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Neuber’s type methods are dedicated to obtain fast estimation of elastic–plastic state at stress concentra-
tions from elastic results. To deal with complex loadings, empirical rules are necessary and do not always
give satisfying results. In this context, we propose a new approach based on homogenization techniques.
The plastic zone is viewed as an inclusion in an infinite elastic matrix which results in relationships
between the elastic solution of the problem and estimated stress–strain state at the notch tip. Three ver-
sions of the notch correction method are successively introduced, a linear one which directly uses Eshel-
by’s solution to compute stresses and strains at the notch, a non-linear method that takes into account
plastic accommodation through a b-rule correction and, finally, the extended method that is based on
the transformation field analysis methods. All the notch correction methods need calibration of localiza-
tion tensors. The corresponding procedures are proposed and analyzed. The methods are compared on
different simulation cases of notched specimens and the predictive capabilities of the extended method
in situations where plasticity is not confined at the notch are demonstrated. Finally, the case of a complex
multiperforated specimen is addressed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Lifetime of structural components is often controlled by notches
and stress concentrations where plasticity can develop. Finite ele-
ment (FE) elastic–plastic or elastic-viscoplastic simulations of com-
plex components can still be prohibitive in a design process.
Consequently, there is a need for fast estimation methods of
plasticity at stress concentrations.

Rules applying a plastic correction to deduce elastic–plastic
stress and strain state from an elastic solution were developed to
do so. Neuber (1961) was the first to propose such a method for
uniaxial monotonic loading conditions. In case of notched bodies
in plane stress, which results in a uniaxial stress state, he postu-
lates a kind of local energetic equivalence between an elastic and
an elastic–plastic calculation:
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Later, Molski and Glinka (1981) developed a similar method assum-
ing localized plasticity at the notch tip. In that case, the strain
energy density at the notch tip can be approximated by that
obtained if the body were to remain elastic:
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Theoretical justifications of those approaches have been proposed
in the literature (Desmorat, 2002; Ye et al., 2004; Guo et al.,
1998). They were also extended and improved over the last four
decades. For example, Chaudonneret and Culié (1985) have worked
on cyclic extensions.

One of the main issues with those methods arises when dealing
with multiaxial stress states. In the general case of triaxial mechan-
ical state at the notch root, three stress components, four strain
components and four plastic strain components have to be com-
puted locally. Elastic and plastic behavior laws provide 4 + 4 scalar
equations. Consequently, three more equations are needed to solve
the problem.

In the one hand, the approach followed in Hoffman and Seeger
(1985) consists in generalizing the uniaxial Neuber rule using
equivalent stress and strain quantities instead of uniaxial values.
They add two more assumptions on (i) principal directions and
(ii) ratios between the two first principal stresses to close the prob-
lem. In a similar way, Moftakhar et al. (1994) proposed multiaxial
generalizations of Neuber’s and Molski–Glinka’s rules and assumes
equality of the contribution of each stress–strain component in the
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strain energy density between elastic and elastic–plastic
computations.

On the other hand, researchers have worked on notch correc-
tion rules for non-proportional multiaxial loadings. Barkey et al.
(1994) and Köttgen et al. (1995) incorporate directly the notch
influence into the constitutive equation. An anisotropic structural
yield surface in nominal stress space is then introduced. Another
way to treat non-proportional loading sequences consists in apply-
ing the incremental formulation of generalized Neuber’s rule as in
Buczynski et al. (2003).

However, all the above presented methods suffer some limita-
tions: (i) they are often limited to given geometries and (ii) they can-
not take plastic redistributions into account. More recently Herbland
et al. (submitted for publication) has proposed a completely new
approach based on the Eshelby inclusion theory. The notch tip is
viewed as an inclusion in an infinite matrix. The general formulation
of this method allows the possibility to address non-proportional
loading sequences for any material model. Herbland have also pro-
posed a non-linear extension to take plastic redistributions around
notch tip into account. Indeed, large plastic zones at notch tips are
still challenging issues and most of Neuber’s type methods fail in pre-
dicting plastic accomodation and ratcheting phenomenon.

The first objective of the present contribution is thus to discuss
the predicting capabilities of Herbland’s methods in non-confined
plastic zone cases. This article aims also at presenting a new robust
correction method that extends Herbland’s work. It follows the
same idea but it is derived from the transformation field analysis
(TFA) (Dvorak and Benveniste, 1992) approach developed in the
homogenization literature.

This contribution is organized as follows. Section 2 of this paper
briefly sums up Herbland’s linear and non-linear correction meth-
ods. The tested geometries and material models are presented in
Section 3. Section 4 is dedicated to the application of both linear
and non-linear Herbland’s methods. The new correction method
we propose is presented together with its application in Section 5.
Finally, both Herbland’s and the new correction method have been
validated on a multiperforated specimen as described in Section 6.
Fig. 1. Schematic view of the linear and non linear correction methods.
2. Linear and non-linear notch correction methods

In Herbland’s method (Herbland et al., submitted for
publication), the plastic zone at notch tip is seen as an inclusion
in a semi-infinite matrix. In the case of an infinite elastic matrix,
Eshelby’s solution links the stress in the inclusion r

�
I and in the

matrix r
�

M:

r
�

I ¼ r
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: e
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where the superscript M denotes matrix quantities and the super-
script I denotes inclusion quantities. The fourth order tensor C

�
depends on the elastic properties of the material and the geometry
of the inclusion. This type of stress redistribution is the basis of
Kröner’s model for polycrystals. It is valid at the onset of plastic
flow. If the problem is restricted to confined plasticity at the notch
tip, the plastic deformation in the matrix e

�
pM is supposed to be

equal to zero so that Eq. (3) reduces to:
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In the notch correction framework and following Neuber’s type of
approaches, the superscript M stands for the quantities at the notch
tip coming from the elastic computation and the superscript I
denotes the quantities in the elastic–plastic case. Nevertheless, other
definitions for r

�
M are discussed in Herbland et al. (submitted for

publication) (nominal stress, average over a volume around the
notch tip). This method will be denoted CL in the following. In fact,
the analogy with the homogenization models is not fully verified,
since, due to the introduction of the free surface, the stress state is
not uniform in the plastic zone, and some stress components are null.

As classically shown in the homogenization framework
(Berveiller and Zaoui, 1978), this linear correction leads to elastic
accomodation. Herbland proposed an extension of his method to
take into account plastic accomodation, still using tools from the
homogenization literature. He applied the b-rule (Cailletaud,
1987) which consists in replacing the plastic strain e

�
pI by an auxil-

iary variable b
�

I whose evolution is governed by a non-linear equa-

tion. More precisely, Herbland proposed the following evolution
equation for b

�
I to control ratcheting effect:
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The tensor d
�

is introduced to limit the ratcheting effect due to the
non-linear term. It is diagonal and writes, using Voigt notations:

d
�
¼

d 0 0 0 0 0
0 d 0 0 0 0
0 0 d 0 0 0
0 0 0 d=2 0 0
0 0 0 0 d=2 0
0 0 0 0 0 d=2

0
BBBBBBBB@

1
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Herbland’s non-linear correction method will be denoted CNL in the
following.

The linear and non-linear methods are summed up by Fig. 1. In
a first step, the tensor C

�
(plus D

�
; d for the non-linear method) are

calibrated through FE simulations. As it will be explained later,
assumptions on the shape of those tensors can be made to reduce
the number of parameters to be identified. First, an elastic-visco-
plastic FE simulation on a monotonic or few cycles (typically 5
cycles) will be used as a reference. Then, an elastic simulation is
performed to get r

�
M at notch tip. This elastic simulation is post-

processed to estimate the stress and strain fields at notch tip using
Eq. (4) and the constitutive equations of the material. Reference
values and notch correction values for r

�
and e

�
are then compared

in an optimization loop to obtain the optimal values for the
method parameters C

�
; D
�
; d. In a second step, the notch correction

method can be used on the same geometry and for the same
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material to estimate the response at the critical point for any com-
plex loading and over a large number of cycles instead of perform-
ing costly FE simulations of the whole problem.

In Herbland et al. (submitted for publication), the correction
methods are applied under complex loadings such as variable
amplitude or non-proportional tension–torsion loadings. A good
agreement with FE simulations is reported. In particular, the
non-linear method gives precise results in the case of non-confined
plasticity at the notch. The present contribution is focused on the
latter point. Two types of notched specimens and two types of
materials are used to compare the predicting capabilities of the
methods depending on plasticity confinement.
3. Test cases

This section presents the tested geometries and material mod-
els. Results with two different geometries and two different mate-
rials will be detailed in the present contribution to show the range
of capabilities of the notch correction methods.

The two axisymmetric notched specimens with kt = 2 and
kt = 1.32 that have been used differ in the sizes of plastic zone,
the latter leading to non-confined plasticity. Fig. 2 presents the
kt = 1.32 and kt = 2 meshes used to carry out the simulations. Both
have approximatively 1900 axisymmetric quadratic reduced ele-
ments. Simulations are run using the Z-set FE software (Z-set).
Axial mechanical loadings are applied.

The full finite element inelastic analyses are used for the com-
plete calculations performed over thousands of cycles in order to
capture the reference solutions. The same inelastic analyses, with
the same meshes and constitutive parameters, are performed (over
one monotonic loading or a few cycles), that serve to calibrate the
parameters of the notch correction methods.

Two types of material models are tested. The first one repre-
sents a titanium alloy, TA6V at 200 �C and the second one is an iso-
tropic (von Mises criterion) version of a model representing AM1 at
high temperature (around 1000 �C). TA6V and AM1 exhibit very
different behaviors. Consequently, they represent different kind
of difficulties for notch correction methods. In a first hand, the
TA6V mechanical behavior shows cyclic softening and non-zero
mean stress values at stabilization for repeated fatigue loadings.
For this material, the challenge consists therefore in being able to
describe correctly those quantities together with deformations
evolutions. In a second hand, the AM1 behavior is characterized
by viscosity and creep which can generate plastic accomodation
and large plastic zones at stress concentrations.

The corresponding material models are briefly described in the
following sections.
3.1. Material 1: TA6V at 200 �C

TA6V is a titanium alloy widely used in the aeronautical indus-
try. Its viscoplastic behavior at 200 �C is characterized by superpo-
sition of several hardening variables:

� one non-linear isotropic hardening;
� four non-linear kinematic hardening with threshold;
� one non-linear kinematic hardening (without threshold).
Fig. 2. kt = 1.32 (top) and kt = 2 (above) specimens meshes
The constitutive model is described in Chaboche et al. (2012).
Kinematic hardening with threshold are introduced to describe
the non-fully mean stress relaxation during repeated fatigue tests.
A high value of exponent in Norton’s power law is considered to
describe the low viscosity behavior of this material at 200 �C.

3.2. Material 2: AM1 at high temperature (around 1000 �C)

AM1 is a single crystal Ni-base superalloy designed for turbine
blade applications in the aero-engine industry. This kind of mate-
rials works at temperatures up to 1150 �C. A double viscosity con-
stitutive model is employed here, with an isotropic von Mises
criterion. In this model, two viscoplastic potentials are defined.
The first one carries the ‘‘fast’’ viscoplastic phenomena appearing
during monotonic and cyclic tests. The second one is introduced
to catch the ‘‘slow’’ viscoplastic effects appearing during creep or
relaxation tests. The model falls into the two mechanisms and
two criteria (2M2C) class of models (Chaboche, 2008). A non-linear
kinematic hardening, together with a constant yield stress is asso-
ciated to the first viscosity potential whereas no hardening vari-
ables nor yield stress appear in the second potential criterion.
Norton’s flow rules are adopted for both potentials. It should be
noticed that, for the sake of simplicity, the isotropic version of
the model is used here despite the anisotropic mechanical behavior
of this kind of material.

4. Application of linear and non-linear correction methods

4.1. Implementation and identification procedure

Herbland’s linear and non-linear methods have been imple-
mented as a plug-in in the FE software Z-set. Critical point quanti-
ties r

�
I; e
�

I; e
�

pI and all the internal variables of the considered

material model are calculated at each time step using relations of
Section 2. A second order Runge–Kutta scheme with automatic
time stepping is used to compute evolution of internal variables.

The fourth order tensors in Eqs. (4) and (5) have to be calibrated
on FE simulations. As said previously they depend on the material
and geometry of the problem. In the case of an axisymmetric
notched specimen in tension–compression, and using Voigt nota-
tions in cylindrical frame (1 ¼ r; 2 ¼ z; 3 ¼ h), the stress and strain
tensors at the notch tip (free surface) are reduced to the following
expressions:

r
�
¼

0
r2

r3

0
0
0

0
BBBBBBBB@

1
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e ¼

e1

e2

e3

0
0
0
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To insure r1 = 0 at the notch tip, the fourth order tensors C
�

and
D
�

can be reduced to:

C
�
¼

0 0 0 0 0 0
0 C22 C23 0 0 0
0 C23 C33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

ð8Þ
. The x2 axis coincides with the axis of the specimens.
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0 D23 D33 0 0 0
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Consequently, only three values have to be calibrated in that
case for the linear correction method (C22; C33; C23) and seven
for the non-linear method (C22; C33; C23; D22; D33; D23; d).

The calibration procedure consists in searching parameters such
as the correction method results match reference elastic-(visco)
plastic FE results at the notch tip. To do so, optimization schemes
such as the Levengberg–Marquart algorithm available in the Zsim-
opt environment of the Zset software (Z-set) is used into an auto-
matic optimization loop. In the case of the linear correction
method, a single monotonic loading is enough to identify the param-
eters. In the case of the non-linear correction method, Herbland rec-
ommands 1.5 cycle of a repeated fatigue test for the optimization
procedure. In each case the full FE models of Fig. 2 are used, together
with the proper constitutive equations of the materials.
4.2. Application of the linear correction method on the TA6V specimens

The first simulations have been run on the TA6V Kt = 2 speci-
men at 200 �C. This section presents the results of the linear correc-
tion method. The correction parameters are identified on the first
1/2 cycle (i.e. first monotonic tension) of a repeated fatigue test
at 5 Hz under 605 MPa, computed by the full FE model.

The optimization procedure leads to the following parameters:
C22 = 7.70 � 104 MPa, C33 = 1.55 � 105 MPa, C23 = 2.40 � 104 MPa.
Fig. 3(a) and (b) present the comparison between the full FE simu-
lation result at the critical point and the results obtained using the
notch correction method for 4000 simulated cycles. As it can be
observed, the first monotonic loading which has been used for
identification is very well described. The cyclic evolution of 22
and 33 stress components are correctly predicted, leading to a good
agreement on the stress amplitude and mean stress values. Con-
cerning the deformations, their estimated amplitude is consistent
with the FE simulation but the mean value of e22 is under-
estimated.

The method has been applied with the previously calibrated
parameters on a second repeated fatigue test with
rnom

max = 454 MPa (3(c) and (d)). They give a very good agreement
in the axial direction as it can be observed in Fig. 3(c) and (d)
whereas the mean value of e33 is overestimated.

The choice of the loading condition used for the parameter cal-
ibration appears to be important. Indeed, notch correction method
results are less good if the tensor C is identified on the
rnom

max = 454 MPa loading as presented in Fig. 4. It shows that this
second calibration leads to largely under-estimated mean values
of e22 et e33 for both 454 MPa and 605 MPa tests. It can be con-
cluded that the calibration of the notch correction method param-
eters should be made on the higher value in the range of the
applied loadings that have to be simulated.

The work has also been done on the Kt = 1.32 geometry under
repeated fatigue loading with rnom

max = 852 MPa. The identification
procedure (over one monotonic loading) results in the following
parameters: C22 = 1.21 � 105 MPa, C33 = 6.81 � 105 MPa,
C23 = 2.21 � 105 MPa. Results are plotted in Fig. 5. Here ratcheting
of the deformation is largely under-estimated. Concerning stress
fields, Their amplitudes after 4000 cycles given by the linear cor-
rection method and the FE results at notch tip are nearly the same.
However, the cyclic mean value of r33 is not correctly estimated by
the method.
The non-confinement of plasticity for the specimen Kt = 1.32
explains the less good results obtained compared to the ones
for Kt = 2. The accumulated plastic strain maps at the end of
the first cycle in both cases are plotted in Fig. 6. It can be
noticed that the plasticity develops in a large part of the
Kt = 1.32 specimen whereas it is confined to the notch tip in
the Kt = 2 geometry. Thus, it can be concluded that the linear
correction method gives good results only when the plastic zone
is small enough to ensure elastic shakedown all around the zone
near the notch.
4.3. Application of the non-linear correction method on the TA6V
specimens

Non-linear Herbland’s correction method has also been tested.
It has been exploited by performing first a full cyclic inelastic anal-
ysis with the FE models shown Fig. 2, over 5 successive cycles.
From our experience, the optimization procedure is complex here
because it appears that multiple sets of parameters can be found.
Depending on their initial value, the optimization algorithm leads
to very different sets of parameters, that probably means the exis-
tence of local minima. Fig. 7(a) and (b) show the results for an ini-
tial value of d equal to 0 (leading to a final value d ¼ 0:51) whereas
Fig. 7(c) and (d) show the results for an initial value of d equal to 1
(leading to a final value for d ¼ 1).

As in the case of the linear correction method, evolution of r22

and r33 is correctly estimated so that their amplitudes and mean
values at the stabilized cycle are in good agreement with the FE
simulation. On the contrary, it is difficult to catch the right evolu-
tion for the deformation components. In particular, the first set of
parameters, presented in Fig. 7(a) and (b), leads to much too large
ratcheting effect. Concerning the second set, the accumulation of
deformation is controlled by the high value of d. The non-linear
method is, in that case, close to the linear one that has given satis-
factory results for the Kt = 2 geometry. Tests have been performed
to identify parameters on five cycles instead of 1.5 cycle but it does
not decrease the dependency of the parameters on their initial
value nor increase the quality of the estimated results.

The interest of the non-linear method is pointed out for the
Kt = 1.32 specimen. It gives much better results in that case than
the linear one. Fig. 8 shows that the method predicts a large
ratcheting during the first 200 cycles which stabilize after 1000
cycles. At the end of the 4000 simulated cycles, e22 and e33 are
slightly over-estimated but this simulation clearly shows the
capabilities of this method. The identified parameters
are: C22 = 2.0 � 105 MPa, C33 = 7.10 � 105 MPa, C23 = 2.73 � 105

MPa, D22 ¼ 6:71� 102; D33 ¼ 1:94� 103; D23 ¼ 7:06� 102 and
d = 0.155.
4.4. Application of the linear correction method on the AM1 specimens

The same kind of results are obtained with the AM1 material for
the Kt = 1.32 geometry. Fig. 9 shows fatigue and creep simulation
results with the linear correction method. As previously, C22; C33

and C23 have been calibrated at 950 �C by the full FE analysis per-
formed for the first tension of a 600 MPa repeated fatigue test at
5Hz. Their values are: C22 = 5.70 � 104 MPa, C33 = 9.52 � 104 MPa,
C23 = 2.76 � 104 MPa. Comparisons with the reference FE simula-
tions show that the method is not able to describe creep results
or ratcheting results during repeated fatigue tests. It can also be
noticed that the AM1 constitutive model leads, for each stress com-
ponent, to a zero mean value at the stabilized cycle. Therefore,
even if the strain evolutions are not correct, the stress amplitude
and mean values predicted by the method are here consistent with
the reference simulations.



(a) σnom
max=605 MPa, axial components (b) σnom

max=605 MPa, hoop components

(c) σnom
max=454 MPa, axial components (d) σnom

max=454 MPa, hoop components

Fig. 3. Application of the linear correction method in the case of repeated 5 Hz fatigue simulations on TA6V Kt = 2 specimens. Calibration has been made on the first
monotonic tension of the rnom

max = 605 MPa loading. Correction method results are plotted in green and compared to elastic-viscoplastic FE simulations in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) σ nom
max=605 MPa, axial components (b) σ nom

max=605 MPa, hoop components

(c) σ nom
max=454 MPa, axial componants (d) σ nom

max=454 MPa, axial components

Fig. 4. Application of the linear correction method in the case of repeated 5 Hz fatigue simulations on TA6V Kt = 2 specimens. Compared to Fig. 3, calibration has been made
on the first monotonic tension of the rnom

max = 454 MPa loading. Correction method results are plotted in green and compared to elastic-viscoplastic FE simulations in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(a) σ nom
max=852 MPa, axial components (b) σ nom

max=852 MPa, hoop components

Fig. 5. Application of the linear correction method in the case of repeated 5 Hz fatigue simulations on TA6V Kt = 1.32 specimens.

(a) Kt=2 (b) Kt=1.32

Fig. 6. Accumulated plastic strain fields at the end of the first cycle for both Kt = 2 and Kt = 1.32 specimens.

(a) σmax=454 MPa, axial components, parameters set 1 (b) σmax=454 MPa, hoop components, parameters set 1

(c) σmax=454 MPa, axial components, parameters set 2 (d) σmax=454 MPa, hoop components, parameters set 2

Fig. 7. Application of the non-linear correction method in the case of repeated 5 Hz fatigue simulations on TA6V Kt = 2 specimens. Two sets of parameters are presented to
illustrate the difficulties in their identification due to non-uniqueness.
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(a) σ nom
max=850 MPa, axial components (b) σ nom

max=850 MPa, hoop components

Fig. 8. Application of the non-linear correction method in the case of repeated 5 Hz fatigue simulations on TA6V Kt = 1.32 specimens. Correction method results are plotted in
green and compared to elastic-viscoplastic FE simulations in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

(a) Fatigue σ nom
max=600 MPa, axial components (b) Fatigue σ nom

max=600 MPa, hoop components

(c) Creep σ nom=400 MPa, axial components (d) Creep σ nom=400 MPa, hoop components

Fig. 9. Application of the linear correction method in the case of repeated 5 Hz fatigue and creep simulations on AM1 Kt = 1.32 specimens. Correction method results are
plotted in green and compared to elastic-viscoplastic FE simulations in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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4.5. Application of the non-linear correction method on the AM1
specimens

Finally, the non-linear correction method has been applied to the
Kt = 1.32 AM1 specimens. In that case, different calibration strate-
gies have been tested depending on the chosen loading condition,
fatigue or creep, and the number of cycles/time considered at the
calibration stage. The parameters used to plot the results in Fig. 10
have been identified on a 400 MPa creep simulation at 950 �C. As it
can be observed, those parameters lead to over-estimated ratcheting
effect and over-estimated mean stresses reached at the stabilized
cycle on the simulation of a repeated fatigue test in comparison to
the full FE simulations. It is interesting to notice that the identified
d value is 0.0. The other parameters are: C22 = 2.76 � 104 MPa,
C33 = 1.39 � 105 �MPa, C23 ¼ 2:23� 104 MPa, D22 ¼ 6:40� 101;

D33 ¼ 1:28� 102; D23 = 0.0.

4.6. Conclusions on the linear and non-linear methods

To conclude this analysis of Herbland’s correction methods, we
can say that they are promising tools to get a fast estimation of
stress and strain states at the notch tip. The linear correction
method gives good results when plasticity is confined at notch
tip. Moreover calibration of the parameters in that case is quite
easy. However, it fails to estimate ratcheting effect or creep defor-
mation when the plastic zone is too large. In the other hand, the
non-linear correction can take plastic accomodation into account
but convergence of the optimization algorithm and the existence



(a) Creep under 400 MPa, axial components (b) Creep under 400 MPa, hoop components

(c) Fatigue σmax=600 MPa, axial components

Fig. 10. Application of the non-linear correction method in the case of 400 MPa creep and repeated 5 Hz fatigue simulations on AM1 Kt = 1.32 specimens. Correction
parameters are identified on the creep simulation.
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of multiple solutions make the calibration procedure more
complex.

5. New correction method

In order to circumvent the drawbacks of non-linear Herbland’s
correction method, we propose a new method that will be called
the new correction method and abbreviate MC in the following.

5.1. Background

In order to take plastic accomodation into account, the plastic
zone is still viewed as an inclusion in an elastic matrix but with dif-
ferent elastic properties between the matrix and the inclusion. The
stress in the inclusion is linked to the macroscopic one by a local-
ization rule that writes:

r
�

I ¼ B
�

: R
�
þC
�

: E
�

p � e
�

pI

� �
ð10Þ

where R
�

and E
�

p represent macroscopic stress and plastic strain ten-

sors. B
�

is a fourth order stress concentration tensor and plays the

role of a stress concentration factor Kt in the proposed approach.
C
�

is a fourth order influence tensor. Eq. (10) can be deduced from

the TFA approach for phases with inhomogeneous elastic properties
(Dvorak and Benveniste, 1992).

The macroscopic stress R
�

plays the role of a nominal stress and
is defined as the average of stresses from an elastic simulation over
a sphere around the notch tip, whose diameter R is a geometrical
parameter to identify:

Rij ¼
1

VðRÞ

Z
VðRÞ

rijdV ð11Þ
E
�

p is introduced to account for non confined plasticity in the spec-
imen. It is calculated from the nominal elastic stress R

�
using the

constitutive equations of the material. Consequently, the proposed
method is characterized by three quantities to be calibrated: B

�
; C
�

and R. Finally, both Herbland’s methods and the new correction
one require the same input: the response of the structure over
one elastic increment. The difference between them arises in the
definition of the input stress. Herbland’s method directly uses the
elastic stress at the critical point whereas the nominal stress in
the new method is defined by its average value over a small volume
around the notch tip. Moreover, in the latter method, two internal
variables E

�
p and e

�
pI have to be integrated all along the applied load-

ing instead of one in the case of Herbland’s methods. Accordingly,
r
�

M and R
�

along the applied loading are deduced from the elastic

FE simulation using the linear features of this kind of simulation.
When dealing with confined plasticity, the plastic strain tensor

associated with R
�

is negligible and Eq. (10) reduces to:

r
�

I ¼ B
�

: R
�
�C
�

: e
�

pI ð12Þ

The product B
�

: R
�

is equal to the local elastic stress at the critical

point used in Herbland’s method and denoted r
�

M . Therefore, Eq.

(10) reduces to Eq. (4) in case of confined plasticity. In other words,
the new method proposed here is an extension of the linear
method from Herbland.

Fig. 11 illustrates both methods in the particular case of a
monotonic loading. In Herbland’s method, the elastic stress at
the notch tip is directly taken from the FE simulation. Elastic-
viscoplastic stress and strain fields at the critical point are deduced
from Eq. (4). In the schematic monotonic and uniaxial view of
Fig. 11, this equation consists in using a linear relationship, whose



Fig. 11. Schematic view of Herbland’s linear correction method and the new
correction method.
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slope is defined by the tensor C
�

, to deduce r
�

I and e
�

pI. In the new

correction method, the input is the average elastic stress field
around the notch tip. The nominal plastic strain field is character-
ized by E

�
p which is computed from the nominal stress through the

constitutive equations of the material. The stress concentration
factor is accounted for through the tensor B

�
. As previously, B

�
: R
�

characterizes the elastic stress field at the critical point. The correc-
tion C

�
: E
�

p is added to account for the bulk plasticity in the compu-

tation of stress and strain fields at the critical point. The method
will therefore deliver a greater value for e

�
pI than the linear one

which, will result in better estimations in the case of non-confined
plasticity and creep loadings as it will be shown in the following.

5.2. Implementation and identification procedure

Basically, the identification procedure consists in a parametric
study on different values of the radius R. More precisely, for the
AM1 material at high temperature the identification procedure
that has been developed includes fatigue and creep results and
can be decomposed into three steps:

� Perform elastic-viscoplastic simulations of a creep test and of a
fatigue test over a few cycles. This first step is made with the
full FE model of the component, like those presented in Fig. 2.
The evolution of stresses and strains at the critical point will
be used as reference values in the identification procedure.
� Perform an elastic calculation of the specimen and deduce the

evolution of R
�

under the fatigue loading. For different values

of the integration sphere radius R, compute the nominal stres-
ses R

�R. Then, for each radius R, identify the corresponding

B
�R; C

�R tensors by comparison between the elastic-viscoplastic

reference simulations and the estimation using the rule (10).
� Compute the nominal stress tensor R

�R for creep loading from
the elastic FE simulation for each previously defined value of
R. The values of R

�R, together with the corresponding B
�R; C

�R ten-
sors identified at the previous step, are then used to simulate
the response of the correction method using Eq. (10). The final
value for the radius R0, and the corresponding tensors
B
�R0 ; C

�R0 , are the ones giving the better agreement compared

to the full FE elasto-viscoplastic creep and fatigue simulations.
Other loading conditions can then be simulated by the correc-
tion method, especially those corresponding to the reference solu-
tions, under thousands of successive cycles. The nominal stress R

�R0

for any other loading condition can be directly obtained from the
calibration condition, since this quantity is computed from elastic
results.

Applications described in the following sections are focused on
AM1, that exhibits more viscosity and therefore non-confinement
effects.
5.3. Application of the correction method on AM1 Kt ¼ 1:32 specimens

The proposed correction method has been applied to the AM1
specimen with Kt ¼ 1:32. As for Herbland’s method, the B

�
; C
�

ten-

sors to be identified can be restricted to the following expressions
using the Voigt notation:

B
�
¼

0 0 0 0 0 0
0 B22 B23 0 0 0
0 B23 B33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð13Þ
C
�
¼

0 0 0 0 0 0
0 C22 C23 0 0 0
0 C23 C33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

Fig. 12 presents the results of the parametric study with the
averaging radius ranging from 0.6 to 2.0. The two particular load-
ing conditions used for calibration are: rnom

max = 600 MPa repeated
5 Hz fatigue and 400 MPa creep. It should be emphasized that
the fatigue pictures have been plotted for 16,000 simulated cycles
but only the first five cycles have been used in the calibration pro-
cedure explained in the previous section.

Whatever the radius value is, the 5 cycles used for the identifi-
cation are well described. The averaging radius controls the rat-
cheting effect. The larger R is, the more pronounced ratcheting is.
Indeed, when R is small, the macroscopic stress R

�
becomes close

to the local stress at the notch tip and the correction term C
�

: E
�

p

does not play a significant role. Errors between the new correction
method results and FE simulations have been plotted as a function
of the averaging radius in Fig. 13. The discrepancy between the
estimated curve yMC and the reference curve yEF is defined by:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i

yMC
i � yEF

i

� �2

vuut ð15Þ

where N denotes the number of points of the curves. Based on these
pictures, the optimal radius value for R is 1.2. The corresponding
value for localization tensors are: B22 = 1.33, B33 = 0, B23 = 0.2,
C22=E = 0.74, C33=E = 1.04, C23=E = 1.23 where E is the Young modu-
lus. As explained in Section 5.1, B

�
plays the role of a stress concen-

tration factor. This role is confirmed by the value of B22 obtained
here, which is very close to the value Kt = 1.32 characterizing the
specimen. This optimal radius will be used on the same specimen
in Section 5.5, with other loading conditions.



Fig. 12. Parametric study on the averaging radius parameter R of the new correction method for the Kt ¼ 1:32 AM1 specimen under 600 MPa repeated fatigue and 400 MPa
creep at 950 �C.
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5.4. Application of the correction method on AM1 Kt ¼ 2 specimens

The same procedure has been applied to the Kt = 2 specimen
made in AM1 at 950 �C. The calibration loading conditions are:

� 5 Hz repeated fatigue with rnom
max = 600 MPa;

� 400 MPa creep.

Errors are plotted in Fig. 14 and lead to an optimal averaging
radius ranging from 0.5 to 0.6. These values for R are confirmed
by comparisons with FE reference simulations presented in
Fig. 15. The correction method is better with R = 0.6 for the creep
condition and with R = 0.5 for the fatigue condition. The calibration
should be made for R = 0.55 to get a better compromise.
5.5. Validation on the Kt = 1.32 AM1 specimen

As explained in Section 5.2, the correction method can
be directly applied on the same geometry for other loading



(a) Differences in strains for the 
600 MPa fatigue loading

(b) Differences in stresses (in MPa) for the
600 MPa fatigue loading

(c) Differences in strains for the 
400 MPa creep loading

(d) Differences in stresses (in MPa) for the
400MPa creep loading

Fig. 13. Errors between the new correction method results and FE simulation as a function of averaging radius in the identification of the parameters on Kt = 1.32 AM1
specimen.

(a) Differences in strains for the
600 MPa fatigue loading

(b) Differences in stresses (in MPa) for the
600 MPa fatigue loading

(c) Differences in strains for the
400 MPa creep loading

(d) Differences in stresses (in MPa) for the
400 MPa creep loading

Fig. 14. Errors between the new correction method results and FE simulation as a function of averaging radius in the identification of the parameters on Kt = 2 AM1 specimen.
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Fig. 15. Parametric study on the R parameter of the new correction method for the Kt ¼ 2 AM1 specimen under 600 MPa repeated fatigue (top) and 400 MPa creep at 950 �C
(bottom).
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conditions. Three cases are presented in Fig. 16, all for the Kt = 1.32
geometry:

� 400 MPa 5 Hz repeated fatigue;
� 200 MPa creep;
� 200 MPa fatigue with 90 s holding time.

Correction method simulations are compared to full elastic-
viscoplastic FE simulations. A very good agreement is found for
all cases.



(a) 5 Hz 400 MPa repeated fatigue, axial components (b) 5 Hz 400 MPa repeated fatigue, hoop components

(c) 200 MPa creep, axial components (d) 200 MPa creep, hoop components

(e) 200 MPa repeated fatigue with 90s holding time, axial
components

(f) 200 MPa repeated fatigue with 90s holding time, hoop
components

Fig. 16. Application of the new correction method on Kt = 1.32 AM1 specimen under 400 MPa 5 Hz repeated fatigue, 200 MPa creep and 200 MPa repeated fatigue with 90 s
holding time at 950 �C. The new correction method results are plotted in blue whereas the FE elasto-viscoplastic simulations are plotted in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Application on a multi-perforated tube specimen

Finally, Herbland’s methods and the new correction method
have been validated and compared on a structural specimen made
in AM1. It consists in a tubular multi-perforated piece representa-
tive of turbine blades geometries. It is 14 mm in diameter and
1 mm thin. Nine inclined holes whose diameter is 0.5 mm have
been perforated with an angle of 60� from the tube axis.

The specimen is submitted to axial loading conditions along the
longitudinal direction (x1 axis) at one end, the other displacement
degrees of freedom remaining equal to zero at the other end. Given
the geometry and loading conditions, only one half of the specimen
has been meshed using linear tetrahedron elements as presented
in Fig. 17. Both the inelastic analyses made for the calibration (over
one or a few cycles) and the ones for the complete reference solu-
tion (thousands of cycles) are performed with the same FE model
and the same constitutive equations.

There is an interaction between holes, due to the geometrical
configuration, and the small distance between them. Consequently
a full elasto-viscoplastic simulation over one cycle must be used to
identify the critical point. The chosen critical element is located on
the outer surface of the central hole, as seen in Fig. 18.

The difficulty of this case comes from the fact that Gauss Points
in the critical element are not exactly located at a free surface,
resulting in a complex stress state. This effect is emphasized by
the chosen element size, that is coarse to preserve FE analysis trac-
tability. To simplify the calibration procedure of the correction
methods, the stress and strain tensor at the critical Gauss Point



Fig. 17. Mesh of the multi-perforated specimen made in AM1. The longitudinal axis
is denoted x1; x2 being vertical.

Fig. 18. Critical element chosen for the application of notch correction methods.
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have been projected in a plane stress surface element. The corre-
sponding stress tensor writes:

r
�
¼

r11 r12

r12 r22

� �
ð16Þ
(a) 11 components

(c) 12

Fig. 19. Simulation of 8000 cycles with the linear correction method on the AM1 mu
simulation.
For the sake of simplicity, the shape of the localization tensor in
the linear correction method has been identified from the shape of
the stiffness tensor and only 9 components, namely
C11; C12; C13; C22; C23; C33; C44; C55; C66 have been considered
instead of all the 21 components. In the local plane stress element,
this tensor can finally be reduced to four components:
C11; C22; C12; C33.

The linear correction method and the new method have been
applied on a repeated fatigue test at 5 Hz under rnom

max = 400 MPa
at 1000 �C. Simulations of creep under 200 MPa have also been
used to calibrate the new method. The linear method identification
results in the following value of the localization tensor:
C11 = 1.22 � 105 MPa, C22 = 4.68 � 104 MPa, C33 = 1.53 � 104 MPa,
C12 = 0. Fig. 19 presents the results obtained with Herbland’s linear
correction method, compared to the reference calculation made
over 8000 cycles. As for the notched specimens, the stresses at sta-
bilization are correctly predicted but the ratcheting effect on defor-
mation is not accounted for.

Regarding the new correction method, we have chosen to
neglect the r12 components, so that only three components are left
for each tensor (B11; B22 and B12). To do so, the principal stress
frame is used, unlike what has been done for the linear method.
The calibration procedure explained in Section 5.2 has been
applied. Errors in strains and stresses for the creep loading are pre-
sented in Fig. 20. Together with the fatigue simulation, it leads to
an averaging radius R = 0.3mm which is a compromise between
fatigue and creep results. Figs. 21 and 22 show the results of the
correction method on 8000 simulated cycles and creep loading
respectively. The assumption on the 12 component of the stress
tensor is validated for both creep and fatigue loadings. Rachetting
effect is slightly over-estimated in the case of fatigue, but the stress
amplitude and mean values are in good agreement with FE results
(b) 22 components

components

lti-perforated specimen under 400 MPa fatigue loading and comparison with FE



(a) Differences in strains (b) Differences in stresses (in MPa)

Fig. 20. Errors in stresses and strains between the FE simulation and notch correction method identification on the multi-perforated specimen under 200 MPa creep loading
at 1000 �C.

(a) 11 components in the principal stresses frame (b) 22 components in the principal stresses frame

(c) 12 components in the principal stresses frame

Fig. 21. Simulation of 8000 cycles with the new correction method on the AM1 multi-perforated specimen under 400 MPa fatigue loading at 1000 �C and comparison with FE
simulation.
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at the critical point. Concerning creep, the main component r22 is
quite precisely estimated by the method but the r11 component is
over-estimated. Both e11 and e22 components are too low compared
to the reference elastic-viscoplastic FE simulation.
7. Concluding remarks

The present paper describes innovative methods for a fast esti-
mation of cyclic elastic-viscoplastic stress and strain states at
notches based on tools used in the homogenization community.
They consist in considering a notch or any other singularity in a
structure as an elastic-viscoplastic inclusion in a matrix. Three
methods have been successively considered and analyzed:

� Herbland’s linear correction method, inspired from Kröner’s
approach for an inclusion in an elastic matrix;
� Herbland’s non-linear correction method which is an extension

of the previous one and takes into account plastic accomodation
thanks to a b-rule type correction;



(a) 11 components in the principal stress frame (b) 22 components in the principal stress frame

(c) 12 components in the principal stress frame

Fig. 22. Application of the new correction method on the AM1 multi-perforated specimen under a 200 MPa creep loading at 1000 �C and comparison with the reference FE
simulation.

3040 M. Chouman et al. / International Journal of Solids and Structures 51 (2014) 3025–3041
� a new correction method which uses the TFA framework. It has
been shown to be also an extension of the linear method that
account for non-confined plasticity.

The following conclusions can be drawn:

� Herbland’s linear correction method should be restricted to
confined-plastic zone conditions for which it gives satisfactory
results.
� The ratcheting phenomenon can be captured with Herbland’s

non-linear correction method, provided there is no generalized
creep in the structure.
� The new correction method gives good results in all tested

cases. It gives precise estimation of stress and strain states at
notch for Kt = 1.32 and Kt = 2 specimens under fatigue and
creep. The calibration procedure requires more post treatment
simulations since a parametric study is needed to calibrate
the averaging radius.
� Correction methods have been validated on a complex multiax-

ial test case where they give good estimation of stress and strain
states at the critical point.

Future works on this topic will focus on the following points:

� There is work still to be done to justify homogenization-type
approaches in the notch correction context as emphasized in
Herbland et al. (submitted for publication). In particular, the
physical meaning of the r

�
M quantities in Herbland’s methods

or R
�

in the new one have to be elucidated.
� Links between geometries and materials in one hand and notch
correction parameters in the other hand have to be studied. The
identification procedures could then be simplified or even sup-
pressed. In the particular case of the new correction method,
links between the averaging radius R and the size of the plastic
zone should be interpreted. We have also emphasized that B

�
plays the role of a stress concentration factor and that B22 value
is very close to the Kt of the considered notch. Finally, spherical
averaging volume have been proposed but other shapes could
be considered in order to try to increase precision of
estimations.
� The methods have to be written in an anisothermal formalism

in order to simulate complex loading conditions. The principle
that we propose is to normalize C tensor by the Young modulus
as a function of temperature EðTÞ. Accordingly, the localization
tensors could be taken constant in temperature. This point has
to be validated.
� The validation of the new correction method should be followed

up, in particular for non-proportional loadings. Herbland have
reported good predictions with his methods in that case. There
is no reason that the new correction method should fail since it
uses a similar formalism.
� Finally, those methods are most of the time used in a lifetime

prediction context. Estimations of the impact of correction
methods errors on the calculated lifetime compared to full FE
simulations should be studied. Obviously, results will depend
on the damage law formalism considered. Indeed, if damage
evolution is stress dependent, such as in Onera model
(Chaboche and Lesne, 1988), the goal of the correction method
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should be to estimate precisely the evolution of the stress
amplitude and mean stress. However, strain type or mixed
damage model formulations will require precise description of
ratcheting. Accordingly, we think that the new correction
method will be a powerful tool in that context.
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