
HAL Id: hal-01074901
https://minesparis-psl.hal.science/hal-01074901

Preprint submitted on 15 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactive Programming of Simulations in Physics
Frédéric Boussinot, Bernard Monasse, Jean-Ferdy Susini

To cite this version:
Frédéric Boussinot, Bernard Monasse, Jean-Ferdy Susini. Reactive Programming of Simulations in
Physics. 2014. �hal-01074901�

https://minesparis-psl.hal.science/hal-01074901
https://hal.archives-ouvertes.fr

Reactive Programming

of Simulations in Physics

Frédéric Boussinot

Mines-ParisTech, Cemef

frederic.boussinot@mines-paristech.fr

Bernard Monasse

Mines-ParisTech, Cemef

bernard.monasse@mines-paristech.fr

Jean-Ferdy Susini

CNAM, Cédric

jean-ferdinand.susini@cnam.fr

October 15, 2014

Abstract

We consider the Reactive Programming (RP) approach to simulate
physical systems. The choice of RP is motivated by the fact that RP
genuinely offers logical parallelism, instantaneously broadcast events, and
dynamic creation/destruction of parallel components and events. To il-
lustrate our approach, we consider the implementation of a system of
Molecular Dynamics, in the context of Java with the Java3D library for
3D visualisation.

Keywords. Concurrency ; parallelism ; reactive programming ; physics ;
molecular dynamics.

1 Introduction

The essence of programming is to manipulate data structures through proce-
dures [12]. Objects which group (encapsulate) data and the procedures (meth-
ods) to use them is at the basis of object-oriented programming. When the
decomposition into objects is adequate, object programming is usually consid-
ered as leading to more natural and safer programs as it reduces the distance
between the programmer’s intuition and the program structure. For example,
let us consider a physical system made of atoms. In an object-oriented approach,
an atom is quite naturally represented by an object containing the atom state
(e.g. position, velocity, and mass) and the procedures to transform the atom
state (e.g. computing the next position).

Some systems to simulate physics are coded with objects as LAMMPS, pro-
grammed in C++ [13]. As more traditional systems programmed in Fortran

1

mailto:frederic.boussinot@mines-paristech.fr
mailto:bernard.monasse@mines-paristech.fr
mailto:jean-ferdinand.susini@cnam.fr

(e.g. DL_POLY [14]), their central structure basically consists in arrays stor-
ing data, and loops to process the array elements in turn. A general issue with
such structures is the difficulty to add (and to remove) data, or objects, during
the course of a simulation (dynamically). Some molecular simulation systems
are able to deal with dynamic creation of chimical bonds (this is for exam-
ple the case of LAMMPS, in which the ReaxFF [5] potential is implemented),
but, to our knowledge, no simulation system is able to deal with the dynamic
creation/destruction of general components (e.g. atoms).

The dynamic creation/destruction of components can be useful to model
multi-scale systems [4], in which the scale of sub-systems is allowed to change
during execution. Let us consider, a molecule simulated at the All-Atom (AA)
scale; when the molecule is isolated from the others, il may be possible to
switch its scale to Coarse-Grained (CG) and thus to simulate the molecule more
efficiently. The inverse scale change may be mandatory when molecules become
so close that their interactions must be described at the lowest AA level. In both
cases, a change of scale can be seen as the replacement of the molecule by a new
one. For example, the AA to CG change of scale consists in the creation of a
new CG molecule, simultaneous with the destruction of the old AA molecule.

In this text, we propose an approach to the implementation of physical
simulations in which the dynamic creation or destruction of components can
be simply and naturally expressed. The objective is the design of a Molecular
Dynamics (MD) system allowing multi-scale modeling. We use a programming
approach, called Reactive Programming (RP) [2], with a generalized notion of
object: an object encapsulates not only its data and methods to manipulate
them, but also its behaviour which can be used to code its interactions with
the other objects. In this context, a simulation is structured as an assembly
of interacting objects whose behaviours are run in a coordinated way, by an
execution machine able to dynamically create and run new objects, and to
destroy others.

Structure of the Paper

The paper is structured as follows: Section 2 justifies the use of RP for the
implementation of physical simulations. Section 3 describes RP in general and
more precisely the SugarCubes framework. MD is described in Section 4. The
implementation of the MD simulation system is described in Section 5. Related
work is considered in Section 6, and Section 7 concludes the paper, giving several
tracks for future work.

2 Rationale

When it is not possible, while considering a physical system, to find exact an-
alytical solutions describing its dynamics, the numerical simulation approach
becomes mandatory. Numerical simulations are based, first, on a discretization
of time and second, on a stepwise resolution method implementing an integra-

2

tion algorithm. The possibility to get analytical solutions is basically limited by
complexity issues: complex systems cannot usually be analytically solved. This
renders numerical simulations an important topics for physics.

Parallelism. At the logical level, it is often the case that the processing of a
complex system is facilitated by decomposing it into several sub-systems linked
together. The sub-systems can thus be considered as independent components,
running and interacting in a coordinated way. Recast in the terminology of
informatics, one would say that the sub-systems are run in parallel in an envi-
ronment where they share the same notion of time. Here, we are not speaking of
real time but of a logical time, shared by all the sub-systems. In this approach,
the steps of the numerical resolution method used to simulate the system have
to be mapped onto the logical time; we shall return on this subject later. Since
we are assuming time to be logical, we should also qualify parallelism as being
logical: parallelism is not introduced here to accelerate execution (for example,
by using several processors) but to describe a complex system as a set of paral-
lel entities. The use of real-parallelism (offered by multiprocessor and multicore
machines) to accelerate simulations is of course a major issue, but we think that
it is basically a matter of optimisation, while the use of logical parallelism is
basically a matter of expressivity.

Determinism. Simulations of physical systems must verify a strong and man-
datory constraint: no energy should be either created or destroyed during the
simulation of a closed system (without interaction with the external world). In
other words, total energy1must be preserved during the simulation process. This
is a fundamental constraint: it corresponds to the reversibility in time of the
Newton’s laws which is at the basis of classical physics. This constraint can
be formulated differently: classical physics is deterministic. In informatics, this
has a deep consequence: as physical simulations should be deterministic, one
should give the preference to programming languages in which programs are
deterministic by construction. Note however, that parallelism and determinism
do not usually go well together; there are very few programming languages
which are able to provide both; we shall return on this point later.

Broadcast events. In addition to time reversibility, classical physics rests
on a second fundamental assumption: forces (gravitation, electrostatic and
inter-atomic forces) are instantaneously transmitted2. Instantaneity in our case
should accommodate with the presence of the logical time; actually, instanta-
neity means that action/reaction forces (third Newton’s law) should always be
exerted during the same instant of the logical time. It is in the nature of classical
physical forces to be broadcast everywhere. In informatics terms, forces corre-
spond to information units that are instantaneously broadcast to all parallel
components. This vision of forces actually identifies forces with instantaneously

1 Total energy is the sum of potential energy and kinetic energy.
2 We place ourselves in a non-relativistic world, where for example simultaneity exists.

3

broadcast events; we shall see that this notion of instantaneously broadcast event
exists in the so-called synchronous reactive formalisms, which thus appear to be
good candidates to implement physical simulations.

Modularity. It may be the case that some components of a system have to be
removed from the system because their simulation is no more relevant (imagine
for example an object whose distance from the others becomes greater than
some fixed threshold, so that its contribution may be considered as negligible).
Destruction of components is usually not a big issue in simulations: in order to
remove an object from the global system, it may be for example sufficient to
stop considering it during the resolution phase. Dually, in some situation, new
components may have to be created, for example in chemistry where chemical
bonds linking two atoms can appear in the course of a simulation. Dynamic
creation is more difficult to deal with than destruction; for example, a new
created object must be introduced only at specific steps of the resolution method,
in order to avoid inconsistencies. In informatics terms, both dynamic destruction
and dynamic creation of parallel components should be possible during the
course of simulations. This possibility is often called modularity: in a modular
system, new components can appear or disappear during execution, without
need to change the other components. Note that the notion of broadcast event
fits well with modularity as the introduction of a new component listening or
producing an event, or the removal of an already existing one, does not affect
the communication with the other parallel components.

Hybrid systems. There exist hybrid physical systems which mix continuous
and discrete aspects. For example, consider a ball linked by a string to a fixed
pivot and turning around the pivot (continuous aspect); one can then consider
the possibility for the string to be broken (discrete aspect). Numerical simula-
tions of hybrid systems are more complex than those of standard systems: in
the previous example, the string component has to be removed from the simu-
lation when the destruction of the string occurs, and the simulation of the ball
has to switch from a circle to a straight line. In this respect, a hybrid system
can be seen as gathering several related systems (for example, the system where
the ball is linked to the pivot, and the system where it is free) ; then, the issue
becomes to define when and how to switch from one system to another. Note
that the simulation of hybrid systems is related to modularity: in the previ-
ous example, one can consider that the breaking of the string entails on the
one hand the destruction of both the string component and the circular-moving
ball, and on the other hand the simultaneous creation of a straight-moving new
ball appearing at the position of the old one.

Resolution method. Let us discuss now the relation between logical time
and the discretized time of the resolution method. We shall call instant the
basic unit of the logical time; thus, a simulation goes through a first instant,

4

then a second, and so on, until termination3. The only required property of
instants is convergence: all the parallel components terminate at each instant.
Execution of instants does not necessarily take the same amount of real time;
actually, real time becomes irrelevant for the logic of simulations: the basic
simulation time is the logical time, not the real time. The numerical resolution
method works on a time discretized in time-steps during which forces integration
is performed according to Newton’s second law. Typically, in simulations of
atoms, time-steps have a duration of the order of the femto-second. Several
steps of execution may be needed by the resolution algorithm to perform one
time-step integration; for example, two steps are needed by the velocity-Verlet
integration scheme [18] to integrate forces during one time-step: positions are
computed during the first step, and velocities during the second. Actually, a
quite natural scheme associates two instants with each time-step: during the first
instant, each component provides its own information; the global information
produced during the first instant is then processed by each component during
the second instant. Note that such a two-instant scheme maps quite naturally
to the velocity-Verlet method: each step of the resolution method is performed
during one instant.

Multi-time aspects. The use of the same time-step during the whole simu-
lation is not mandatory : one calls multi-time a system in which the time-step
of the resolution method is allowed to vary during the simulation.

The change of time-step can be global, meaning that it concerns all the
objects present in the simulation. This can be helpful for example to get a
more accurate simulation when a certain configuration of objects is reached (for
example, when objects become confined in a certain volume).

Alternatively, the change of time-step can be local, i.e. concerning only cer-
tain objects, but not all. This means that different components of the same
simulation are simultaneously simulated using different time-steps. This could
be the case for a system in which diffusion aspects occur; in such a system,
objects in some regions are separated by large distances and evolve freely, simu-
lated with large time-steps, while in other regions, objects are closely interacting
and should thus be simulated using smaller time-steps. We will return later on a
situation of this kind. We shall call such systems multi-time, multi-step systems
(MTMS systems, for short). A major interest of MTMS is that loosely-coupled
objects (with rare interactions) can be simulated during long time periods.

In this text, we consider the Reactive Programming [2] (RP) approach to
simulate physical systems. The choice of RP is motivated by the fact that RP
genuinely offers logical parallelism, instantaneously broadcast events, and dy-
namic creation/destruction of parallel components and events. Moreover, we
choose a totally deterministic instance of RP, called SugarCubes [10], based
on the Java programming language: indeed, in SugarCubes, programs are de-
terministic by construction. To illustrate our approach, we shall consider the

3 Note that actually, there is no conceptual obligation for a simulation to terminate.

5

implementation of a MTMS simulation system of Molecular Dynamics [6] (MD)
in the context of Java, with the Java3D library [1] for 3D visualisation.

3 Reactive programming

Reactive Programming [2] (RP) offers a simple framework, with a clear and
sound semantics, for expressing logical parallelism. In the RP approach, systems
are made of parallel components that share the same instants. Instants thus
define a logical clock, shared by all components. Parallel components synchronise
at each end of instant, and thus execute at the same pace. During instants,
components can communicate using instantaneously broadcast events, which are
seen in the same way by all components. There exists several variants of RP,
which extend general purpose programming languages (for example, ReactiveC
[7] which extends C, and ReactiveML [15] which extends the ML language).
Among these reactive frameworks is SugarCubes [10], which extends Java. In
SugarCubes, the parallel operator is very specific: it is totally deterministic,
which means that, at each instant, a SugarCubes program has a unique output
for each possible input. Actually, in SugarCubes parallelism is implemented in
a sequential way.

Due to its “determinism by construction”, we have choosen to use the Sug-
arCubes framework to implement the MD system; we are going to describe
SugarCubes in the rest of the section4.

SugarCubes

The two main SugarCubes classes are Instruction and Machine. Instruction
is the class of reactive instructions which are defined with reference to instants,
and Machine is the class of reactive machines which run reactive instructions
and define their execution environment.

The main instructions of SugarCubes are the following (their names always
start by the prefix SC):

Void statement: SC.nothing does nothing and immediately terminates.

Next instant: SC.stop does nothing and suspends the execution of the running thread
for the current instant; execution will terminate at the next instant.

Sequence: SC.seq (inst1,inst2) behaves like inst1 and switches immediately to
inst2 as soon as inst1 terminates.

Parallelism: SC.merge (inst1,inst2) executes one instant of instructions inst1 and
inst2 and terminates if both inst1 and inst2 terminate. Execution al-
ways starts by inst1 and switches to inst2 when inst1 either terminates
or suspends.

4We only describe the notions that are needed for the paper to be self-contained; a complete
description of SugarCubes can be found in [10].

6

Cyclic execution: SC.loop (inst) executes cyclically inst: execution of inst is imme-
diately restarted as soon as it terminates. One supposes that it is not
possible for inst to terminate at the same instant it is started (otherwise,
one would get an instantaneous loop which would cycle forever during the
same instant, preventing thus the reactive machine to detect the end of
the current instant).

Java code: SC.action (jact) runs the execute method of the Java action jact (of
type JavaAction) (this can happen several time, as the action can be in
a loop).

Event generation: SC.generate (event,value) generates event, with value as associated
value, and immediately terminates.

Event waiting: SC.await (event) terminates immediately if event is present (i.e. it has
been previously generated during the current instant), otherwise, execu-
tion is suspended waiting either for the generation of event or for the end
of the current instant, detected by the reactive machine.

Event values: SC.callback (event,jcall) executes the Java callback jcall (of type
JavaCallback) for each value generated with event during the current
instant. In order not to lose possibly generated values, the execution of
the instruction lasts during the whole instant and terminates at the next
instant.

Preemption: SC.until (event,inst) executes inst and terminates either because
inst terminates, or because event is present.

The sequence and merge operators are naturally extended to more than two
branches; for example SC.seq (i1,i2,i3) is the sequence of the three instruc-
tions i1,i2,i3.

A reactive machine of the class Machine runs a program (of type Program)
which is an instruction (initially SC.nothing). New instructions added to the
machine are put in parallel (merge) with the previous program. Addings of new
instructions do not occur during the course of an instant, but only at beginnings
of instants.

Basically, a machine cyclically runs its program, detects the end of the cur-
rent instant, that is when all branches of merge instructions are all terminated
or suspended, and then goes to the next instant.

Note that the execution of an instruction by a machine during one instant
can take several phases: for example, consider the following code, supposing
that event e is not already generated:

1SC. merge (
SC . await e ,

3SC. generate (e , null)
)

Execution switches to the await instruction (line 2) which is suspended, as e

is not present. Then, execution switches to the generate instruction (line 3),

7

which produces e and terminates. The executing machine detects that execution
has to be continued, because one branch of a merge instruction is suspended,
awaiting an event which is present. Thus, the await instruction is re-executed,
and it now terminates, as e is present. The merge instruction is also now
terminated.

The execution of a program by a machine is totally deterministic: only one
trace of execution is possible for a given program. The execution of SugarCubes
programs is actually purely sequential: the parallelism presently offered by Sug-
arCubes is a logical one, not a real one; the issue of real parallelism is considered
in Sec. 7.

4 Molecular Dynamics

Numerical simulation at atomic scale predicts system states and properties from
a limited number of physical principles, using a numerical resolution method
implemented with computers. In Molecular Dynamics (MD) [6] systems are
organic molecules, metallic atoms, or ions. The goal is to determine the temporal
evolution of the geometry and energy of atoms.

At the basis of MD is the classical (newtonian) physics, with the fundamental
equation:

−→
F = m−→a

where
−→
F is the force applied to a particle of mass m and −→a is its acceleration

(second derivative of the variation of the position, according to time).
A force-field is composed of several components, called potentials (of bonds,

valence angles, dihedral angles, van der Waals contributions, electrostatic contri-
butions, etc.) and is defined by the analytical form of each of these components,
and by the parameters caracterizing them. The basic components used to model
molecules are the following:

• atoms, with 6 degrees of freedom (position and velocity);

• bonds, which link two atoms belonging to the same molecule; a bond
between two atoms a, b tends to maintain constant the distance ab.

• valence angles, which are the angle formed by two adjacent bonds ba et bc
in a same molecule; a valence angle tends to maintain constant the angle

âbc. A valence angle is thus concerned by the positions of three atoms.

• torsion angles (also called dihedral angles) are defined by four atoms a, b, c, d
consecutively linked in the same molecule: a is linked to b, b to c, and c to
d; a torsion angle tends to priviledge particular angles between the planes
abc and bcd.

• van der Waals interactions apply between two atoms which either belong
to two different molecules, or are not linked by a chain of less than three

8

(or sometimes, four) bonds, if they belong to the same molecule. They
are pair potentials.

All these potentials depend on the nature of the concerned atoms and are
parametrized differently in specific force-fields. Molecular models can also con-
sider electrostatic interactions (Coulomb’s law) which are pair potentials, as
van der Waals potentials are; their implementation is close to van der Waals
potentials, with a different dependence to distance.

Intra-molecular forces (bonds, valence angles, torsion angles) as well as inter-
molecular forces (van der Waals) are conservative: the work between two points
does not depend on the path followed by the force between these two points.
Thus, forces can be defined as derivatives of scalar fields. From now on, we
consider that potentials are scalar fields and we have:

−→
F (r) = −

−→
∇U(r)

where r denotes the coordinates of the point on which the force
−→
F (r) applies,

and U is the potential from which the force derives.
The precise definition of the application of forces according to a specific

force-field (namely, the OPLS force-field [11]) is described in detail in [16], from
which we have taken the overall presentation of MD.

We now describe the rationals for the choice of RP to implement MD.

Reactive programming for molecular dynamics

The choice of RP, and more specifically of SugarCubes, is motivated by the
following reasons:

• MD systems are composed of separate, interacting components (atoms
and molecules). It seems natural to consider that these components ex-
ecute in parallel. In standard approaches, there is generally a “big loop”
which considers components in turn (components are placed in an array).
This structuration is rather artificial and does not easily support dynamic
changes of the system (for example, additions of new components or re-
movals of old ones, things that one can find in modeling chemical reac-
tions).

• In MD simulations, time is discrete, and the resolution method which is
at the heart of simulations is based on this discrete time. In RP, time is
basically discrete, as it is decomposed in instants. Thus, RP makes the
discretisation of time which is at the basis of MD very simple.

• MD is based on classical (Newtonian) physics which is deterministic. The
strict determinism of the parallel operator provided by SugarCubes reflects
the fundamental determinism of Newtonian physics. At implementation
level, it simplifies debugging (a faulty situation can be simply reproduced).
At the physical level, it is mandatory to make simulations reversible in
time.

9

• In classical physics, interactions are instantaneous which can be quite
naturaly expressed using the instantaneously broadcast event notion of
RP.

In conclusion, the use of RP for MD simulations is motivated by its following
characteristics: modularity of logical parallelism, intrinsic discretisation of time
due to instants, strict determinism of the parallel operator, instantaneity of
events used to code interactions.

Let us now consider the use of RP to implement Molecular Dynamics.

5 MD system

A molecular system consists in a set of molecules, each molecule being made of
atoms, bonds, valence angles and torsion angles. In the approach we propose,
the molecule components (atoms, bond, angles) are programs that are executed
under the supervision of another main program called a reactive machine. The
reactive machine is in charge of executing the components in a coordinated way,
allowing them to communicate through events. Events are broadcast to all the
components run by the reactive machine, that is, all components always “see” an
event in the same way: either it is present for all components if it is generated
by one of them, or it is absent for all components if it is not generated during the
instant. All events are reset to absent by the reactive machine at the beginning
of each instant. Values can be associated with event generations. In order to
process the values generated with an event, a component has to wait during the
whole instant, processing the values in turn, as they are generated.

The reactive machine proceeds in instants: the first instant is executed,
then the second, and so on indefinitely. All components (atoms, bonds, etc)
in the machine are run at each instant and there is an implicit synchronization
(synchronization barrier) of all the components at the end of each instant. In this
way, one is sure that all component have finished their reaction for the current
instant and have processed all the generated events and all their values before
the next instant can start. Basically, this mode of execution is synchronous
parallelism.

The steps of the resolution method (velocity-Verlet) are identified with the
instants of the reactive machine. The positions of atoms are computed during
one step of the resolution method, and the velocities during the next step.
Actually, at each instant, atoms generate their position and collect the various
forces exerted on them (by bonds, angles, etc). The new positions are computed
from previously collected information at even5 instants and the new velocities
are computed at odd instants, following the two-step scheme of the velocity-
Verlet numerical resolution method.

Note that the new positions and velocities are computed by the atom itself:
we say that they are parts of the atom behavior. Strictly speaking, an atom

5 The choice of even or odd instants is arbitrary; the only requirement is actually that
instants come in pairs.

10

is a structure that encapsulates data (in particular, position and velocity) to-
gether with a behavior which is a program intended to be run by the reactive
machine in which the atom is added. The good programming practice is that
the atom’s behavior is the only component that should access the atom’s data.
This discipline entails the absence of time-dependent errors. As direct access to
the atom’s data is unwilled, events are the only means for a component to influ-
ence an atom. For example, in order to apply a force to an atom, a component
generates an event whose value is the force; the atom should wait for the event
and process the generated values; in this way, the atom is able to process the
force applied to it.

The constuction of molecules is a program whose execution adds the molecule
components into the reactive machine. The main steps to simulate a molecular
system are: 1) define a reactive machine; 2) run a set of molecules in order to
add them in the machine; 3) cyclically run the machine.

In the rest of this section, we give a brief overview of the various programs
that are used to build a simulation. Note that these are small pieces of code,
that we hope to be natural and easily readable. This depart from standard
MD system descriptions, which are usually decomposed in procedures whose
chaining of calls is poorly specified. In our approach, the scheduling of the
various sub-programs is made clear and unambiguous.

We shall first describes (generic and specific) atoms, then intra-molecular
components (bonds and angles). We will also consider inter-molecular interac-
tions. Then, we will explain how molecules are built from the previous atoms
and components.

5.1 Atoms

An atom cyclically collects the constraints issues from bonds, valence angles,
and dihedrals, then computes one step of the resolution method, and finally
visualizes itself. This behavior can be preempted by a kill signal (generated for
example when the molecule to which the atom belongs is destroyed). It is coded
by the following SugarCubes program:

SC. un t i l (k i l l S i g n a l ,
2SC. loop (

SC . seq (
4c o l l e c t i o n () ,

SC . ac t i on (new Reso lut ion (this)) ,
6SC. ac t i on (new Paint3D (this)))))

A constraint is a force that is added to the atom. The constraints are received
as values of a specific event associated with the atom (generation of this event
is considered in 5.2). The collection of constraints is performed by a program
which is returned by the following function collection:

Program c o l l e c t i o n ()
2{

return SC. ca l l ba ck (con s t r a i n tS i gna l ,
4new Co l l e c tCons t r a i n t s (this)) ;

}

11

The CollectConstraints Java callback is defined by:

1public c lass Co l l e c tCons t r a i n t s implements JavaCallback
{

3f ina l Atom me ;
public void execute (f ina l ReactiveEngine _, f ina l Object args)

5{
Vector3d f = (Vector3d) args ;

7Ut i l s . add (me . fo r ce , f) ;
}

9public Co l l e c tCons t r a i n t s (Atom me)
{

11this .me = me ;
}

13}

Vector3d is the type of 3D vectors. The class Utils provides several methods to
deal with vectors: vect creates a vector between two atoms; normalize normal-
izes a vector (same direction, but unit length); sum is the vector addition; perp
is the cross-product of vectors; opposite defines the opposite vector; finally,
extProd multiplies a vector by a scalar. The addition “in place” Utils.add

(x,y) is equivalent to x = Utils.sum (x,y).
We have choosen to define the collection of constraints as a function (and

not to inline its body in the atom behavior) to allow specific atoms to redefine
it (actually, to extend it) for their specific purpose; this is considered in 5.1.2.

Action Resolution performs the resolution method for the atom; it is de-
scribed in 5.1.1. Action Paint3D asks for the repainting of the atom; for the
sake of simplicity, we do not consider it here.

5.1.1 Resolution

The resolution method used is the Velocity-Verlet method [18]. Let r be the
position (depending of the time) of an atom, v its velocity, and a its acceleration.
The Velocity-Verlet method is defined by the following equations, where ∆t is a
time interval:

r(t+∆t) = r(t) + v(t)∆t+ 1/2a(t)∆t2

v(t+∆t) = v(t) + 1/2(a(t) + a(t+∆t))∆t

Implementation proceeds in two steps:

1. Compute the velocity at half of the time-step, from previous position and
acceleration, by:

v(t+ 1/2∆t) = v(t) + 1/2a(t)∆t (1)

Use the result to compute the position at full time-step by:

r(t+∆t) = r(t) + v(t+ 1/2∆t)∆t (2)

12

2. Get acceleration a(t+∆t) from forces applied to the atom, and compute
velocity at full time-step using the velocity at half time-step by:

v(t+∆t) = v(t+ 1/2∆t) + 1/2a(t+∆t)∆t (3)

In order to allow dynamic introduction of new molecules in the system, they
should only be introduced at instants corresponding to the same step of the
resolution method. Note that, otherwise, the processing of LJ forces between
atoms belonging to two distinct molecules could be asymetric, which could in-
troduce fake energy in the system. One choses to introduce molecules, and thus
atoms, only at even instants.

The Velocity-Verlet resolution is coded by the following class Resolution:

1public c lass Reso lut ion implements JavaAction
{

3f ina l Atom atom ;
boolean s t a r t ed = fa l se ;

5f ina l Vector3d a c c e l e r a t i o n = new Vector3d () ;
public Reso lut ion (Atom atom)

7{
this . atom = atom ;

9}
public void execute (f ina l ReactiveEngine _)

11{
double dt = atom . molecule . context . t imeStep ;

13boolean evenInstant = (0 == atom . workspace . i n s t an t % 2) ;
i f (! s t a r t ed && ! evenInstant) return ; else s t a r t ed = true ;

15i f (dt != 0) {
i f (evenInstant) step1 (dt) ; else s tep2 (dt) ;

17}
atom . r e s e tFo r c e () ;

19}
void s tep1 (double dt)

21{
Ut i l s . add (atom . ve l o c i t y , U t i l s . extProd (0 . 5∗ dt , a c c e l e r a t i o n)) ;

23Ut i l s . add (atom . pos i t i on , U t i l s . extProd (dt , atom . v e l o c i t y)) ;
}

25void s tep2 (double dt)
{

27Ut i l s . extProd (a c c e l e r a t i on ,1/ atom . mass , atom . f o r c e) ;
U t i l s . add (atom . ve l o c i t y , U t i l s . extProd (0 . 5∗ dt , a c c e l e r a t i o n)) ;

29}
}

The control of the instant at which atom resolution is started is done at lines
12-14.

Equation 1 is coded at line 22. Eq. 2 is then coded at line 23 (it uses the
previous atom position). The acceleration of the atom is computed from the
force exerted on it (second Newton’s law) at line 32. Then, Eq. 3 is computed
at line 28.

Note that, for all atoms, the forces computed during an odd instant are
determined from the positions computed during the previous even instant.

5.1.2 Specific atoms

We now consider specific atoms, e.g. carbon atoms, for which we have to deal
with LJ interactions. The collection function is extended for this purpose.

13

A specific event is defined for each kind of atom, on which atoms signal their
existence. In this way, an atom can collect all the signaling events and compute
the forces induced by the LJ interactions with the other atoms. The collection
function of a carbon atom is for example defined by:

Program c o l l e c t i o n ()
2{

return SC. seq (
4SC. generate (CSignal , this) ,

SC . merge (
6super . c o l l e c t i o n () ,

c o l l e c tLJ (CSignal ,new LJPotent ia l (ljC_C)) ,
8c o l l e c tLJ (HSignal ,new LJPotent ia l (ljC_H)) ,

c o l l e c tLJ (OSignal ,new LJPotent ia l (ljC_O)))) ;
10}

Note that this definition actually extends the previous collection method of
standard atom; this method continues to be called (super.collection ())
but is now put in parallel with the specific treatments of LJ interactions. The
collection of the interactions corresponding to a specific kind of atoms is coded
by:

Program co l l e c tLJ (I d e n t i f i e r s i gna l , Po t en t i a l p o t e n t i a l)
2{

return SC. ca l l ba ck (s i gna l ,
4new Co l l e c t I n t e r a c t i o n s (po t en t i a l , this)) ;

}

The CollectInteractions callback applies the computeForce method of the
potential parameter to all the atoms (except itself) which signal their presence
through the parameter signal, and adds the obtained force to the previously
collected forces.

5.2 Intra-molecular forces

We now consider the way intra-molecular forces are produced and applied to
atoms. The application of forces to atoms from a potential is defined in [16].
Here, we shall only consider bonds which are the simplest components. The
treatment of the others components (valence and torsion angles) is very similar.

Figure 1: Attractive bond between two linked atoms

A harmonic bond potential is a scalar field U which defines the potential
energy of two atoms placed at distance r as:

U(r) = k(r − r0)
2 (4)

14

where k is the strength of the bond and r0 is the equilibrium distance (the
distance at which the force between the two atoms is null). We thus have:

∂U(r)

∂r
= 2k(r − r0) (5)

Bonds are coded by the class HarmonicBond which has the following behav-
ior:

1SC. loop (
SC . seq (

3SC. ac t i on (new ControlLength ()) ,
SC . generate (f i r s t . c on s t r a i n tS i gna l , f a) ,

5SC. generate (second . c on s t r a i n tS i gna l , fb) ,
SC . ac t i on (new Paint3D (this)) ,

7SC. stop ()))

The ControlLength action is called at each instant, to determine the force to be
applied to the two atoms linked by the bond. The application of forces is realized
through the constraintSignal of the two atoms. The applied forces are the
values generated with these events. Note the presence of the stop statement to
avoid an instantaneous loop (which would produce a warning message at each
instant). The ControlLength action sets the force field of class HarmonicBond
and is defined by:

1public c lass ControlLength implements JavaAction
{

3public void execute (f ina l ReactiveEngine _)
{

5double d i s t = Ut i l s . d i s t ance (a , b) ;
double d i f f = d i s t − l ength ;

7energy = st r ength ∗ d i f f ∗ d i f f ;
dUdr = 2 .0 ∗ s t r ength ∗ d i f f ;

9Vector3d v12 = Ut i l s . vect (a , b) ;
v12 . normal ize () ;

11Ut i l s . extProd (fa , dUdr , v12) ;
U t i l s . extProd (fb ,−dUdr , v12) ;

13}
}

Eq. 4 is coded at line 7, and Eq. 5 at line 8. The force to be applied to the
first atom is computed at line 11 (the force to be applied to the second is the
opposite).

5.3 Molecules

We are considering molecules made of carbon and hydrogen atoms (linear alkane),
as shown on Fig. 2. The two extremal carbon atoms have three hydrogen atoms
attached to them, while the others have two. The number of carbon atoms is a
parameter.

These molecules are coded by the class CarbonChain. The following method
builds a carbon chain with cNum carbon atoms:

15

Figure 2: Carbon chain (6 carbon atoms)

public void bu i ld ()
2{

buildBackbone () ;
4addTop () ;

for (int k = 1 ; k < cNum−1; k++) addH2 (k) ;
6addBottom () ;

createBonds () ;
8c reateAng le s () ;

c r e a t eD ihed ra l s () ;
10}

The backbone of carbon atoms is built by the call to buildBackbone. Meth-
ods addTop and addBottom add 3 hydrogen atoms to the extremities of the
molecule, and addH2 adds 2 hydrogens to each carbon, except the extremi-
ties. The molecule components are created by the 3 methods createBonds,
createAngles, and createDihedrals. The crucial point is that created molecules
have an energy which is minimal. Minimality is obtained by placing atoms at
positions compatibles with the potentials of the molecule components. Let us
consider how this is done for the two hydrogens attached to each carbon, except
the extremities. One first defines the (equilibrium) length lCH of bonds between
carbon and hydrogen atoms, and the (equilibrium) valence angle aHCH between
two hydrogens and one carbon atoms.

double lCH = bondC_H [1] ;
2double aHCH = angleH_C_H [1] ;

double cos = lCH ∗ Math . cos (aHCH /2) ;
4double s i n = lCH ∗ Math . s i n (aHCH /2) ;

The addH2 method is defined by:

void addH2 (int k)
2{

Atom A = backbone [k−1] ;
4Atom B = backbone [k] ;

Atom C = backbone [k+1] ;
6

Vector3d BA = Ut i l s . vect (B,A) ;

16

8Vector3d BC = Ut i l s . vect (B,C) ;
Vector3d P = Ut i l s . normal ize (U t i l s . sum (BA,BC)) ;

10Vector3d N = Ut i l s . normal ize (U t i l s . perp (BA,BC)) ;

12Vector3d u = Ut i l s . extProd (−cos ,P) ;
Vector3d v = Ut i l s . extProd (− s in ,N) ;

14Vector3d w = Ut i l s . sum (u , v) ;
Vector3d q = Ut i l s . sum (u , U t i l s . oppos i t e (v)) ;

16

Atom h1 = new H (this , U t i l s . sum (B. pos i t i on ,w) ,B. v e l o c i t y) ;
18Atom h2 = new H (this , U t i l s . sum (B. pos i t i on , q) ,B. v e l o c i t y) ;

20othe r s [k] = new Atom [2] ;
o the r s [k] [0] = h1 ;

22othe r s [k] [1] = h2 ;
}

Atoms A,B,C are three successive carbon atoms, and B is the carbon on which
two hydrogens have to be attached.

Two hydrogens atoms h1 and h2 are created and placed at their correct
equilibrium positions. The two hydrogens are made accessible by the others

array of B. By this construction, the two planes h1Bh2 and ABC are orthogonal,
the angle h1Bh2 is equals to aHCH, and the distances h1B and h2B are both equal
to lCH.

We now consider the creation of bonds. For the sake of simplicity, we do not
consider the other components, which are processed in a similar manner. Bonds
are created by the following method:

1void createBonds ()
{

3for (int k = 0 ; k < cNum − 1 ; k++) {
new HarmonicBond (this , backbone [k] , backbone [k+1] ,bondC_C) ;

5}
for (int k = 0 ; k < cNum; k++) {

7Atom c = backbone [k] ;
for (int l = 0 ; l < othe r s [k] . l ength ; l++) {

9Atom a = othe r s [k] [l] ;
i f (a instanceof H)

11new HarmonicBond (this , c , a ,bondC_H) ;
else i f (a instanceof O)

13new HarmonicBond (this , c , a ,bondC_O) ;
}

15}
}

Lines 12-13 consider the case of oxygen atoms, to build acid molecules, which
is not considerered here.

The molecule shown on Fig. 2 is made of 20 atoms, 19 bonds, 36 valence
angles, and 45 dihedral angles.

5.4 Simulations

Reactive machines are basically provided by the class Simulation which extends
the class Machine. An application can simply be defined as an extension of
Simulation, as in:

17

public c lass MinimalApp extends Simulat ion
2{

int cNum = 6 ;
4double timeStep = 1E−3;

void molecule (double x , double y , double z)
6{

Molecule mol = new CarbonChain (this , cNum, x , y , z , 0 , 0 , 0) ;
8mol . context . t imeStep = timeStep ;

mol . bu i ld () ;
10mol . r e g i s t e r I n (this) ;

}
12public MinimalApp ()

{
14c r ea t eUn ive r s e () ;

double d i s t = 0 . 4 ;
16molecule (−d i s t , 0 . 5 , 0) ;

molecule (d i s t , 0 . 5 , 0) ;
18}

public stat ic void main (St r ing [] a rgs)
20{

standAlone (new MinimalApp ()) ;
22}

}

The number of carbon atoms cNum is set to 6 and the time-step is set to the
femto-second (lines 3 and 4; the basic time unit of the system is the pico-second).
A function which creates a molecule is defined lines 5-11. The molecule is built
and registered in the simulation (which is denoted by this); the registration
of the molecule entails the registration of all its components. The time-step of
the created molecule is also set by the function. The constructor of the class is
defined in lines 12-18. First, the createUniverse method provided by Java3D
is called to initialise the graphics, then two molecules are created. The definition
of the main Java method terminates the definition of the class MinimalApp.

The intial state of the simulation is shown on left of Fig. 3 and the result
after 50 ns (108 instants) is shown on the right. The evolution of the energy up
to 200 ns (the internal energy unit is kg/mol× nm2/ps2) is shown on Fig. 4 to
illustrate the stability of the resolution (actually, stability has been tested up
to one micro-second, that is 2.109 instants). The mean value is −6.97 × 10−3

with standard deviation 0.035 × 10−3. The energy is negative as result of the
attraction due to van der Waals forces.

Figure 3: Left: initial. Right: after 50 ns

18

Figure 4: Evolution of energy during 200 ns

6 Related Work

The domain of physical simulations is huge and we shall thus only consider the
use of reactive programming for implementing them, and the implementations
of MD systems.

The application of reactive programming to newtonian physics has been
initiated by Alexander Samarin in [17] where several 2D “applets” are proposed
to illustrate the approach.

Cellular Automata (CA) have been used in several contexts of physics. The
implementation of CA using a reactive programming formalism is described in
[8].

In [9] is described a system that mimicks several aspects of quantum me-
chanics (namely, self-interference, superposition of states, and entanglement).
The system basically relies on a cellular automaton plunged into a reactive
based simulation whose instants define the global time. Actually, this cannot
be strictly speaking considered as a physical simulation but more as a kind of
“proof of concept”.

A large number of MD simulation systems exist (for example [14] and [13],
which are both open-source software). They are implemented in Fortran or
C/C++. At the implementation level, the focus is put on real-parallelism and
the use of multi-processor and/or multi-core architectures. On the contrary, we
have choosen to use the Java language, and to put the focus more on expressivity
than on efficiency, by using the logical parallelism of RP. We have adopted an
open-source approach and integrated the 3D aspects directly in the system, by
using Java3D.

7 Conclusion

We have shown that RP can be considered as a valuable tool for the implemen-
tation of simulations in classical physics. We have illustated our approach by
the description of a MD system [2] coded in RP. We plan to extend this MD
system in several directions:

19

• Introduction of several multi-scale, multi-time-step aspects, building thus
a true MTMS system. Note that the dynamic creation/destruction pos-
sibilities offered by RP will be central for the implementation of several
notions (chimical reactions and reconstruction techniques, for example).

• Use of real-parallelism. A first study has lead to the definition of a new
version of SugarCubes (called SugarCubesv5 [3]) in which GPU-based ap-
proaches become possible. The use of multi-processor machines should
also of course be of great interest.

References

[1] Java3D. http://www.java3d.org.

[2] MDRP Site. http://mdrp.cemef.mines-paristech.fr.

[3] SugarCubesv5. http://cedric.cnam.fr/index.php/labo/membre/

view?id=160.

[4] Multiscale Simulation Methods in Molecular Sciences. NIC Series,
Forschungszentrum Julich, Germany, vol. 42, Winter School, 2-6 March,
2009.

[5] A. C. T. van Duin, Siddharth Dasgupta, F. Lorant, and W. A. Goddard
III. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A,
(105 (41)):pp 9396–9409, 2001.

[6] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford,
1987.

[7] F. Boussinot. Reactive C: An Extension of C to Program Reactive Systems.
Software Practice and Experience, 21(4):401–428, april 1991.

[8] F. Boussinot. Reactive Programming of Cellular Automata. Technical
Report RR-5183, INRIA, May 2004.

[9] F. Boussinot. Mimicking Quantum Mechanics Using Reactive Program-
ming. International Journal of Modern Physics C, 22(06):635–648, 2011.

[10] F. Boussinot and J-F. Susini. The SugarCubes Tool Box - A Reactive Java
Framework. Software Practice and Experience, 28(14):1531–1550, december
1998.

[11] W. Damm, A. Frontera, J. Rirado-Rives, and W. L. Jorgensen. OPLS All-
Atom Force Field for Carbohydrates. Journal of Computational Chemistry,
18(16):1955–1970, 1997.

[12] D. Knuth. The Art of Computer Programming. Addison-Wesley, 1968.

[13] Sandia National Laboratory. LAMMPS.

20

http://www.java3d.org
http://mdrp.cemef.mines-paristech.fr
http://cedric.cnam.fr/index.php/labo/membre/view?id=160
http://cedric.cnam.fr/index.php/labo/membre/view?id=160

[14] STFC Daresbury Laboratory. DL_POLY. http://www.cse.scitech.ac.
uk/ccg/software/DL_POLY.

[15] L. Mandel and M. Pouzet. ReactiveML, A Reactive Extension to ML. In
ACM International conference on Principles and Practice of Declarative
Programming (PPDP’05), Lisbon, Portugal, July 2005.

[16] B. Monasse and F. Boussinot. Determination of Forces from a Potential
in Molecular Dynamics. ArXiv e-prints http: // arxiv. org/ abs/ 1401.

1181 , January 2014.

[17] A. Samarin. Application de la programmation réactive à la modélisation
en Physique. Rapport de stage de DEA, UNSA, 2002, http://www-sop.
inria.fr/mimosa/rp_2004/SimulationInPhysics.

[18] L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynam-
ical Properties of Lennard-Jones Molecules. Phys. Rev., 159:98–103, Jul
1967.

21

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY
http://www.cse.scitech.ac.uk/ccg/software/DL_POLY
http://arxiv.org/abs/1401.1181
http://arxiv.org/abs/1401.1181
http://www-sop.inria.fr/mimosa/rp_2004/SimulationInPhysics
http://www-sop.inria.fr/mimosa/rp_2004/SimulationInPhysics

	Introduction
	Rationale
	Reactive programming
	Molecular Dynamics
	MD system
	Atoms
	Resolution
	Specific atoms

	Intra-molecular forces
	Molecules
	Simulations

	Related Work
	Conclusion

