
HAL Id: hal-01024987
https://minesparis-psl.hal.science/hal-01024987

Submitted on 17 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A critical comparison of pansharpening algorithms
Gemine Vivone, Luciano Alparone, Jocelyn Chanussot, Mauro Dalla Mura,

Andrea Garzelli, Giorgio Licciardi, R. Restaino, Lucien Wald

To cite this version:
Gemine Vivone, Luciano Alparone, Jocelyn Chanussot, Mauro Dalla Mura, Andrea Garzelli, et al.. A
critical comparison of pansharpening algorithms. IGARSS 2014 - IEEE International Geoscience and
Remote Sensing Symposium, Jul 2014, Quebec, Canada. pp.191-194. �hal-01024987�

https://minesparis-psl.hal.science/hal-01024987
https://hal.archives-ouvertes.fr


A CRITICAL COMPARISON OF PANSHARPENING ALGORITHMS

G. Vivone1, L. Alparone2, J. Chanussot3,4, M. Dalla Mura3,

A. Garzelli5, G. Licciardi 3, R. Restaino1, L. Wald6

1Department of Information Engineering, Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Italy.
2Department of Information Engineering (DINFO), University of Florence, Italy.

3GIPSA-Lab, Grenoble Institute of Technology, France.
4Faculty of Electrical and Computer Engineering, University of Iceland.

5Department of Information Engineering and Mathematical Sciences, University of Siena, Italy.
6Center Observation, Impacts, Energy, MINES ParisTech, France.

ABSTRACT

In this paper state-of-the-art and advanced methods for mul-

tispectral pansharpening are reviewed and evaluated on two

very high resolution datasets acquired by IKONOS-2 (four

bands) and WorldView-2 (eight bands). The experimental

analysis allows us to highlight the performances of the two

main pansharpening approaches (i.e. component substitution

and multiresolution analysis).

Index Terms— Fusion, Pansharpening, Remote Sensing.

1. INTRODUCTION

Physical limits of optical imaging devices impose a tradeoff

between the achievable spatial and spectral resolutions. This

entails that the PANchromatic (PAN) image has no spectral

diversity, while a MultiSpectral (MS) image exhibits a lower

spatial resolution than the PAN and hence it contains less spa-

tial details. Pansharpening is a data fusion process, whose

goal is to enhance the spatial resolution of the MS data by

including the spatial details contained in the PAN image.

Most pansharpening methods proposed in the literature

follow a general protocol, which is composed by two oper-

ations: 1) extract from the PAN image the high-resolution ge-

ometrical details of the scene that are not present in the MS

image; 2) incorporate such spatial information into the low-

resolution MS bands (interpolated to meet the spatial scale of

the PAN image) by properly modeling the relationships be-

tween the MS bands and the PAN image. This paper aims at

providing a critical comparison among classical pansharpen-

ing approaches applied to two different datasets. The credited

Wald protocol is used for the assessment procedure and some

useful guidelines for the comparison are given.

2. A CRITICAL REVIEW OF FUSION METHODS

Most recent studies [1] divide the principal image fusion

methods into two main classes, according to the way the

details are extracted from the PAN image (see Fig. 1). Com-

ponent Substitution (CS) techniques extract the spatial details

by a pixelwise difference between the PAN image and a

nonzero-mean component obtained from a spectral trans-

formation of the MS bands, without any spatial filtering of

the former. They are referred to as CS methods, since the

described process is equivalent to the substitution of such a

component with the PAN image followed by reverse trans-

formation to produce the sharpened MS bands [2]. The

techniques belonging to the MRA class employ linear space-

invariant digital filtering of the PAN image in order to extract

the spatial details that will be added to the MS bands [3]. In

both cases the injection of spatial details into the interpolated

MS bands may be weighed by gains different for each band

and possibly varying at each pixel.

3. EXPERIMENTAL RESULTS

In this paper we follow the validation protocol for data fusion

assessment at reduced scale proposed in [4]. This procedure

uses the available MS image as the reference for validating

the pansharpening algorithms, which are performed on a spa-

tially degraded version of the original datasets. Despite the

questionable assumption of scale invariance, this procedure

allows the use of several reliable quality indexes. More in

detail we report the values of a classical spectral quality in-

dex, the Spectral Angle Mapper (SAM), and two indexes for

vector valued images, accounting for both spectral and spatial

quality: the Q2n [5] and ERGAS [6]. The optimal values are

0 for the SAM and ERGAS and 1 for Q2n.

Two datasets of 300 × 300 pixels have been employed.

The first (China dataset) was acquired over the Sichuan re-

gion, China, by IKONOS. This sensor captures four bands
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Fig. 1: Flowcharts of the two main pansharpening approaches: (a): based on spectral combination of bands, without filtering

the Pan image (component/projection substitution); (b): based on filtering the Pan image (MultiResolution Analysis).

Table 1: Quantitative results: on the left China dataset, on the right Rome dataset.

China Q4 SAM(◦) ERGAS

Reference 1 0 0

EXP 0.7398 4.4263 3.8471

PCA 0.8578 3.5433 2.6715
IHS 0.7308 4.9892 3.5766
Brovey 0.7314 4.4263 3.1722
BDSD 0.8869 2.9123 2.4124
GS 0.8500 3.5304 2.7982
GSA 0.8756 2.9889 2.5521
PRACS 0.8793 3.1514 2.5745

HPF 0.8704 3.2533 2.6156
SFIM 0.8730 3.2031 2.5778
Indusion 0.8043 3.9059 3.2846
ATWT 0.8791 3.0786 2.5178
AWLP 0.8830 2.9424 2.4073
ATWT-M3 0.8198 4.3388 3.3357
MTF-GLP 0.8787 3.0387 2.5106
MTF-GLP-HPM 0.8819 3.0041 2.4624
MTF-GLP-CBD 0.8780 2.9673 2.5067

Rome Q8 SAM(◦) ERGAS

Reference 1 0 0

EXP 0.7248 4.9263 5.4171

PCA 0.8169 5.2153 4.4128
IHS 0.7439 5.1455 4.1691
Brovey 0.7487 4.9263 4.1407
BDSD 0.8762 4.8717 3.8619
GS 0.8335 4.8592 4.0144
GSA 0.8907 4.1415 3.4062
PRACS 0.8878 4.6678 3.6768

HPF 0.8889 4.2813 3.5459
SFIM 0.8950 4.0874 3.3979
Indusion 0.8030 5.1415 4.8864
ATWT 0.9013 4.1117 3.3237
AWLP 0.9011 4.5146 3.3572
ATWT-M3 0.8379 5.1042 4.3684
MTF-GLP 0.9016 4.0957 3.2982
MTF-GLP-HPM 0.9092 3.8871 3.1005
MTF-GLP-CBD 0.8940 4.1125 3.3479

in the visible and near infrared spectrum with spatial res-

olution of 4 × 4 meters and a panchromatic channel with

spatial resolution of 1 × 1 m. The second dataset, acquired

over Rome, Italy and named Rome dataset, was collected by

the WorldView-2 sensor and is composed of a panchromatic

channel and eight MS bands, with resolution of 0.5 m and 2

m, respectively. Thus, in both the cases the resolution ratio

between PAN and MS is 4.

We compared several pansharpening methods. Namely,

the Fast IHS (indicated as IHS) [7], Brovey Transform

(Brovey), Principal Component Analysis (PCA), Gram Schmidt

(GS), Gram Schmidt Adaptive (GSA) [2], Band-Dependent

Spatial-Detail (BDSD) [8] and Partial Replacement Adap-

tive CS (PRACS) [9] belonging to the CS class. Within

the MRA group we selected High Pass Filtering (HPF),

Box-Window High Pass Modulation, also called Smoothing

Filter-based Intensity Modulation (SFIM) [10], Generalized

Laplacian Pyramid [11] with Modulation Transfer Function

(MTF) matched filter (MTF-GLP) [12], Generalized Lapla-

cian Pyramid with MTF-matched filter and Context-Based

Decision injection scheme (MTF-GLP-CBD) [13], Gaussian

MTF-matched filter [12] with HPM injection model (MTF-

GLP- HPM) [14, 15], Decimated Wavelet Transform using

additive injection model (Indusion) [16], Additive A Trous

Wavelet Transform (ATWT) [15], A Trous Wavelet Transform

using the Model 3 (ATWT-M3) [3] and Additive Wavelet Lu-

minance Proportional (AWLP) [17]. In the following, EXP

indicates the MS image interpolated at the PAN scale by

using a polynomial kernel with 23 coefficients [11].

The two classes of methods show complementary spec-

tral and spatial features, as can be noted from the quantita-

tive results reported in Tab. 1 and from a visual inspection

of details of the two datasets (see Figs. 2 and 3). CS ap-

proaches yield fused products with accurate spatial details,

but often showing spectral distortions, whereas MRA meth-

ods typically preserve the spectral content better, but may

produce poorer results in terms of spatial enhancement. The

best solutions given by are MRA methods designed for im-



proving the spatial quality (e.g., based on MTF-like filtering)

and CS methods in which the combination of bands is aimed

at matching the spectral response of the PAN image, thereby

preserving the spectral information of the MS original in the

pansharpened product (e.g., GSA, BDSD, PRACS). Spectral

matching, however, becomes critical as the number of bands

increases, as shown by the superior performances achieved by

MRA on WorldView-2 data.

4. CONCLUSIONS

A comparison of several pansharpening methods on two very

high resolution datasets has been presented. The validation,

performed according to Wald’s protocol at reduced scale,

highlights the characteristics of the two main classes of meth-

ods, based on component substitution and multiresolution

analysis, respectively. Future developments shall include the

full-scale validation of fusion methods according to the QNR

protocol [18] and a more detailed discussion of results.
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Fig. 2: China Dataset: (a) Reference Image; (b) EXP; (c) PCA; (d) IHS; (e) Brovey; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j)

HPF; (k) SFIM; (l) Indusion; (m) ATWT; (n) AWLP; (o) ATWT-M3; (p) MTF-GLP; (q) MTF-GLP-HPM; (r) MTF-GLP-CBD.
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Fig. 3: Rome Dataset: (a) Reference Image; (b) EXP; (c) PCA; (d) IHS; (e) Brovey; (f) BDSD; (g) GS; (h) GSA; (i) PRACS; (j)

HPF; (k) SFIM; (l) Indusion; (m) ATWT; (n) AWLP; (o) ATWT-M3; (p) MTF-GLP; (q) MTF-GLP-HPM; (r) MTF-GLP-CBD.


