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Introduction

This paper addresses the problem of elaborating a state observer for a simplified
brass instrument model, assuming that the output is the measured pressure at the
end of the pipe. The observer is based on delay-differential-algebraic-equations
(DDAE) and tools from Kalman filter theory in the case of correlated noises (see
(Ma, Wang, and Chen 2010)).

Section 2 introduces a simplified model for the instrument. The existence and
computation of the solutions of the model in DDAE form is presented in section
3. Section 4 is dedicated to the design of our observer. First simulation results
are presented which validate our approach. Finally in section 5 the sensitivity
analysis from the measured output to the position of the lip is detailed.

Modelling

A simplified brass instrument can be described by:

• a valve, the aperture of which is modulated by a single solid, namely a lip,
characterized by its mass, stiffness and damping. The bottom of the lip is
moving in the vertical direction and located by its height ξ(t),

• a quasi-steady jet which applies a force on the valve,

• an acoustic pipe, the vibrations of which are set in motion by the jet.

The reader can refer to (d’Andréa-Novel, Coron, and Hélie 2010) for more details.
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Acoustic Tube and Jet Dynamics

Let pm(t) be the pressure in the musician’s mouth at time t (all pressures
considered here are relative to the atmospheric pressure). We use the convention
that values that depend on a time variable t and a space variable x are implicitly
evaluated at the origin (x = 0) when the space variable is not specified.

Let p(t, x) be the acoustic pressure in the resonator at time t and point x. This
pressure is a superposition of forward and backward pressure waves p+(t, x) and
p−(t, x): at any time and location in the tube, we have p(t, x) = p+(t, x)+p−(t, x)
and in particular, at the origin

p(t) = p+(t) + p−(t). (1)

When the lip is open – that is ξ(t) > 0 – a simple modelling based on the
Bernoulli equation leads to the following relation between pressures

µ

2

(
p+(t) − p−(t)

ξ(t)

)2

= pm(t) − p+(t) − p−(t). (2)

We refer to (d’Andréa-Novel, Coron, and Hélie 2010) for the derivation of this
equation from the modelling assumptions and the expression of the constant µ
in terms of the physical parameters of the system.

At the other end of the tube, we assume that pressure waves are reflected by a
constant, frequency-independent, parameter λ ∈ (−1, +1). Consequently, if τ
denotes the time for the sound to travel from the tube origin to the extremity
and back, ℓ the length of the tube and c the celerity of the waves, we have

p−(t) = λp+(t − τ) with τ =
2ℓ

c
. (3)

Given that p+(t, x) and p−(t, x) are progressive waves,

p+(t, x) = p+(t − x/c) and p−(t, x) = p−(t + x/c). (4)

The measured output of the system is the sound radiated at the end of the
instrument, that is:

y(t) = p(t, ℓ) = p+(t − ℓ/c) + p−(t + ℓ/c) (5)

or, using relation (3)

y(t) = (1 + λ)p+(t − τ/2). (6)
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Lip Dynamics

Lips are modelled as solid masses subject to pressure, friction and elastic forces.
Spring-damper systems are classically described by linear second-order differential
equations under the canonical representation

ξ̈ + 2ζωξ̇ + ω2(ξ − ξe) = ω2f (7)

where ω is the natural frequency, ζ the damping ratio and ξe the equilibrium
position. The system input f is a linear combination of side pressure (difference)
and jet pressure:

f = γs(pm − p) + γjp. (8)

The natural frequency ω and the damping ratio ζ in (7) are related to the upper
lip mass m, damping a and stiffness k by ω =

√
k/m and ζ = a/(2

√
km). The

side pressure gain and jet pressure gain γs and γj are deduced from geometric
parameters of the upper lip – the angle of incidence θ and side and bottom area
As and Ab – with γs = (As sin θ)/k and γj = Ab/k.

Remark. In the scope of this article, only a single-lip model, with a lip that
is always open is considered. The open-closed model behavior is studied in
(d’Andréa-Novel, Coron, and Hélie 2010) and more refined models, such as
two-dimensional lip models (see e.g. (Adachi and Sato 1996)) used for trumpet
sound synthesis could also be considered.

Structure of the Dynamics

Input Pressure Validity

We obviously expect the instrumentist to apply a mouth pressure that produces
a sustained sound. However, note that some values of this input pressure may
generate no admissible solution in our model. For example, equation (2) clearly
requires

pm(t) ≥ p+(t) + p−(t), (9)

in other words, that at any time t, the pressure p(t) at the origin of the acoustic
tube shall be smaller than the mouth pressure. Otherwise, no solution can exist.

This condition however is not sufficient to ensure the existence of solutions; it
does not enforce either the satisfaction of another sensible assumption1: that

1this assumption is derived in (d’Andréa-Novel, Coron, and Hélie 2010) under the hypotheses
of airflow conservation and of a lip aperture size much smaller than the mouth section.

3



the air always flows from the mouth to the pipe, a condition equivalent to
p+(t) − p−(t) ≥ 0.

To analyze this issue, we rewrite equation (2) as a quadratic equation a∆p2 +
b∆p + c = 0 whose unknown is ∆p = p+(t) − p−(t), and with coefficients
a = µ/2ξ(t)2, b = 1, c = 2p−(t) − pm(t). As a > 0 and b > 0, the sum of the
two solutions of this equation is negative, hence – if the solutions are real – at
least one of them is negative. Hence, at most one solution can be consistent
with a nonnegative airflow; this solution does exist if the product of solutions is
nonpositive, which holds iff the product ac is nonpositive, that is:

pm(t) ≥ 2p−(t). (10)

If this condition holds, there is a single, real, nonnegative solution p+(t) − p−(t)
to (2) and the condition (9) is automatically satisfied.

Functional Differential Equations

Under the assumption that (10) holds at every instant, we may compute the
forward pressure p+(t) as

p+(t) = P +(p+(t − τ), ξ(t), pm(t)) (11)

while the lips dynamics is structured as

ξ̈(t) = L(p+(t − τ), ξ(t), ξ̇(t), pm(t)). (12)

Relations (11) and (12) constitute a system of delay-differential algebraic equa-
tions (DDAE, see for example (Boisgérault 2013) for an introduction). Its state
at time t is a triple (p+

t , ξ(t), ξ̇(t)) where p+
t denotes the function defined for

θ ∈ [−τ, 0] by p+
t (θ) = p+(t + θ).

These systems are frequently reduced to neutral delay-differential equations
(NDDE), obtained by the differentiation of the algebraic component of their
dynamics, here equation (11). This strategy is applied in (d’Andréa-Novel, Coron,
and Hélie 2010) where the neutral form is used to compute approximate solutions
of the system and also as a basis for the design of observers. This approach
is common2 but generates some restrictions. The most obvious one is that
the differentiation is only valid under some regularity assumptions: the mouth
pressure pm and the initial p+

0 should be absolutely continous, assumptions
that are not always realistic. Even if these conditions are met – for example

2the use of a dynamic Bernoulli equation instead of the static one or of frequency-dependent
impedance at the acoustic tube boundary for example would require the modelling as a neutral
system.
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for constant mouth pressure pm and initial forward pressure wave p+ – this
derivation validity is still subject to splicing conditions (see e.g. (Bellen and
Zennaro 2003)) and hence may require the modification of the prescribed initial
conditions.

Therefore, to avoid those complexities, we have designed a dedicated solver
instead, that computes the solutions to this system in its original DDAE form.
We use a simple explicit Euler scheme but with a high-frequency resolution,
well above the few kHz that would normally be required to represent the sound
output by the model with a high fidelity. This configuration is necessary to
manage with sufficient accuracy the very oscillatory behavior of the lip that
operates near its natural frequency.

Observer Design

A complete estimation of a brass instrument state was provided in the earlier
work (d’Andréa-Novel, Coron, and Hélie 2010) in a similar context; the observer
design was based on a representation of the full dynamics as a neutral system
and the use of Lyapunov methods. We have already pointed out that we favored
here a DDAE model of the system dynamics instead and in this section, we will
actually take advantage of this representation. Our approach also focuses on
the estimation of the lips state, which is sufficient to recover the instrumentist
control parameters. As a consequence, we design an observer whose complexity
is greatly reduced. Finally, we explicitely model the precision of the output
sound measurement to design an observer that is adapted to this setting instead
of an observer that is merely robust with respect to the presence of noise in the
measure.

Direct Lip Height Estimation

Functional Dependency

The Bernouilli equation (2) and the expressions of the backward pressure wave
(3) and of the output pressure (6) can be combined to explicit the dependency
between the lip height and the output pressure. We obtain

ξ(t)2 = Ξ2(pm(t), y(t − τ/2), y(t + τ/2)) (13)

where Ξ2 is the real-valued function of the time and of the delayed and advanced
output pressure defined by:

Ξ2(pm, y−, y+) :=
µ

2(1 + λ)
× (y+ − λy−)2

(pm − y+) + λ(pm − y−)
(14)
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Note that the right-hand side of equation (14) is well defined when the mouth
pressure is greater than the pressure at the origin of the pipe, a condition already
pointed out as necessary for the existence of solutions in our model.

Sensitivity Analysis

From now on, we assume that the exact value of the output pressure y(t) is not
available and that only an approximation of it – denoted ŷ(t) – can be used in
our computations. Consequently, the exact lip height cannot be computed, but
can be estimated with the formula

ξ̂(t)2 = Ξ2(pm(t), ŷ(t − τ/2), ŷ(t + τ/2)) (15)

A first-order approximation of the the error between this estimate and the exact
value ξ(t) is given by

ξ̂(t) − ξ(t) ≃ ∇yΞ(t) ·
[

ŷ(t − τ/2) − y(t − τ/2)
ŷ(t + τ/2) − y(t + τ/2)

]
(16)

where ∇yΞ(t) is a compact notation that represents the gradient of Ξ with respect
to the variables (y−, y+), evaluated at the point (pm(t), y(t − τ/2), y(t + τ/2)).
The computation of ∇yΞ is carried out in section .

Discrete and Stochastic Model

Discrete-Time Lips Dynamics

Let X denote the lips state vector – lip height and velocity – but τ/2 seconds in
the past:

X(t) =

[
ξ(t − τ/2)

ξ̇(t − τ/2)

]
. (17)

The application of the Euler explicit scheme with step size dt to the lips dynamics
leads to

X(t + dt) = AX(t) + Bp(t − τ/2) + u(t) (18)

where

A =

[
1 dt

−ω2dt 1 − 2ζωdt

]
, B =

[
0

ω2dt(γj − γs)

]
(19)
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and

u(t) =

[
0

ω2dt[γspm(t − τ/2) + ξe]

]
(20)

Output Noise Model

We model the difference between the measure ŷ(t) of the output sound and the
exact value y(t) as an additive white gaussian noise n(t) of constant variance Σy:

ŷ(t) = y(t) + n(t).

The measure ŷ(t) provides some approximate value ẑ(t) of z(t) = ξ(t − τ/2) =
CX(t) with C = [1, 0]. Indeed, using equation (16), we end up with

ẑ(t) ≃ CX(t) + v(t) (21)

with

v(t) = ∇yΞ(t − τ/2) ·
[

n(t − τ)
n(t)

]
. (22)

Given the properties of n(t), the perturbation v(t) has an autocovariance equal
to zero for shifts smaller than τ . For the sake of simplicity, we postulate that this
autocovariance is actually always zero for every non-zero time shift, effectively
modelling v(t) as a gaussian white noise. Its variance is given by

Σv(t) = ‖∇yΞ(t − τ/2)‖2 × Σy. (23)

It should be noted that despite a constant output sound noise power, the
standard deviation of v(t) is time-dependent. Experiments, reproduced in the
figure “Lip height estimation and standard deviation”, demonstrate that this
formula provides a good approximation of the variance of the height measure,
even when the value of ∇yΞ is an approximation based on noisy data (see section
).

State Disturbance

The combination of equations (1), (3) and (6) provides

p(t − τ/2) =
y(t) + λy(t − τ)

1 + λ
. (24)
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The substitution of y by ŷ in this equation leads to the definition of a measurable
approximation p̂(t − τ/2) of p(t − τ/2). The right-hand side of (18) can then be
expressed as

X(t + dt) = AX(t) + Bp̂(t − τ/2) + u(t) + w(t) (25)

where w(t) = [w1(t), w2(t)]t with w1(t) = 0 and

w2(t) = −ω2dt(γj − γs)
n(t) + λn(t − τ)

1 + λ
. (26)

Using an approximation similar to the one already made for v(t), we model w(t)
as a gaussian white noise with covariance matrix

Σw = ω4dt2(γj − γs)2 1 + λ2

(1 + λ)2

[
0 0
0 Σy

]
. (27)

Note that the defining equations (22) and (26) also yield a zero covariance
between v(t) and w(t+θ) for any 0 < |θ| < τ . Again, we will assume that we can
extend that assumption to any |θ| > 0. However we do neglect the covariance
between v(t) and w(t), that is significant: we have Σvw(t) = [0, Σvw2

(t)] with

Σvw2
(t) = −ω2dt(γj − γs)Σy × ∇yΞ(t − τ/2) ·

[
λ/(1 + λ)
1/(1 + λ)

]
. (28)

Kalman Filter

Principles Equations (21) and (25), together with the stochastic modelling of
v(t) and w(t), describe a system whose state can be optimally estimated by a
Kalman filter. The measure and state noise of the dynamics are correlated, a
particularity that can be managed by the methods exposed in [?].

The Kalman filter tracks the evolution of two values: the state estimate at time
t denoted X(t|t) and the corresponding estimation error P (t|t) = cov[X(t) −
X(t|t)]. The state estimate X(t|t) is defined as the conditional expectation of
X(t) with respect to y(t), y(t − dt), ..., y(0).

These values are a posteriori values that integrate the information given by the
measure ẑ(t). The a priori estimates of the state and error that use only the
information available up to the time t−dt are denoted X(t|t−dt) and P (t|t−dt).
The two sets of values at time t are related by the projection formula

X(t|t) = X(t|t − dt) + K(t)(y(t) − CX(t|t − dt)) (29)

P (t|t) = P (t|t − dt)(I − K(t)CP (t|t − dt)) (30)

9



where

K(t) = P (t|t − dt)Ct[CP (t|t − dt)Ct + Σv(t)]−1. (31)

As in [?], we introduce w′(t) = w(t) − J(t)v(t) with

J(t) = Σvw(t)Σv(t)−1. (32)

This auxiliary random vector is not correlated with v(t). The computation of
the a priori values at time t yields:

X(t + dt|t) = AX(t|t) + Bp̂(t − τ/2) + u(t) (33)

+ J(t)[ẑ(t) − CX(t|t)]
P (t + dt|t) = [A − J(t)C]P (t|t)[A − J(t)C]t + Σw′(t) (34)

where

Σw′(t) = Σw(t) − Σwv(t)Σv(t)−1Σvw(t). (35)

Concrete Design The implementation of this estimator shall address the fact
that the covariances Σv(t) and Σwv(t) used in the computations are not available.
Indeed, both values depend on the gradient ∇yΞ(t−τ/2) = ∇yΞ(pm(t−τ/2), y(t−
τ), y(t)) and the exact values of y are not available, only the noisy measurement
ŷ. Our strategy is – in all occurrences of ∇yΞ in the filter computations – to
replace y with ŷ.

However, this substitution has a drawback. We know that the exact acoustics
pipe model produces an output sound y(t) such that at every instant t, the
inequalities y(t) > λy(t − τ) and (1 + λ)pm(t − τ/2) > y(t) + y(t − τ) hold,
hence ∇yΞ(t) is always properly defined. But there is no such guarantee with the
noisy data: some values (pm, ŷ−, ŷ+) may be out of the domain of definition of
∇yΞ. In such circumstance, we adopt the following method: we set Σv(t) = +∞
and Σvw(t) = [0, 0]. This choice effectively discards the measure of the output
sound from the Kalman filter equations. The a posteriori values X(t|t) and
P (t|t) are set equal to the a priori values X(t|t − dt) and P (t|t − dt). On
the other hand the update of the state and state error estimate are given by
X(t + dt|t) = AX(t|t) + Bp̂(t − τ/2) + u(t) and P (t + dt|t) = AP (t|t)At + Σw(t).

Simulation Results Experiments demonstrate that despite the set of approx-
imations used in its design, the Kalman filter performs an efficient estimation
of the lips state even in the presence of large output noise. The steady-state
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behavior of the filter is depicted on the picture below when t < 5 ms, for a
signal-to-noise ratio of 12 dB. In this context, the lip height and lip estimate
relative error are below 1 %. Note that the direct estimation of the height by
sensitivity methods yields at the best of times an error around 10 % and that
the maximal error is far larger.

We trigger artificially a reset of the Kalman filter at t = 5 ms to display the
transitional behavior; a few cycles are enough to provide estimates with an error
below 10 % at all instants of the cycle.

Appendix: Sound to Height Sensitivity

Let r be the function of (pm, y−, y+) defined as

r :=
y+ − λy−

(pm − y+) + λ(pm − y−)
. (36)

When pm = pm(t), y− = y(t − τ/2) and y+ = y(t + τ/2), r is adimensional and
merely proportional to the ratio between the airflow at the origin of the pipe
φ(t) and the difference of pressure ∆p(t) = pm(t) − p(t) between the mouth and
the pipe:

r(t) = Zc

φ(t)

∆p
=

p+(t) − p−(t)

pm(t) − p+(t) − p−(t)
(37)

The expression of Ξ2 given in (14) yields

∇yΞ2 =
µ

2(1 + λ)

[
λr(r − 2)

r(r + 2)

]
(38)

The function Ξ2 itself can be expressed as

Ξ2 =
µ

2
r2∆p. (39)

Hence, as ∇yΞ = ∇yΞ2/2
√

Ξ2, we obtain

∇yΞ =

√
µ

2∆p

1

1 + λ

[
λ(r/2 − 1)

(r/2 + 1)

]
(40)

and

‖∇yΞ‖ =

√
µ

2∆p

1

(1 + λ)2

[(r

2
+ 1

)2

+ λ2

(r

2
− 1

)2
]
. (41)
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