and e2 = 1.08× 10−3.

BB MPC0 MPC1

Vehicle 1 0 0 0
Vehicle 2 6.4 6.9 6.9
Vehicle 3 2.3 4.0 3.8

TABLE I: Comparison of the delays (s) induced by decel-
eration and re-acceleration. The delay is calculated as the
difference of traversing time under maximal velocity and ac-
tual traversing time. Delays introduced by MPC approaches
are slightly larger

We record the aggregated fuel consumptions (milliliters)
at 21.6 s for three approaches, as presented in Table II. We
observe that the proposed MPC strategies are more energy-
saving than the ”bang-bang” law thanks to their smooth
behaviors (around 10 %). Moreover, with respect to vehicle
3, MPC1 consumes 4% less fuel than MPC0 during the
entire horizon thanks to the more precise estimation of prior
vehicles’ future states.

With the analysis above, we conclude that the proposed
decentralized MPC approach allows smooth coordination of
multiple vehicles at intersection. Preliminary results show
that MPC1 exhibits better performance than MPC0 in terms
of efficiency.



BB MPC0 MPC1

Vehicle 1 7.3 7.3 7.3
Vehicle 2 10.9 9.7 9.7
Vehicle 3 10.8 9.7 9.3

TABLE II: Comparison of the fuel consumptions. MPC
approaches show a better energy efficiency than BB control
thanks to vehicles’ smooth behaviors. For vehicle 3, MPC1

outperforms MPC0 thanks to more precise estimation of prior
vehicles’ future states.

VI. CONCLUSIONS AND PERSPECTIVES

We present a novel decentralized MPC approach that
allows smooth coordination of automated vehicles at inter-
section. More precisely, we adopt the priority-based coordi-
nation framework and separate the coordination problem into
a priority assignment problem and a vehicle control prob-
lem. Priorities are fixed and the decentralized MPC scheme
permits vehicles to smoothly cross the intersection without
violating priorities. The proposed scheme is efficient and
reactive, ensuring the system to be resilient to unexpected
events (emergency braking)

We discuss two different methods (MPC0 and MPC1) that
allows a vehicle to predict the behaviors of prior vehicles.
We demonstrate that MPC1 is better performed in terms of
efficiency. MPC1 requires only local information (from prior
vehicles). It can be extended to consider communication lost
and delay, at the cost of reduced performance.

The vehicle dynamic model adopted in this paper is of
its simplest form. In the future, we plan to consider more
realistic vehicle dynamics (bicycle model, etc.). We should
also carefully consider uncertainties in control and percep-
tion. We will further investigate the impact of communication
delay and loss to our approach. Finally, the work will be
implemented both in a realistic simulation platform and in
real vehicles as a part of the European project AutoNET2030.
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