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Abstract. In the case of infinite plane-parallel single- and
double-layered cloud, the solar irradiance at ground level
computed by a radiative transfer model can be approximated
by the product of the irradiance under clear atmosphere and
a modification factor due to cloud properties and ground
albedo only. Changes in clear-atmosphere properties have
negligible effect on the latter so that both terms can be cal-
culated independently. The error made in using this approxi-
mation depends mostly on the solar zenith angle, the ground
albedo and the cloud optical depth. In most cases, the maxi-
mum errors (95th percentile) on global and direct surface ir-
radiances are less than 15 W m−2 and less than 2–5 % in rel-
ative value. These values are similar to those recommended
by the World Meteorological Organization for high-quality
measurements of the solar irradiance. Practically, the results
mean that a model for fast calculation of surface solar irra-
diance may be separated into two distinct and independent
models, possibly abacus-based, whose input parameters and
resolutions can be different, and whose creation requires less
computation time and resources than a single model.

1 Introduction

Solar radiation drives weather and climate and takes part in
the control of atmospheric chemistry. The surface solar irra-
diance (SSI) is defined as the power received from the sun on
a horizontal surface at ground level. Of concern here is the
SSI integrated over the whole spectrum, i.e. between 0.3 and
4 µm, called total or broadband SSI.

Numerical radiative transfer models (RTMs) simulate the
propagation of radiation through the atmosphere and are
used to calculate the SSI for given atmospheric and sur-
face conditions. RTMs are demanding regarding computer
time and in this respect are not appropriate in cases where
operational computations of the SSI are performed such as
at Deutscher Wetterdienst (Mueller et al., 2009), the Royal
Netherlands Meteorological Institute (KNMI) (Deneke et al.,
2008; Greuell et al., 2013), the MINES ParisTech (Blanc et
al., 2011) or prepared within the MACC European project
(Granier et al., 2010). Several solutions have been proposed
in order to speed up calculations of the SSI, such as abaci
– also known as look-up tables (LUTs; Deneke et al., 2008;
Huang et al., 2011; Mueller et al., 2009; Schulz et al., 2009).

The present work contributes to the research of fast calcu-
lations of the SSI under all sky conditions. It does not pro-
pose a new model but an approximation that can be adopted
by models for calculations of the SSI. More precisely, it ex-
amines whether in the case of infinite plane-parallel single-
and double-layered cloud, the SSI computed by an RTM
can be approximated by the product of the SSI under clear-
sky and a modification factor due to cloud properties and
ground albedo only. If this approximation were accurate
enough, i.e. if the modification factor did not significantly
change with clear-atmosphere properties, it would be pos-
sible to construct two independent models, possibly LUT-
based models – for example, one for clear-sky conditions
and the other for cloudy conditions. Recently, for example,
Huang et al. (2011) used such an approximation with a very
limited justification. This Technical Note aims at holding this
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justification by (1) exploring the influence of the properties
of the clear atmosphere on the SSI in cloudy atmosphere,
(2) proposing a general equation that decouples the effects
of the clear atmosphere from those due to the clouds, and
(3) computing the errors made with this approximation.

2 Objective

Let G denote the SSI for any sky.G is the sum of the beam
componentB of the SSI – also known as the direct compo-
nent – and of the diffuse componentD, both received on a
horizontal surface. In the present article, following the RTM
way of doing,B does not comprise the circumsolar radia-
tion. Let Gc, Bc andDc denote the same quantities but for
clear sky. The ratiosKc andKcb are called clear-sky indices
(Beyer et al., 1996):

Kc = G/Gc,

Kcb = B/Bc. (1)

Kc is also called cloud modification factor in studies on
UV or photosynthetically active radiation (Calbo et al., 2005;
den Outer et al., 2010).

The indicesKc andKcb concentrate on the cloud influence
on the downwelling radiation and are expected to change
with clear-atmosphere propertiesPc since the clouds and
other atmospheric constituents are mixed up in the atmo-
sphere. Equation (1) can be expanded:

G = Gc(θS,ρg,Pc)Kc(θS,ρg,Pc,Pcloud),

B = Bc(θS,Pc)Kcb(θS,Pc,Pcloud), (2)

whereθS is the solar zenith angle,ρg the ground albedo, and
Pc is a set of seven variables governing the optical state of the
atmosphere in clear sky: (i) total column contents in ozone
and (ii) water vapour; (iii) elevation of the ground above
mean sea level; (iv) vertical profile of temperature, pressure,
density, and volume mixing ratio for gases as a function of
altitude; (v) aerosol optical depth at 550 nm; (vi) Ångström
coefficient; and (vii) aerosol type.Pcloud is a set of vari-
ables governing the optical state of the cloudy atmosphere:
(i) cloud optical depth (τc), (ii) cloud phase, (iii) cloud liq-
uid water content, (iv) droplet effective radius, and (v) the
vertical position of the cloud.

The objective of this article is to quantify the error made in
decoupling the effects of the clear atmosphere from those due
to the clouds in cloudy sky, i.e. if changes inPc are neglected
in Kc, respectivelyKcb in Eq. (2). This is equivalent to say
that the first derivative∂Kc / ∂Pc, respectively∂Kcb / ∂Pc,
is close to 0. In that case, Eq. (2) may be replaced by the
following approximation:

G ≈ Gc(θS,ρg,Pc)Kc(θS,ρg,Pc0,Pcloud),

B ≈ Bc(θS,Pc)Kcb(θS,Pc0,Pcloud), (3)

wherePc0 is an arbitrarily chosen but typical setPc. The ob-
jective is now to quantify the error made when using Eq. (3)
instead of Eq. (2).

3 Method

The methodology used for assessing Eq. (3) is of statistical
nature. For a given condition related to the position of the
sun, the ground albedo and the clouds (θS, ρg, Pcloud), sev-
eral sets of clear-sky propertiesPc are randomly built. Each
quadruple (θS, ρg, Pcloud, Pc) is input to an RTM to compute
G, B, D, Kc andKcb. The variances of theKc andKcb se-
ries are then computed. The lower the variance, the lower the
changes inKc or Kcb with respect to the changes inPc and
the more accurate the approximation given by the Eq. (3).
The errors made on the retrievedG andB when using Eq. (3)
are quantified.

The RTM libRadtran version 1.7 (Mayer and Kylling,
2005) is used with the DISORT (discrete ordinate technique)
algorithm (Stamnes et al., 1988) to solve the radiative trans-
fer equation. libRadtran needs input data of the atmosphere
and surface properties. When not provided, data are replaced
by standard assumptions. Atmosphere and clouds are as-
sumed to be infinite plane-parallel.

Table 1 reports the range of the 10 values taken respec-
tively by θS andρg. For computational reasons,θS is set to
0.01◦, respectively 89◦ in place of 0◦, respectively 90◦.

Cloud properties input to libRadtran areτc, phase (water
or ice clouds), heights of the base and top of cloud, the cloud
liquid content and effective radius of the droplets. Default
values in libRadtran for cloud liquid content and droplet ef-
fective radius are used: 1.0 g m−3 and 10 µm for water cloud,
and 0.005 g m−3 and 20 µm for ice cloud. In a preliminary
study (Oumbe, 2009, Fig. 4.6, p. 53), the influence of the
changes in effective radius, from 3 to 50 µm, was found neg-
ligible for ice clouds. For water clouds, the smaller the ra-
dius, the greater the influence, though this influence is still
negligible with respect to other variables.

The cloud properties are linked together. Table 2 presents
the typical height of the base of cloud, geometrical thickness,
andτc for the different cloud types and is established after
Liou (1976) and Rossow and Schiffer (1999).

A total of 10 values ofτc are selected in this study for wa-
ter clouds and 10 others for ice clouds (Table 3, left column).
Ranges ofτc are related to types of clouds to reproduce re-
alistic conditions. Eachτc defines a series of seven couples
cloud base height thickness for water clouds and three for ice
clouds (Table 3).

According to Tselioudis et al. (1992), 58 % of the clouds
are single layered and 28 % are double layered. The results
presented hereafter are for single layer; the case of double-
layered clouds is briefly discussed at the end of Sect. 4 as
results are similar in both cases.
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Table 1.Range of values taken byθS andρg.

Variable Range of values

Solar zenithal angle (θS) 0.01, 10, 20, 30, 40, 50, 60, 70, 80, 89 (in degrees)
Ground albedoρg 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9

Table 2. Properties of cloud types. Base height and thickness are
from Liou (1976), and cloud optical depth are from Rossow and
Schiffer (1999). Cu: cumulus, Sc: stratocumulus, As: altostratus,
Ac: altocumulus, Ci: cirrus, Cs: cirrostratus.

Cloud type Base height Thickness Cloud optical
(km) (km) depth

Low cloud (Cu, Sc) 1.7 0.45 Cu: 0–3.6
Sc: 3.6–23

Middle cloud (As, Ac) 4.2 0.6 Ac: 0–3.6
As: 3.6–23

High cloud (Ci, Cs) 4.6 1.7 Ci: 0–3.6
Cs: 3.6–23

Stratus (St) 1.4 0.1 23–379
Nimbostratus (Ns) 1.4 4 23–379
Cumulonimbus (Cb) 1.7 6 23–379

For a given cloud phase, there are 1000 (10×10×10) pos-
sible combinations ofθS, ρg (Table 1) andτc (Table 3). The
selection of a givenτc leads to the additional selection of a
series of cloud base heights and thicknesses as shown in Ta-
ble 3, i.e. seven for water clouds and three for ice clouds. At
that stage, there are 7000 triplets (θS, ρg, Pcloud) for water
clouds and 3000 for ice clouds.

Each triplet (θS, ρg, Pcloud) gives birth to 20 quadruples
(θS, ρg, Pcloud, Pc) by adding 20Pc randomly selected in Ta-
ble 4. Similarly to what was done by Lefèvre et al. (2013)
and Oumbe et al. (2011), the selection takes into account
the modelled marginal distribution established from obser-
vation. More precisely, the uniform distribution is chosen as
a model for marginal probability for all parameters except
aerosol optical thickness, Ångström coefficient, and total col-
umn ozone. The chi-square law for aerosol optical thickness,
the normal law for the Ångström coefficient, and the beta
law for total column ozone have been selected. The selec-
tion of these parametric probability density functions and
their corresponding parameters have been empirically deter-
mined from the analyses of the observations made in the
AERONET network for aerosol properties and from mete-
orological satellite-based ozone products (cf. Table 4). For
the sake of avoiding non-realistic cases, the allocation of the
aerosol types is empirically linked to the ground albedo (Ta-
ble 5).

Each combination (θS, ρg, Pcloud, Pc) is input to libRad-
tran, yieldingG, B, andD. In addition,Gc andBc are ob-
tained by libRadtran usingθS, ρg, andPc as inputs.Kc and
Kcb are obtained using Eq. (1). A series of 140 000 values

for G, B, D, Kc andKcb is thus obtained for water clouds
and 60 000 for ice clouds. For each triplet (θS, ρg, Pcloud),
the variancesv(Kc) and v(Kcb) are computed over the 20
valuesKc andKcb. Since the clouds and other atmospheric
constituents are mixed up in the atmosphere,Kc, or Kcb, is
expected to change with varyingPc. It is observed thatv(Kc)

andv(Kcb) are very small with respect to the squared mean
values ofKc andKcb for each triplet (θS, ρg, Pcloud), mean-
ing that changes inKc andKcb with varying Pc are small,
thus supporting Eq. (3).

In order to illustrate this and to present this vast amount of
results in a synthetic manner, it is firstly observed that these
quantitiesv(Kc) andv(Kcb) do not vary noticeably with the
cloud geometry for a given triplet (θS, ρg, τc): among the
cloud properties for a given phase, the cloud optical depthτc
is the most prominent one. As a consequence, it is possible
to illustrate the findings by averagingv(Kc) andv(Kcb) over
the cloud geometry properties for each triplet (θS, ρg, τc).
One obtains mean(v(Kc)) and mean(v(Kcb)). The positive
root means of these averages are denoted RM(v(Kc)) and
RM(v(Kcb)):

RM(v(Kc)) =

√

mean(v(Kc)),

RM(v(Kcb)) =

√

mean(v(Kcb)). (4)

RM(v(Kc)) gives at a glance the influence ofPc on Kc
for all cloud geometries. A small RM(v(Kc)) means that
the mean ofv(Kc) is small. The variancev(Kc) and con-
sequently RM(v(Kc)) are linked to∂Kc / ∂Pc. The lower
RM(v(Kc)) is, the lower the mean ofv(Kc), the lower
the change inKc with Pc, and finally the lower the error
made when using Eq. (3). The same reasoning holds for
RM(v(Kcb)). RM(v(Kc)), respectively RM(v(Kcb)), can be
considered as a measure of the error made onKc, or Kcb,
when using Eq. (3). These quantities are also expressed rel-
ative to the meanKc and Kcb for a given triplet, yielding
relative values, notedrRM(v(Kc)) andrRM(v(Kcb)).

4 Influence ofPc on clear-sky indices

Relative quantitiesrRM(v(Kc)) and rRM(v(Kcb)) depend
on G andB. A large rRM(v(Kc)) may not be important if
G is very small. To better understand the results, Fig. 1 dis-
plays the averages ofG andD for θS = 40◦ as a function
of ρg andτc for water cloud. The beam irradianceB is not
drawn as it does not depend onρg; it decreases rapidly as
τc increases and the diffuse irradianceD tends towardsG as

www.geosci-model-dev.net/7/1661/2014/ Geosci. Model Dev., 7, 1661–1669, 2014
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Table 3.Selected cloud properties

Cloud optical depth Water cloud (cloud base height+ thick-
ness, km)

Ice cloud (cloud base height+

thickness, km)

0.5, 1, 2, 3 (and 4 for ice cloud only) Cu: 0.4+0.2, 1+1.6, 1.2+0.2, 2+0.5
Ac: 2+ 3, 3.5+ 1.5, 4.5+ 1

Ci: 6+ 0.5, 8+ 0.3, 10+ 1

5, 7, 10, 20 (and 15 for ice cloud only) Sc: 0.5+ 0.5, 1.5+ 0.6, 2+ 1, 2.5+ 2
As: 2+ 3, 3.5+ 2, 4.5+ 1

Cs: 6+ 0.5, 8+ 2, 10+ 1

40, 70 St: 0.2+ 0.5, 0.5+ 0.3, 1+ 0.5
Ns: 0.8+ 3, 1+ 1
Cb: 1+ 6, 2+ 8

–

Table 4.Range ofPc values (seven variables describing the clear atmosphere).

Variable Range of values

Total column content in ozone Ozone content is 300·β + 200, in Dobson unit. Beta law, withA parameter= 2, andB

parameter= 2, to computeβ

Total column content in water vapour Uniform between 0 and 70, in kg m−2

Elevation of the ground above mean sea
level

Equiprobable in the set: 0, 1, 2, 3 in km

Atmospheric profiles (Air Force
Geophysics Laboratory standards)

Equiprobable in the set: midlatitude summer, midlatitude winter, subarctic summer, sub-
arctic winter, tropical, US standard

Aerosol optical depth at 550 nm Gamma law, with shape parameter= 2, and scale parameter= 0.13

Ångström coefficient Normal law, with mean= 1.3 and standard deviation= 0.5

Aerosol type Equiprobable in the set of 10 aerosol types proposed in libRadtran: urban, continen-
tal average, continental clean, continental polluted, maritime clean, maritime polluted,
maritime tropical, desert, Antarctic

a consequence. As expected, Fig. 1 shows thatD increases
with ρg, and that bothG andD decrease asτc increases.

Figure 2 exhibitsrRM(v(Kc)) for each couple (ρg, τc) for
θS = 40◦ for water cloud (left) and ice cloud (right). Each
cell represents the changes inKc obtained for thisθS and
this couple (ρg, τc) when the geometrical parameters of the
cloud and the other variables inPc vary. For both cloud
phases,rRM(v(Kc)) increases withτc and ground albedo.
As a whole, it is small. It is less than 2 % for the most fre-
quent cases, i.e.τc ≤ 20 andρg ≤ 0.7. It can be compared
to the maximum relative errors (66 % uncertainty) recom-
mended by the World Meteorological Organization (WMO,
2008) for measurements of hourly means ofG or D which
are 2 % for high quality, 8 % for good quality, and 20 % for
moderate quality.

rRM(v(Kc)) reaches a maximum of 8.5 % forτc = 70 and
ρg = 0.9 for water cloud (7.5 % forτc = 20 for ice cloud).
Largeρg and largeτc mean more reflected radiation by the
ground and more backscattered radiation by clouds. This in-
creases the path of the radiation in the atmosphere and, there-
fore, increases the influence ofPc on Kc. As G is small

for (τc = 70, ρg = 0.9) (Fig. 1), a maximum of 8.5 % is not
important in absolute value since it corresponds to approxi-
mately 30 W m−2. This high relative deviation happens only
for very highρg = 0.9. Whenρg ≤ 0.7, the corresponding er-
ror onG is less than 10 W m−2.

The median and 5th (P5) and 95th (P95) percentiles of
RM(v(Kc)) for all corresponding couples (ρg, τc) for a given
θS are computed and drawn in Fig. 3 for water cloud (left)
and ice cloud (right) as a function ofθS. They are also ex-
pressed relative to the corresponding meanKc (Fig. 4) and
are called relative median and relative P95. For both phases
and for θS from 0◦ to 60◦, the relative median is less than
2 %, and the relative P95 ranges between 3.5 % and 5 %.

All three quantities increase sharply forθS > 60◦. The
relative median, respectively P95, reaches a maximum of
approximately 8–9 %, respectively 11–12 % forθS = 80◦.
Then, a decrease is observed forθS > 80◦. Further compu-
tations show that the increase in relative influence with large
θS is mostly due to the increase of the optical path in the at-
mosphere due to greaterθS and therefore a greater influence
of Pc and notably the aerosols.

Geosci. Model Dev., 7, 1661–1669, 2014 www.geosci-model-dev.net/7/1661/2014/
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Table 5.Empirical allocation of aerosol types according to ground albedo.

Ground albedo Possible aerosol types

< 0.1 maritime clean, maritime polluted, maritime tropical
0.1–0.2 continental average, continental clean, continental polluted, urban
0.2–0.25 continental average, continental clean, continental polluted, urban, desert
0.25–0.4 continental average, continental clean, desert
0.4–0.5 continental average, continental clean
0.5–0.9 continental average, continental clean, Antarctic

Figure 1. Average ofG (left) andD (right) for θS = 40◦ as a function ofρg andτc for water cloud.

Overall, an increase inτc or θS increases the path of the
sun rays in the atmosphere, and therefore the influence of
changes inPc on Kc increases along withτc and θS. This
increase is compensated by a corresponding decrease inG.
SinceGc rarely reaches 120 W m−2 for θS = 80◦, the error
in G corresponding to P95 is less than 15 W m−2. The dif-
fuse irradianceD and thereforeG are strongly influenced
by ρg. The influence of changes inPc on Kc increases with
ρg. Deserts such as northern Africa and Arabia exhibit large
ground albedo up to approximately 0.5 (Tsvetsinskaya et al.,
2002; Wendler and Eaton, 1983); the error (P95) onG is of
the order of 10 W m−2. Fresh snow-covered or ice-covered
areas may exhibit very largeρg. For ρg = 0.9, the error on
G can be large for smallθS, i.e. 30 W m−2. One has to be
cautious in using Eq. (3) in such extreme cases.

Similar calculations are made forKcb. As expected with an
RTM code,Kcb changes neither with ground albedo nor with
cloud phase; the cloud optical depth is the most prominent
variable. Figure 5 exhibits the median and 5th and 95th per-
centiles of RM(v(Kcb)) for all couples (ρg, τc) as a function
of θS and their value relative to the corresponding meanKcb.
The relative median, respectively relative P95, is less than
2 %, respectively 3 % forθS ≤ 60◦. Then, it rises sharply.
The relative median, respectively P95, reaches a maximum
of approximately 8 %, respectively 17 % forθS = 80◦. Then,
a decrease is observed forθS > 80◦. LargeθS values corre-
spond actually to low irradiances. The clear-skyBc equals
53 W m−2 for θS = 80◦, and therefore the corresponding

median and P95 errors inB are approximately 4 W m−2 and
9 W m−2.

rRM(v(Kcb)) has a tendency to increase asθS increases.
This increase is compensated by a corresponding decrease in
B. The clear-sky irradianceBc rarely reaches 90 W m−2 for
θS = 80◦ and the maximum error inB is less than 16 W m−2.

If cases of largeθS and τc for which the radiation is
greatly attenuated are removed by considering only cases
for which G > 100 W m−2, the obtainedrRM(v(Kc)) and
rRM(v(Kcb)) are very small, even for largeθS. ForθS equal
to 70 and 80◦, the medians are approximately 3 % ofKc and
Kcb, and the P95 are 5 and 7 %, respectively.

It is concluded that – for all considered cloud properties
andθS, and forρg ≤ 0.7 – the influence of changes inPc on
Kc andKcb can be neglected. In these cases, Eq. (3) may be
adopted with an error (P95) onG andB less than 15 W m−2

and most often less than 2–5 % in relative value. These re-
sults match the WMO requirements for high-quality mea-
surements. However, in applications as discussed in the fol-
lowing section, there will be other sources of uncertainties,
and the total uncertainty of any model using Eq. (3) will be
greater and probably exceed these WMO requirements.

A similar analysis has been made for double-layered
clouds with ice cloud topping water cloud. The water and
ice cloud properties have been taken from Table 3, where
only water clouds with a height top less than or equal to
5 km were considered since the minimum height of ice cloud
base is 6 km. Accordingly, there were 5 (water cloud)× 3 (ice

www.geosci-model-dev.net/7/1661/2014/ Geosci. Model Dev., 7, 1661–1669, 2014
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Figure 2. Relative root mean of variance ofKc due to changes inPc as a function ofρg andτc for θS = 40◦, for water cloud (left) and ice
cloud (right).

Figure 3. Median (star) and 5th and 95th percentiles of RM(v(Kc)) for all couples (ρg, τc) as a function ofθS for water cloud (left) and ice
cloud (right).

cloud) cases. Results and conclusions are similar to those for
single-layered clouds.

5 Practical implications

A first practical advantage in adopting Eq. (3) instead Eq. (2)
is that two independent models – one for modellingGc and
Bc, the other for modelling the effects of clouds – can be
used. If the approach selected to assess the SSI is based on a
LUT-based model, using Eq. (3) means that two LUT-based
models forKc andKcb can be computed with only one typ-
ical setPc0, therefore strongly reducing the number of runs
of the RTM. One may select the followingPc0:

– The middle latitude summer from the USA Air Force
Geophysics Laboratory (AFGL) data sets is taken for
the vertical profile of temperature, pressure, density, and
volume mixing ratio for gases as a function of altitude.

– Aerosol properties are as follows: optical depth at
550 nm is set to 0.20, Ångström coefficient is set to 1.3,
and type is continental average.

– Total column content in water vapour is set to
35 kg m−2.

– Total column content in ozone is set to 300 Dobson unit.

– Elevation above sea level is 0 m.

It has been checked that the difference inKc andKcb using
different typical setsPc0 was negligible, provided that the
selectedPc0 does not include extreme values.

As an example, this approach is that used in the
MACC/MACC-II (Monitoring Atmosphere Composition
and Climate) projects to develop the new Heliosat-4 method
for a fast assessment ofG, D andB (Qu, 2013; Qu et al.,
2014). The McClear clear-sky model (Lefevre et al., 2013) is
adopted in Heliosat-4 to computeGc andBc. The McClear
abaci are very large since there are 10 dimensions. They con-
centrate on most of the computational resources. It took ap-
proximately 6 months in computation time to compute all
abaci. On the opposite, the abaci forKc andKcb have much
fewer dimensions and much fewer nodes. Computation time
was of the order of a few hours only. If it were not possible
to consider independently the clear-sky conditions and the

Geosci. Model Dev., 7, 1661–1669, 2014 www.geosci-model-dev.net/7/1661/2014/
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Figure 4. Median (star) and 5th and 95th percentiles of RM(v(Kc)) relative to the corresponding meanKc for all couples (ρg, τc) as a
function ofθS for water cloud (left) and ice cloud (right).

Figure 5. Median (star) and 5th and 95th percentiles of RM(v(Kcb)) for all couples (ρg, τc) as a function ofθS. Absolute values (left),
relative to the corresponding meanKcb (right).

cloudy conditions, the computation time for abaci combin-
ing the dimensions of McClear abaci and those forKc and
Kcb would have amounted to years. The immense gain in
time justifies the slight loss in accuracy.

ExceptθS andρg, inputs to both models are independent.
This is another practical advantage of Eq. (3) since it allows
efficiently coping with the fact thatPc andPcloud may not be
available at the same spatial and temporal resolutions. This
is exactly the case in the MACC/MACC-II projects. On the
one hand, these projects are preparing the operational pro-
vision of global aerosol properties forecasts together with
physically consistent total column content in water vapour
and ozone (Kaiser et al., 2012; Peuch et al., 2009). These
data are available every 3 h with a spatial resolution of ap-
proximately 100 km. They are inputs to the McClear model,
yielding Gc and Bc. On the other hand, these projects are
preparing the provision ofPcloud at high temporal (15 min)
and spatial (3 km at nadir) resolutions from an appropriate
processing of images taken by the Meteosat Second Genera-
tion satellites.Pcloud will be input to theKc andKcb models.
Using Eq. (3) implies that the SSI may be computed at the
best available time and space resolutions by resamplingGc
andBc, instead of resampling all variables contained inPc.

6 Conclusions

This Technical Note analyses the influence of the prominent
atmospheric parameters on the SSI, with the objective of
finding a practical way to speed up the calculations with an
RTM. The presented results have been obtained by the RTM
libRadtran. It has been checked that the results and conclu-
sions do not depend on this model by obtaining similar re-
sults with the streamer RTM (Key and Schweiger, 1998).

It was found that – for all considered cloud properties,
solar zenith angles and ground albedos – the influence of
changes in clear-atmosphere properties onKc and Kcb is
generally less than 2–5 %, provided that the ground albedo
is less than 0.7. This variation is similar to the typical un-
certainty associated with the most accurate pyranometers. In
these cases, Eq. (3) may be adopted with an error (P95) onG

andB less than 15 W m−2.
The longer the path of sun rays in the atmosphere is, the

greater this variation and the greater the influence of clear-
atmosphere properties on the clear-sky indices. The mean er-
ror made when using Eq. (3) can reach significant relative
values at highθS: 4 % at 70◦ and 8 % at 80◦. However, in such
cases, the irradiances are very low, and the error on global
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and direct irradiances expressed as the 95th percentile (P95)
is less than 15 W m−2. The P95 can be greater than 15 W m−2

when the ground albedo is greater than 0.7. In that case, one
should be cautious in using Eq. (3). Such high albedos are
rarely found; they may happen in case of fresh snow.

Like in other RTMs the beam irradiances are modelled by
libRadtran as if the sun were a point source. On the contrary,
pyrheliometers measure the radiation coming from the sun
direction with a half-aperture angle equal to 2.5◦ according
to WMO standards. The diffuse irradiance in this angular re-
gion is called the circumsolar irradiance (CSI). If it were to
be compared to measurements, irradiances estimated in this
work have to be corrected by adding CSI toB, and by re-
moving CSI fromD. In clear sky, the CSI correction toB
is approximately 1 % ofB (Gueymard, 1995; Oumbe et al.,
2012). Under cloudy skies, and especially thin clouds, the
CSI can be greater than 50 % ofB. A CSI correction needs
to be applied only in cloudy skies. Therefore the CSI can be
taken into account a posteriori by correctingKc andKcb ob-
tained by Eq. (4) with a specific model.

The presented work has demonstrated that computations
of the SSI can be made by considering independently the
clear-sky conditions and the cloudy conditions as shown in
Eq. (3). A first practical advantage is that two independent
models may be developed and used: one for clear-sky condi-
tions and the other for cloudy conditions with their own set
of inputs. Another practical advantage is that it allows effi-
ciently coping with cloud and clear-sky variables available at
different spatial and temporal resolutions.

These results are important in the view of an operational
system as it permits separating the whole processing into two
distinct and independent models, whose input variable types
and resolutions may be different. The benefit of this separa-
tion is not limited to LUT-based models. For example, one
may combine LUT-based models forKc and Kcb with an
analytical model predictingGc and Bc such as the ESRA
model (Rigollier et al., 2000) or the SOLIS model (Mueller
et al., 2004). When both models are LUT-based, using Eq. (3)
means two ensembles of abaci: one for clear-sky and the
other for cloudy skies. In doing so, the number of entries for
each ensemble is reduced leading to the reduction of (i) the
size of the abaci, (ii) the number of combination between pa-
rameters, and (iii) the total number of interpolations between
nodes, thus increasing the speed in computation.
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