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Abstract

Using abstract interpretation, invariants are usually obtained by solving iteratively a system of equations
linking preconditions according to program statements. However, it is also possible to abstract first the
statements as transformers, and then propagate the preconditions using the transformers. The second
approach is modular because procedures and loops can be abstracted once and for all, avoiding an iterative
resolution over the call graph and all the control flow graphs.
However, the transformer approach based on polyhedral abstract domains encurs two penalties: some invari-
ant accuracy may be lost when computing transformers, and the execution time may increase exponentially
because the dimension of a transformer is twice the dimension of a precondition.
The purposes of this article are 1) to measure the benefits of the modular approach and its drawbacks
in terms of execution time and accuracy using significant examples and a newly developed benchmark
for loop invariant analysis, ALICe, 2) to present a new technique designed to reduce the accuracy loss
when computing transformers, 3) to evaluate experimentally the accuracy gains this new technique and
other previously discussed ones provide with ALICe test cases and 4) to compare the executions times and
accuracies of different tools, ASPIC, ISL, PAGAI and PIPS.
Our results suggest that the transformer-based approach used in PIPS, once improved with transformer lists,
is as accurate as the other tools when dealing with the ALICe benchmark. Its modularity nevertheless leads
to shorter execution times when dealing with nested loops and procedure calls found in real applications.

Keywords: model checking, abstract interpretation, static program analysis, linear relation analysis,
automatic invariant detection, loop invariant, transformer, benchmark

1 Introduction

Using abstract interpretation, invariants are usually obtained by solving iteratively

a system of equations linking preconditions according to program statements. How-

ever, it is also possible to abstract first the statements as state transformers, and

then propagate the preconditions using these transformers. The second approach is

modular because procedures and loops can be abstracted once and for all, avoiding

an iterative resolution over the call graph and all control flow graphs.
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However, the transformer approach, based on polyhedral abstract domains [14,2],

encurs two possible penalties: some invariant accuracy may be lost when comput-

ing transformers, and the execution time may increase exponentially because the

dimension of a transformer is twice the dimension of a precondition. Polyhedral op-

erators have a worst-case exponential complexity and transformers must deal with

two values per variable, the value in the precondition, i.e. the past value, and the

value in the postcondition, i.e. the new value, whereas preconditions require only

the current value.

The purposes of this article are 1) to measure the benefits of the modular ap-

proach and its drawbacks in terms of execution time and accuracy using paramet-

ric examples and a newly developed benchmark suite for loop invariant analysis,

ALICe [18], 2) to present a new technique developed to reduce the accuracy loss

when computing loop invariants, namely control path transformers, 3) to evaluate

the accuracy gains this new technique and older ones, previously discussed in [2]

but not implemented, provide with ALICe test cases and 4) to compare the execu-

tion times and accuracies of different tools using either precondition propagation

or transformer computation. Namely, we compare ASPIC [8], which is a standard

abtract interpretation (AI) tool based on widening and acceleration, PAGAI [13], a

SMT-based AI tool, the Integer Set Library, ISL [24], which is a library including

a transitive closure for Presburger relations and PIPS [15,14], which is a compila-

tion framework using polyhedral sets to abstract transformers and preconditions.

The comparisons are difficult because the tools have different input and output

languages, but this is dealt with by the ALICe framework.

The techniques considered in this paper to improve the accuracy of the trans-

former approach are the computation of transformers along different control paths

to postpone convex hull operations until the precondition propagation phase, the

iterative computation of new transformers based on previously computed precondi-

tions [2], the exploitation of idempotent transformers [2] and the control simplifica-

tion that can be obtained by splitting and specializing control nodes [17]. Although

we strived to make this paper self-contained, it might be useful to read [2] first or

when encountering difficulties.

The outline of the paper is the following. Since the transformer-based approach

is unusual, we introduce it briefly in Section 2. We then present a first set of

experimental results to explore the accuracy and execution time issues existing

with the techniques presented in [2] (Section 3). Accuracy issues encountered can

be traced back to early convex hull operations, and several techniques designed to

postpone them as much as possible are detailed in Sections 4 and 5. Finally, we

measure the impact of these improvements with ALICe (Section 6) and conclude.

2 Generation of Invariants with Transformers

Invariants are usually computed by propagating preconditions along the control

paths of a program until stable preconditions are obtained for each control node.

To avoid infinite propagations, special approximation operators, e.g. widening op-

erators, are used to guarantee the convergence within a finite number of steps.

Instead, PIPS relies on a modular alternative approach using affine transform-
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void foo(float x) {
int n = 0;
while (1)

if (x)
if (n<60)

n++;
else

n = 0;
}

// T() {0==-1}
void foo(float x) {
// T(n) {n==0}

int n = 0;
// T(n) {n#init==0}

while (1)
// T(n) {n<=n#init+1}

if (x)
// T(n) {n<=60, n<=n#init+1}

if (n<60)
// T(n) {n==n#init+1, n<=60}

n++;
else

// T(n) {n==0, 60<=n#init}
n = 0;

}

void foo(float x) {
// P() {}

int n = 0;
// P(n) {n==0}

while (1)
// P(n) {0<=n, n<=60}

if (x)
// P(n) {0<=n, n<=60}

if (n<60)
// P(n) {0<=n, n<=59}

n++;
else

// P(n) {n==60}
n = 0;

}

Fig. 1. Statements, transformers and preconditions for counter (Halbwachs & al.)

ers [15], i.e., polyhedra representing transfer functions. Transformers and precondi-

tions are shown in Figure 1 for the counter example used by Halbwachs & al. [12],

as comments just above the related statement. Transformers for elementary state-

ments contain many equations because usually few variables are modified. These

equations are kept implicit and instead the modified variables are listed as argu-

ments. Finally, a #init suffix is used to distinguish the old value from the new

value.

2.1 Generation of Transformers by PIPS

The algorithms used in PIPS assume no cycles in the call graph and proceeds as

follows. First, each program command S, elementary or compound statement or

procedure call, is over-approximated by an affine transformer T (S, P ), possibly

using information about a precondition P of S. This is a bottom-up procedure,

detailed in the next paragraphs, because a default value can be used for the pre-

condition P when no information is available. Each function is analyzed once and

its transformer is reused at each call site. Then, preconditions are propagated from

the program starting point using the transformers.

This approach can also be used with unstructured programs: the control flow

graphs are either turned into equivalent structured graphs [1], or approximated and

simplified by adding transitions, or analyzed using a decomposition into cycles [5].

The two-stage approach used by PIPS is the following. We suppose that ele-

mentary instructions have been turned into transformers, and show how control

structures are handled.

Sequence Let xi, x′i and x′′i denote values of variable xi at different states. A

sequence of affine transformers “T1 followed by T2” is overapproximated by the

union of constraints in T1 (on values x1, . . . , xn, x′′1 , . . . , x′′n) with constraints in

T2 (on values x′′1 , . . . , x′′n, x′1, . . . , x′n), then projected on x1, . . . , xn, x′1, . . . , x′n to

eliminate the “intermediate” values x′′1 , . . . , x′′n. We note this operation T2 ○ T1.

Choice The effect of a choice “T1 or T2” is the transformer T1 ∪ T2, which is not

affine in the general case (the union of two convex polyhedra is not a convex

polyhedron). The best convex approximation is the convex union T1 ⊔ T2. This

is a lossy operation in general.
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Loop Given an affine transformer T for a loop body, the affine transformer T ∗

represents the effect of any number of iterations of T . It is computed by the

Affine Derivative Closure algorithm [2].

The two main sources of imprecision that appear are the abstractions of loops

(∗) and parallel paths (⊔). Their impact is cumulated when multiple control paths

appear within loops and nested loops.

Note that the pure bottom-up approach may be used or not. Since transformers

are not computed concurrently but by traversing the AST, information gathered

previously can be used right away. The range of a transformer or the condition of a

test can be used as a precondition for the next statement to improve the accuracy

of T . This explains, for instance, why condition n ≤ 60 appears in the transformer

of statement n++;.

2.2 Generation of Invariants

Invariants, also known as preconditions, are forward propagated from the initial

state of the program using the transformers computed during the previous phase.

However, accuracy is improved when some preconditions are recomputed directly

for compound statements. For instance, the postcondition of a conditional if (c)

TT else TF can be obtained either as the convex hull of the postconditions of the

two branches, Post = (TT ○ Tc) (Pre)⊔(TF ○ T¬c) (Pre), or as the precondition trans-

formed by the conditional transformer, Post = (TT ○ Tc ⊔ TF ○ T¬c) (Pre). The first

equation provides more accurate results at little cost, because the branch postcon-

ditions are computed anyway.

3 Modularity and Accuracy: Experimental Results

PIPS has been developed as a compilation framework, able to process large applica-

tions interprocedurally [21]. It is important to check that the modularity provided

by transformers results in the expected speed improvement and to measure the ex-

tent of its negative impact on accuracy. We show firstly that PIPS obtains accurate

results in a small amount of time with respect to three other tools, ASPIC, ISL and

PAGAI, when dealing with loop nests and procedure calls. We then recall previous

experimental results showing a lack of accuracy when dealing with small test cases

previously published to illustrate invariant generation algorithms [18].

3.1 Tools Used

When dealing with a state transition relation, a transitive closure is useful to com-

pute invariants [6,2], to check loop termination or derive loop complexities [11], to

build dependency constraints or to move convex array regions from a control point

to another [16]. When dealing with a dependence relation, a transitive closure is

useful to optimize or synthesize code [26,25,4].

It is difficult to compare the algorithms and heuristics used by different tools

designed for one of these goals because they require different inputs and produce

incompatible outputs. Also, the encoding of the input often impacts the analysis.
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Depth 1 2 3 4 5 6 7 8 9

ASPIC 0.037 0.043 0.040 0.053 0.047 0.063 0.067 0.087 0.100
ISL 0.000 0.010 0.037 0.083 0.370 0.853 1.197 7.927 5.713
PAGAI 0.067 0.187 0.420 0.797 1.373 2.260 3.620 5.780 9.643
PIPS 0.004 0.009 0.015 0.021 0.030 0.039 0.053 0.071 0.090

Table 1
Times in seconds for invariant analyses of empty nested for loops with varying depths

We chose to compare PIPS with two standard abstract interpretation tools based

on preconditions, ASPIC [9,8] and PAGAI [13], and with a Presburger-equivalent

library, ISL [24,25], because it contains a powerful transitive closure heuristics de-

signed initially to compute data dependence relations better than [23]. ASPIC and

ISL’s transitive closure functions use as input a state machine format, fsm, or a

proprietary relational format. Unlike PAGAI and PIPS, they deal neither with the

intricacies of C nor with their automatic abstraction.

Since the tools have very different structures and execution times, we report

either directly the sum of the User and IO times reported by the time command

for ASPIC, ISL and PAGAI, or the times obtained using LOG_TIMINGS for the trans-

former and precondition passes of PIPS. In this way, the C parsing part of PIPS is

eliminated, as it is for ASPIC and ISL who use internal formats and for PAGAI who

uses Clang for parsing, and we compare the execution time of the passes of PIPS

that might be replaced by new passes based upon the other tools. Furthermore, the

evolution of the execution times for each tool is fully relevant and interesting.

Benchmarks were run on a computer powered by a four-core Intel i7-2600 pro-

cessor clocked at 3.40 GHz with 16 GB of memory, using ASPIC version 3.3, ISL

version 0.12.2, PAGAI version 14-04-07 and PIPS revision 22 134.

3.2 Impact of Cycle Nesting on Convergence

Nested loops are common in scientific codes and easy to analyze with transformers.

However, a 2D loop nest is used by Halbwachs in [12] to show improvements in

widening techniques. Let us consider the code in the left part of Figure 2, a matrix

multiplication. To check that all array accesses are safe, invariants on i, j and k

are needed, which requires the analysis of a 3D loop nest.

To understand time behaviors of the tools, we measured the execution times

of the transformer and precondition passes for nest depths of one to nine. Each

loop has a zero lower bound and a symbolic upper bound, for (i_k=0; i_k<b_k;

i_k++), and the loop body is empty, ;. No information about the upper loop bounds

b_k is available: each loop can be either entered or skipped. The results are shown

in Table 1. The execution time of tools using transformers or acceleration is not an

affine function of the depth because the number of variables increases twice as fast

as the depth and because the polyhedral operators are known for their exponential

worst case complexities. However, it does not increase very fast, especially for the

nesting depths usual in functions when inlining is not used.
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void mm(int l, int n, int m,
float A[l][m], float B[l][n],
float C[n][m]) {

int i, j, k;
for (i=0; i<l; i++) {

for (j=0; j<m; j++) {
A[i][j] = 0.;
for (k=0; k<n; k++)

A[i][j] += B[i][k]*C[k][j];
}

}
}

void mp(int n, int p,
float A[n][n], float B[n][n]) {

int i, j, k;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
A[i][j] = B[i][j];

for (k=1; k<p; k++) {
float T[n][n];
for (i=0; i<n; i++)

for (j=0; j<n; j++)
T[i][j] = A[i][j];

mm(n, n, n, A, T, B);
}

}

Fig. 2. Matrix multiplication and exponentiation: A = B ×C and A = Bp

main-1 main-2 main-3 main-4 main-5

2 calls inlined 3 calls inlined 4 calls inlined 5 calls inlined 6 calls inlined

ASPIC – 0.043 – 0.061 – 0.087 – 0.108 – 0.149
ISL – 261.810 – 274.580 – 370.960 – 413.300 – 456.360

PAGAI 0.980 1.417 1.383 5.680 2.030 14.677 2.990 30.007 4.467 53.247
PIPS 0.048 0.043 0.049 0.063 0.048 0.084 0.050 0.108 0.051 0.127

Table 2
Times in seconds for interprocedural analyses and intraprocedural analyses of inlined versions

3.3 Interprocedural Analysis or Inlining

The code in the right part of Figure 2, a matrix exponentiation, mp, contains a call to

a matrix multiplication, mm, within a loop. Function mp is called from a main function

that reads a matrix and an exponent, and prints the resulting matrix. This code can

be analyzed interprocedurally or intraprocedurally after inlining. Table 2 contains

execution time measurements for main programs calling mp from one to five times.

Each measurement was performed 10 times and the median time is displayed. The

code is either analyzed interprocedurally or the callees are inlined, which reduces

the number of call sites to zero. Modularity becomes more and more useful when

multiple call sites of the same function are present in the analyzed program. Also,

inlining increases the loop nest depths, which is bad for the execution time as seen

in the section above.

3.4 Analysis of Accuracy Results Obtained with ALICe

In this section, we recall experimental results obtained with ALICe and published

in [18]. The ALICe benchmark has been developed to assess the robustness and

accuracy of various invariant generating tools. Version 1.0 supports three tools,

ASPIC, ISL and PIPS, and contains 102 test cases gathered from papers dealing

with loop invariant or termination. It uses the FAST format as neutral reference

format and provide different encodings of each test case.

Regardless of the encoding, PIPS is the less accurate of the three tools, with

43 good results, versus 75 for ASPIC and 63 for ISL. But no tool is strictly better

than another one: for each tool, at least one model is successfully analyzed only by

this tool (see Figure 3). Moreover Table 3 shows no clear trend for the accuracy of

generated invariants, measured by inclusion of invariant sets.

A closer analysis shows that ISL performs comparatively well on test cases en-

6



Maisonneuve, Hermant and Irigoin

coded with concurrent loops (several loops on a single control point), unlike PIPS

whose results are particularly bad on such cases. On the other hand, ISL can be

quite slow on test cases that display a large, intricate control structure. Finally,

despite its successes, ASPIC has greater difficulty to deal with transitions featuring

complex formulæ, which it is not able to accelerate.

ASPIC

ISL PIPS

12

1 1

22

1

2
39

successes: 78
failures: 24

Fig. 3. Venn diagram for ALICe 102 test cases

⊇¼ ASPIC ISL PIPS

ASPIC – 21 23
ISL 49 – 54

PIPS 33 23 –

Table 3. Invariant inclusions

3.5 Experimental Execution Times and Accuracies

The modular approach, as implemented in PIPS, is effective in terms of accuracy and

execution time when dealing with large programs using function calls and nested

loops [21]. However, it lacks accuracy when computing invariants for small transi-

tion systems often targeted in the literature about automatic invariant generation.

The accuracy loss is mostly due to convex hulls performed in the transformer space

before the transitive closure is approximated, but several integer overflows are also

observed.

4 New Improvements in Transformer Computation

We present two new improvements for transformer-based analyses. The first one

deals with concurrent loops, and the second one with integer overflows.

4.1 Concurrent Loops

We are dealing with structured code. A control path set is built for each loop body.

When a test or a loop is found, each pre-existing control path is duplicated to take

into account the true and false branches, or the loop entrance and skip. This is not

performed recursively down the branches or the inner loop bodies. Thus the total

number of control path is at most 2k, where k is the number of (possibly compound)

statements in the loop body.

4.2 Control-Path Transformers in Loops

Let us assume that a loop contains several control paths, each defined by its trans-

former Ti. Such loops are called concurrent loops above. The loop precondition,

P ∗, can be decomposed into a set of preconditions, each obtained after a variable

number of iterations and merged together by convex hull operators, ⊔:

P ∗ = P0 ⊔ P2 ⊔ P+ ⊔ P3+ (1)

P0 is the precondition holding the first time the loop is entered. P2 is obtained

after two iterations with different control paths. P+ corresponds to the case when
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only one control path is used for all iterations; it includes P1, the precondition of

the second iteration. Finally, P3+ is the loop precondition corresponding to all the

longer control paths with at least three iterations and two different control paths.

P2 = ⊔
i

⊔
j≠i

Ti(Tj(P0)) P+ = ⊔
i

T+
i (P0) P3+ = ⊔

i

⊔
j≠i

T+
i (Tj(C∗(P1)))

C∗ is an over-approximation of the transitive closure of the convex hull C of the tran-

sitions, C = ⊔i Ti and P1 is the precondition after one iteration exactly, ⊔i Ti(P0).
When the default formula in PIPS, P ∗ = P0 ⊔ C+(P0), is used, the convex hull

operations are mostly performed before the transitive closure, in the transformer

space. With Equation 1, they are executed later in the precondition space and

each elementary transition Ti is applied as last transition. Hence, the information

brought by idempotent transformations is preserved.

The formula used to compute the loop invariant has been unrolled to take into

account explicitly up to three iterations. It is possible to generalize this to k steps,

with an exponential increase in the number of terms. But we are lacking experi-

mental cases justifying this development.

Halbwachs & al. present in [12] the example in Figure 1. The reset to 0 is

abstracted by a transformer that cannot be merged accurately with a transformer

abstracting a conditional increment and no information is obtained with the equa-

tions presented in [2]. However, Equation 1 provides an accurate loop invariant,

0 ≤ n ≤ 60, by combining them, their transitive closures and the initial loop precon-

dition.

4.3 Motivations for Equation 1

Equation 1, combined with the definitions of P2, P+ and P3+, was developped:

(i) To transfer as much as possible convex hulls performed in the transformer space

into convex hulls performed in the invariant (pre- and post-condition) space;

for instance, the merge of an incrementation and a decrementation results in

no information, regardless of the conditions used to control their executions.

(ii) C∗, the transitive closure of C, the convex hull of the transformers related

to each control path, is often imprecise. Information, especially idempotent

components, can be restored using each control path transformer Ti as last

step for the iterations. This can be generalized to T+
i .

(iii) In some cases, control path i can follow control path j, but j cannot follow i

(Tj ○ Ti = ∅). By considering the two last different kinds of iterations, some

impossible multi-iteration paths are eliminated.

4.4 Arbitrary-Precision Numbers

Intermediate computations may generate polyhedra with huge coefficients, leading

to arithmetic overflows even with 64-bit integers, because constraint constants are

transformed into coefficients by the convex hull operator. Eventually, when an

overflow occurs, some constraints may be dropped, and the resulting invariant is less

accurate than it should. To address this problem, we added GMP support to some

8
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of the PIPS polyhedral operators. This seemingly purely pratical implementation

decision allows for a drastical simplification of the polyhedral algorithms because

overflow exceptions no longer have to be handled. It turns out that this positively

impacts both the execution time (about 6 times faster now) and the comparison

between transformer- and precondition-based analyses.

5 Other Improvements in Transformer Computation

We recall several improvements for transformer-based analyses. They can either be

applied directly to the source codes, or to existing analyses. They have already been

published in [2,17] but they all still required implementation and experimentation.

5.1 Control Restructuring by Node Splitting

The invariant information is attached to control nodes. If their number is increased,

more precise invariants can be found when using polyhedral invariants because the

global invariant is the disjunction of the node invariants. Also, the behavior of

the program may become easier to analyze because fewer arcs may join the split

nodes. However, the presence of new nodes usually increases the analysis time and

a trade-off must be found between accuracy and node number.

Maisonneuve has developed a heuristics to split control nodes [17], which splits

nodes only if some benefit can be expected. This heuristics, fsmnodesplit, which has

already been proved and validated experimentally [17,18] but is not integrated into

PIPS, is a prime candidate to improve PIPS results and to observe its robustness

with respect to different equivalent encodings of test cases obtained by splitting,

merging or merging and then splitting nodes. It is also relevant for other tools.

5.2 Iterative Analysis

It is sometimes possible to improve the preconditions by recomputing the trans-

formers a second time, using the first set of preconditions as input to limit their

domains and ranges.

As explained in [2], the iterative relationship between transformers and pre-

conditions is formalized by the two equations below where B stands for the loop

body statement and the continuation condition, T for the function that converts a

statement into a convex transformer, P ∗
0 represents any state and n is positive:

T ∗
n+1 = T (B, P ∗

n ) ∩ P ∗
n , P ∗

n = P0 ⊔ Tn (T ∗
n (P0)) (2)

Note that the previous precondition P ∗
n , which can be computed more precisely

using Equation 1, impacts the transformer T ∗
n+1 in two different ways. The affine

abstraction function T is sharpened and the domain of the resulting transformer

also is restricted by the previous precondition, P ∗
n .

The example in Figure 4 was published in [7]. Function foo has two different

behaviors depending on the value of flag and it uses a non-affine condition in

the loop, i%2==0. Different behaviors that depend on a formal parameter can be

separated by cloning the function and values returned by the modulo operator can
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void foo(int flag, float x) {
int i, j = 1, a = 0, b = 0;
if (flag) i = 0;
else i = 1;
while (x>0.) {

a++; b += (j-i); i += 2;
if (i%2==0) j += 2;
else j++;

}
if (flag) assert(a==b);

}

Iteration 1:
while (x>0.) {
// P(a,b,i,j) {2a==i, j<=2a+1, a+1<=j}

Iteration 2:
while (x>0.) {
// P(a,b,i,j) {2a==i, 2a==j-1, 0<=a, b<=a}

Iteration 3:
while (x>0.) {
// P(a,b,i,j) {a==b, 2a==i, 2a==j-1, 0<=a}

Fig. 4. Example by Dilig & al.: source code and loop invariants obtained iteratively when flag!=0

int main() {
int x=0, new=0, old=1, y=0, z=0;
while (x<10) {

if (new==0)
y++;

else

z++;
new = 1 - new;
old = 1 - old;
x++;

}
if (new==1 && old==0

|| new==0 && old==1)
printf("property verified\n");

else

printf("property not found\n");
}

Iteration 1:
while (x<10) {

// P(new,old,x,y,z) {new+old==1, y+z==x,
// 0<=new, new<=1, new<=x, x<=9, y<=x, 0<=y}

}
// P(new,old,x,y,z) {new+old==1, x==10, y+z==10,
// 0<=new, new<=1, new<=y, y<=new+9}

Iteration 2:
while (x<10) {

// P(new,old,x,y,z) {new+old==1, new+x==2y,
// new+z==y, 0<=new, new<=1, new<=y, y<=new+4}

}
// P(new,old,x,y,z) {new==0, old==1, x==10, y==5,
// z==5}

Fig. 5. Periodic behavior: loop invariants and post-conditions

be analyzed precisely when information about the parity of i is known. When flag

is not zero, it is possible to derive that a equals b. To obtain three equations in the

function postcondition, transformers must be computed three times because each

time a precondition makes the abstraction of a statement more precise.

5.3 Periodicity

Periodic behaviors occur in scientific computing, when, for instance, two sub-arrays

are swapped, to avoid copying new values in the locations of old values at each time

step x, A[new][*]=f(A[old][*]), at the cost of a mere swapping of the indices.

To parallelize such programs (see column 1 of Figure 5), the compiler must find the

invariant new+old==1, which is then used in data dependence testing together with

the conflict equation, new==old, to show that A[new][*] and A[old][*] refer to

different sets of locations.

As pointed out in [2], there are different ways to encode the swap, and the

above invariant may be more or less easy to generate. However, regardless of the

encoding, the behavior is always periodic. More information is preserved if the

transitive closure of the loop transformer is computed as a function of one of its

powers [2]. For instance, the square is useful for idempotent function and functions

with a period of 2:

T ∗ = (T 2)∗ ⊔ T ○ (T 2)∗ , T+ = T ⊔ (T 2)+ ⊔ T ○ (T 2)+ .

This can be generalized to any power of T . As no application has yet required a

larger periodicity, our current implementation in PIPS is limited to T 2.

10
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void masse_vmcai_2014_14(int x) {
while(x!=0) {

if(x>0) x--;
else x++;

}
}

void masse_vmcai_2014_14_transformed(int x) {
while(x!=0) {

while(x!=0 && x>0) x--;
while(x!=0 && x<=0) x++;

}
}

Fig. 6. While-if to while-while conversion: Example by Massé and Cook & al.

Note finally that an iterative analysis (see Section 5.2) improves the invariant

for the periodic function: the relationship between y and z is found (see column 2

of Figure 5). As for the Dilig example in Figure 4, and unlike what is claimed

in [2], the iterations are not linked only to non-polyhedral invariants, but also to

polyhedral invariants and they may converge.

5.4 While-If to While-While Conversion

This optimization, the conversion of tests into while loops inside a while loop, was

also used in [2] and proved correct in the extended version [3], but it has not been

implemented, neither explicitly with a program transformation nor implicitly when

computing loop invariants. In fact, it may have a detrimental effect with respect

to using the convex hull to obtain a unique loop transformer, unless control path

transformers are used. The example in Figure 6 [20] shows how easier it is to prove

the loop termination once the internal test has been changed into a pair of while

loops.

6 Experimental Evaluation of the Improvements

Although PIPS has not been designed to analyze the small test cases used in aca-

demic papers dealing with loop invariants and termination, it is yet interesting to

use them to measure the impact of the improvements presented above and to com-

pare PIPS to other tools able to compute invariants. Also, test cases left unsolved

are good starting points for designing new improvements in invariant generation.

6.1 Impact of Encoding and Improvements for ASPIC, ISL and PIPS

Table 4 provides the numbers of successes and the total execution times obtained

with the four different encodings of ALICe benchmark [18] by ASPIC, ISL, the base-

line of PIPS and PIPS with some of the improvements defined in Section 5. As

expected, the execution times increase and the return is sometimes quite small for

the test cases in ALICe version 1.0. However, using sets of control path transformer

and a favorable encoding provides excellent results in numbers of test cases solved

per second, and future benchmarks for invariant generation may have different pro-

files. Note that periodic analysis, not shown in Table 4, does not improve any of the

test cases currently in ALICe. We believe that this benchmark should be regularly

increased with new cases; any feedback will be appreciated.

Note also that the execution times of PIPS in Table 4 differ widely from those

published in [18]. In [18], the execution time is:

tWING = ∑
i∈ALICe

time(PIPS(fsm2c(casei)))
11
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fsm C ASPIC ISL PIPS

Default CP IA CP-IA CP-IA-MP

Direct 5497 15482 Succ. 75 63 43 69 45 72 73
4323 Time 10.9 35.5 6.1 7.8 18.5 19.6 151.4

Split 9348 757222 Succ. 79 72 50 72 56 75 77
4199 Time 12.8 43.0 5.7 6.8 14.4 19.0 113.3

Merged 5579 15380 Succ. 59 70 40 66 44 67 68
5187 Time 16.7 26.2 6.2 8.0 18.5 19.7 225.9

Merged 6206 38941 Succ. 70 83 63 79 65 80 82
& Split 4549 Time 11.3 40.8 6.6 9.6 16.8 23.0 222.2

Table 4
Successes and execution times for Direct, Split, Merged & Merged-Split versions of ALICe test cases and

for ASPIC, ISL and PIPS with different options (Control Path transformers, Iterative Analysis,
MultiPrecision). Sizes in number of lines are indicated on the left for FAST files and for C files generated

by fsm2c. C file sizes are reduced by eliminating files greater than 1 KLOC and by a first PIPS pass
(control simplification). Accuracy figures for ASPIC, ISL and the default version of PIPS are reproduced

from [19] for comparison purposes. Execution times for PIPS are not measured as in [19].

that is the sum of the PIPS processing time for all test cases in ALICe converted into
C by fsm2c. This is highly detrimental to PIPS because of its large startup time,

because number of passes, such as parsing, are not performed by other tools and

because fsm2c has also negative impacts.

The C encoding chosen for fsm2c implies the parsing of the stdlib header, an

interprocedural analysis by PIPS, lots of unreachable code and some exponential

blow-ups in the generated code sizes. In order to reduce the overheads incurred by

PIPS, we eliminate test cases which cannot be regenerated in less than 1000 lines,

we replace the functional encoding of aleas by uninterpreted expressions, we use

PIPS to eliminate unreachable statements and we process all test cases in one call

to PIPS. Formally, the execution time is now:

t = time
⎛
⎝PIPS(PIPS(substitute( ⋃

i∈ALICe

Csize(i)<1000

fsm2c(casei))))⎞⎠
which reduces the PIPS execution time by a factor of 7 to 10.

6.2 Analysis of PIPS Failures

Out of 102 test cases, the ALICe benchmark contains 9 test cases that involve non-

Presburger invariants and PIPS finds invariant for 82. This leaves 11 cases to inves-

tigate further, namely: halbwachs7, henry, metro, microsoftex2, microsoftex5,

popeea, realheapsort, realheapsort_step2, subway, synergy_bad and ticket

(http://alice.cri.mines-paristech.fr).

ALICe is based on the FAST format and the heuristics fsm2c used to generate

structured C from FAST control flow graphs may blow up exponentially, up to 300

KLOC (metro, realheapsort, realheapsort_step2 and subway at the very least).

When some test cases are written in C, using while loops as they were published,

the invariants for henry, halbwachs7 and synergy_bad [10] are found by PIPS.

Case microsoftex2 is analyzed in [11] to detect loop termination. The required

information is not an invariant but a transformer, and PIPS computes the required

transformer. Case microsoftex5 is also analyzed in [11], using non-convex trans-

formers. It contains two nested while loops, and the internal loop may or not be the

identity function. The information about the identity behavior is not preserved by

12
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PIPS because control paths are not built recursively going down loops to keep their

number small. This test case requires a different algorithm to construct control

paths in PIPS.

Case popeea [22,11] has a non-convex invariant, which can only be found by

a convex tool if new control points are added. The heuristics used by ALICe,

fsmnodesplit, probably fails to discover a proper node splitting. Case ticket [6]

is interesting because it is easy to make the invariant convex. However, the number

of control paths is large and the convex hulls used by PIPS lead to overflows when

the while loop is unrolled. The algorithm is described as a transition system and

the way it may be coded in C is critical to its analysis by PIPS.

7 Conclusion

We have provided experimental results supporting the transformer approach. It

is time-efficient with respect to the usual abstract interpretation approach based

on precondition propagation, when large pieces of code with many functions and

nested loops are analyzed.

However, accuracy is lacking for small test cases as we observed thanks to the

ALICe benchmark. So we have presented one new technique, control path transform-

ers, and its use to compute loop invariants, and several improvements in transformer

closure and loop invariant generation, including the use of multiprecision numbers,

iterative analysis, support for idempotent and periodic behaviors, and input re-

encoding.

These improvements, most of them described in [2], have been implemented in

PIPS and tested against the 102 test cases of the ALICe benchmark. The results

presented in Section 6 show that three improvements have a positive effect and that

PIPS is now about as accurate as more specialized tools such as ASPIC and ISL.

So, even though ALICe is a very useful first step, the developement of a general

benchmark for research about loop invariants, affine or not, is still an open issue.

The choices made for ALICe and its heuristics, fsm2c, should be revisited to support

larger test cases and scalability studies. For instance, it would be useful to store C

version of the test cases to ease the addition of new cases and to simplify the use of

C analyzers such as PAGAI and PIPS.

Finally, some test cases in ALICe are not handled by any of the three tools that we

used, primarily because their invariants are not Presburger formulæ. Some are not

handled by PIPS because the transformers or the invariants are not convex. Some

more work is still needed to generate more invariants automatically with polyhedral-

based transformer techniques while avoiding exponential blowups when generating C

code from FAST files or when analyzing codes with control path transformers and/or

iteratively. The ticket algorithm in particular, but also the control restructurations

in general, deserve new advances.
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