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In this paper, the results of a 2D full field grain growth model are compared with several 

2D mean field grain growth models (Burke and Turbull model and Hillert/Abbruzzese model), 

using simplified assumptions of isotropic grain boundary energy and mobility, and under the 

absence of precipitates. The full field model is based on a finite element formulation 

combined with a level set framework, used to describe the granular structure, and model grain 

boundary motion through a diffusion formulation. The initial digital microstructures are 

created using a coupled "Voronoï-Laguerre/dense sphere packing" algorithm, which allows to 

obey different types of initial grain size distributions, in the considered 2D context. The 

results show that only the Hillert/Abbruzzese model accurately describes grain growth 

kinetics for all considered grain size distributions. The validity of the Burke and Turnbull 

model is, on the contrary, restricted to specific distributions. 

 

Keywords:  Grain growth, Full field model, Level set, Finite Element, Mean field model, 

Grain size distribution 

1. Introduction  
 

Mechanical and functional properties of metals are strongly related to their 

microstructures, which are themselves inherited from thermal and mechanical processing. 

Grain growth phenomena in polycrystalline metals occur during and after full recrystallization, 

and have the effect of increasing the average grain size at the expense of smaller ones that will 

tend to disappear. Even if this phenomenon of capillarity is always present, it is generally 

neglected during primary recrystallization comparatively to the predominant driving force 

induced by the inhomogeneous spatial distribution of dislocations stored energies. Grain 

growth becomes however of primary importance when dealing with long annealing treatments, 

where capillarity effects become predominant. It then largely dictates the final grain size of 

the material. Over the last decades, several mesoscale numerical models have been developed 

to simulate the corresponding microstructure evolution [1]. 

Probabilistic methods associated with a voxel-based grains structure description such as 

of Monte Carlo (MC) [2][3] and cellular automaton (CA) [4] are widely used. Several 

workers have preferred to define microstructures in terms of vertices; the interface motion is 

then imposed by the displacement of a set of points [5]. Another approach found in the 

literature is the phase-field method, which offers the advantage of avoiding the difficult 

problem of tracking interfaces [6]. Finally, grain growth can also be modelled using a level set 

description of interfaces in the context of uniform grids with a finite-difference formulation 

[7][8] or in a finite element (FE) context [9][10], which is the method chosen in this work. 

First level-set simulations concerning recrystallization in polycrystalline microstructures are 

described in [11][12][13]. 

The main purpose of the paper is to test, in 2D, two mean field grain growth models 

existing in the literature – the one proposed by Burke and Turnbull [14], and the well-known 

Hillert/Abbruzzese approach [15][16][17][18] – under simplified conditions of isotropic grain 
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boundary energy and mobility, constant temperature, and absence of precipitates. The test is 

performed by comparison with the results obtained with a full field modelling method, 

starting from different initial grain size distributions. Grain growth models were developed 

based on theoretical assumptions which are not easily verified experimentally. The idea is 

therefore to use the full field simulations results in order to verify if and when the mean field 

model predictions are acceptable. If the latter are sufficiently accurate, it will also mean that 

full field models are not required in such simplified conditions, unless detailed topological 

information is needed. 

In [19], R.D. Kamachali and I. Steinbach present a study with similar objectives, using 

a phase field framework combined with a finite-difference modelling technique. Both 

statistical and topological aspects of ideal grain growth, using the results of 3D simulations, 

are discussed. It is shown that, despite a few discrepancies with the mean field theories (Burke 

and Turnbull model, and Hillert model) the parabolic kinetics of grain growth remains valid 

during the entire process. The simulation reaches a steady state and the grain size distribution 

in this steady state agrees with the Hillert distribution [15]. It is also shown that the calculated 

volumetric growth rate compares well with the mean field assumptions. However, the paper 

analyzes only one initial grain size distribution, putting aside the influence of the distribution 

on the grain growth kinetics. In this paper, the influence of the initial grain size distribution, 

for equiaxed microstructures, is discussed. Thanks to a coupled “Voronoï-Laguerre/dense 

sphere packing” (VLDSP) algorithm [20][21], 2D imposed initial grain size distributions can 

be introduced accurately in the generated digital microstructures, even for a reasonable 

number of grains (less than 10000). Microstructures can be generated in 3D as well, leading 

however to unreasonable numbers of grains (in terms of computing cost) to match accurately 

a given grain size distribution. This remark explains why discussions addressed in the 

document are restricted to 2D configurations. 

The paper is organized as follows. The following section explains how to generate the 

initial digital microstructures and immerse them in finite element meshes. It then recalls the 

level set framework used to describe and evolve the grain boundary network. In section 3, full 

field simulations are analyzed, and compared in details with the two investigated grain growth 

models. 

2. Digital microstructures and FE immersion 
 

Digital microstructures are often generated using Voronoï cells [22][12]. Despite its 

widespread use, this classical method only allows to impose the mean grain size, and not the 

grain size distribution. Initial microstructures are therefore generated in this work with a 

VLDSP algorithm [20][21]. Seven different grain size distributions (Table 1) are studied in 

order to evaluate their effect on grain growth kinetics.  

 

 

Mean 

Radius - μ 

(µm) 

Standard 

Deviation - 

σ (µm) 

σ/ μ 

Initial 

number of 

grains 

Domain 

Size 

(mm) 

L2 Error 

(%) 

Log1 61.7 7.2 0.12 9728 11 x 11 2.9 

Log2 63.7 14.1 0.22 10517 12 x 12 7.1 

Log3 67.4 23.5 0.35 10464 13 x 13 2.0 

Log4 71.4 31.6 0.44 9999 14 x 14 1.8 

Log5 75.3 38.4 0.51 8583 14 x 14 4.9 

304L 69.0 31 0.45 9211 13 x 13 5.3 

Bimodal 62.8 24.3 0.37 9933 12 x 12 8.3 

Table 1: Features of the seven considered initial grain size distributions. 
 



The first five distributions are “synthetic” log normal, meaning that they are not based 

on real experimental data. In these cases, the mean grain size is more or less the same, and the 

standard deviation ranges from 7 to 40 µm. The 304L distribution was generated based on 2D 

experimental 304L steel data of a fully annealed sample obtained from optical microscope 

image analysis. It is well approximated by a log-normal law, and can therefore be compared 

to the first five distributions. Finally, the last distribution in Table 1 corresponds to a 

“synthetic” bimodal distribution. The initial number of grains is around 10000 for all 

distributions, which ensures a good statistics during the simulation and a reasonable numerical 

cost of the FE simulations (few hours in 32 CPU simulations). 

Figure 1 (top) describes a comparison between the targeted microstructures and those 

built numerically whereas Figure 1 (bottom) illustrates the voxelized digital microstructure 

obtained for the bimodal case. Table 1 gives in parallel the L2 errors based on the Equation 1 

below, between the theoretical and the obtained numerical distributions. 

 

  
(a) (b) 

 
Figure 1: (top) Numerical initial grain size distributions compared with the targeted ones: (a) Bimodal and 304L 

distribution; (b) Log1, Log2, Log3, Log4 and Log5 distributions. In the horizontal axis the radius is normalized 

by the mean grain size <R>. (bottom) Voxelized digital microstructure obtained for the bimodal distribution 

made of  9933 Voronoï-Laguerre cells. 



 

       
         

                          
 

             
    (1) 

 

L2 errors increase with the complexity of the distribution and the error is more 

important for grains families with smaller grain size. In 2D, the Voronoï-Laguerre method 

consists in using a distribution of non-intersecting circular particles (generated with the dense 

sphere packing part of our VLDSP algorithm) that serves as a basis for constructing the grains 

of the polycrystal (the Voronoï-Laguerre cells). Local heterogeneities of the density of the 

built sphere packing, which are more likely near the smaller circles, involve local 

decorrelations between the imposed and the obtained cells radii. This explains the 

concentration of the errors in the families with smaller grain size. However the reported errors 

are clearly very good in comparison to the state of art [20]. It is also important to clarify that 

the L2 errors discussed here really correspond to a comparison between the imposed radius 

distribution and the equivalent radius distribution of the generated Voronoï-Laguerre cells. It 

is not a comparison with the generated sphere packing radius distribution, otherwise the error 

would always be null in the context of our LVDSP algorithm. 

In order to compute the evolution of the numerical microstructures, these are discretized 

into a finite element mesh. Different methods can be found in the literature. The most widely 

used method consists in generating a surface mesh from the sides of the cell, and then 

generating the volume mesh starting from the surface mesh [23]. This method is relevant 

when modeling polycrystals deformation. However, when modeling recrystallization and 

grain growth, grain boundaries keep moving, grains disappear, others nucleate, etc. The 

complexity of the remeshing operations associated with these topological evolutions rules out 

the above meshing method. Ultimately, finite element methods emphasizing an explicit 

description of grains boundaries, such as the Vertex methods [5], always meet significant 

problems of mesh management, especially in 3D. Other approaches therefore favor implicit 

descriptions of grain boundaries, such as that introduced in the phase field [24][25] or level 

set methods [26][11][13][9]. 

In this work, a level set framework  is used to implicitly describe the microstructure. A 

level-set function , defined over a domain Ω, is called distance function of an interface Γ of 

a sub-domain ΩS if, at any point x of Ω, it corresponds to the signed distance from Γ. In turn, 

the interface Γ is given by the zero level of the function : 

 

  (2) 

 

with the characteristic function of  ΩS, equal to one in ΩS, and 0 elsewhere. According to 

Equation 2,  inside the domain surrounded by the interface Γ, and  outside this 

domain. Usually, when dealing with a polycrystalline aggregate, a distinct level set function is 

used for each grain: , with NG the total number of grains in the aggregate. In 

[20], the authors explain in details how the level-set function of each grain can be evaluated 

when the polycrystal is inserted into a finite element mesh. In this framework, the norm of the 

gradient of each initial distance function is equal to one . 

The use of a single level set function for each grain may lead to unreasonable 

computation time, when dealing with statistical numbers of grains as done here. Therefore, a 

graph coloration technique is used for limiting the number of level set functions needed to 
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describe the microstructure [20][27]. The objective is to use a single level set function to 

describe several non-neighbouring grains, instead of just one. This brings the total number NG 

of level set functions to a reduced number NC of “container” level set functions. Figure 2 

illustrates a 2D 2000-grains polycrystal described using only five level set functions. In this 

Figure, each colour represents one container level set function. 

 

 
Figure 2: A 2000-grain 2D equiaxed polycrystal described using five level set functions, as shown by the 5 

different colors. 

 

The above technique however presents the limitation that when two grains belonging to 

the same container level set function start touching each other, they coalesce. In [7], a method 

is proposed to avoid this problem: when two different grains belonging to the same container 

level set function get closer than a critical distance, one of the two grains is removed from the 

container level set function, and placed into another one. However, if the proposed 

methodology is applicable in the context of regular grids where the connected components 

(the individual grains) of each container level set function can easily be extracted, the problem 

becomes much more complex when dealing with non-uniform FE meshes. Therefore, in this 

work, it was chosen to delay the onset of grains coalescence by introducing a constraint in the 

graph coloration, such that only the 4
th

 nearest neighbour can belong to the same container 

level set function. The simulation is then stopped as soon as two grains begin to coalesce. 

With this approach, the 10000 grains microstructure can be fully described using only around 

30 container level set functions. 

As stated earlier, grain boundary mobility and energy are considered isotropic and 

uniform throughout the domain. Grain boundaries motion can be described by Equation 3 

[28][29]: 

 

            Δ                ,   (3), 

 

where the subcript   denotes now the set of the    container level-set functions, M is the grain 

boundary mobility,  the driving force per unit area and  the outward unit normal of the 

boundaries of the grains constituting the    container level-set function. Considering only 

grain growth, the driving force is defined by : 

 

if in


if



Δ                 ,   (4) 

 

where  is the grain boundary energy, and    the mean curvature of the grains constituting    

defined by: 

 

                                .   (5) 

 

If container level set functions remain distance functions (i.e. ) near the grain 

interfaces, the mean curvature can be simplified from (5) as the opposite of the Laplacian of 

the corresponding container level set function [9]. The grain boundary convection problem 

with the velocity field defined in Equation 3 is then simplified and becomes a simple diffusion 

problem: 
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The system (6) is solved for the NC container level set functions present in the domain Ω. 

It describes a pure grain growth problem if and only if the metric property ( ) of each 

container level set function is enforced at all time steps near the zero isovalues. This is done 

by using a re-initialization treatment [30] at each time step and for each container level set 

function. 

As the diffusion of the container level set function can generate some kinematic 

incompatibilities at multiple junctions [26], leading to vacuum or overlapping regions, a 

multiple junction treatment is performed to avoid these phenomena. This multiple junction 

treatment is detailed in [9]. 

Using the numerical tools presented above, the following grain growth algorithm is 

proposed and is solved for each active container level set function: 

 

GG1 – Resolution of Equation 6; 

GG2 – Numerical treatment of the kinematic incompatibilities; 

GG3 – Re-initialization procedure; 

GG4 – Deactivation if it is negative over the whole domain, i.e. when all grains 

of the container level-set have disappeared. 

 

This global strategy was tested and validated for academic test cases in [9].  

3. Results and discussion 
 

For all simulations presented here and referring to the 304L steel properties, the time 

step is 120 seconds, the temperature is 1050
o
C, with M = 1.37 10

-12
 m

4
/(J.s) [31], and γ = 0.6 

J/m
2
. The finite element mesh is isotropic unstructured with mesh size equal to 0.01 mm over 

a square domain of 13 mm x 13 mm, leading to around 8,000,000 mesh elements. Figure 3 

illustrates the initial and final grain structures of 304L steel considering a 5 hours thermal 

treatment at 1050°C. 
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(a) (b) 

  
(c) (d) 

Figure 3: (a) Initial 304L microstructure generated with the Voronoï-Laguerre method, as shown in Figure 1b, 

(b) zoom of the initial 304L microstructure, (c) simulated grain growth after 5h at 1050°C, (d) zoom of simulated 

grain growth. 

 

All studied distributions – except for the Bimodal (which will be discussed later) – 

reach at some point a quasi-steady state i.e. converge toward a quasi-constant distribution 

until the number of grains becomes insufficient to consider the microstructure as 

representative. The final grain size distributions calculated from the six initial distributions are 

compared with the Hillert [15], the Rayleigh and the Weibull distributions [32], [33], [34] in 

Figure 4. The Rayleigh distribution was originally derived in the 2D grain growth context by 

Louat [35] and corrected by Mullins in [36]. The Weibull distribution function has two free 

parameters, α and β. In [33], based on numerical simulation results, the authors found that the 

quasi-steady state grain size distribution is best represented using the Weibull distribution 

with α = 1/[Γ(1+1/β)], where Γ is the gamma function, and β = 2.5. Table 2 gives the 

expressions of these theoretical stationary distributions in 2D. The Hillert distribution has a 

non-analytic cutoff at  = 2, while the others distributions present an infinite tail. 
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 Table 2: Hillert, Rayleigh and Weibull distribution equations. 

 

 

 
Figure 4: Quasi-steady state and comparison with Hillert, Rayleigh and Weibull predictions.  

 

In Figure 4, the obtained numerical quasi-steady state distributions vary between the 

Rayleigh and the Weibull distributions. As a conclusion, for the simulations presented in this 

work, the quasi-steady state grain size distribution is well represented using the Weibull 

distribution with a β value ranging between 2 and 2.5. On the other hand, the Hillert 

distribution does not agree with the numerical results. According to Mullins [36], the reason for 

the discrepancy between the Hillert theoretical distribution and the experimental and/or numerical 

results comes from topological reasons: in 2D, the Hillert distribution is reached only if the 

average number of sides relates linearly to the grain size. The relationship between the number of 

sides and the grain size in the results presented in Figure 4 should therefore be the subject of 

future work. 
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Burke and Turnbull model [10] 

 

This model is based on three main hypotheses: 

 

 The driving force for grain growth is proportional to the grain boundary mean 

curvature approximated as , where R is the equivalent radius. So the grain 

boundary migrates toward the centre of its curvature, which in turns reduces the 

interfacial area as well as its associated energy; 

 The mobility and grain boundary energy are isotropic and uniform. As a 

consequence the equilibrium angles in the triple junctions are equal to 120
o
; 

 The heat treatment temperature is constant. 

 

These hypotheses lead to the following grain growth kinetics equation in 2D:   

 

, (10)  

 

where
 
(resp.  ) corresponds to the average grain radius (resp. at t = 0s). With this 

equation, neither the topological nor the neighbouring effects are taken into account; the grain 

growth kinetics is characterized only by the average grain size.  

To check the consistency between the full field simulation results and this model, the 

curves    )log(log 2

0

2 tfRR 
 
have been plotted in Figure 5 for each initial distribution 

described in Table 1, except for the Bimodal distribution, which is treated separately. For 

these distributions, Equation 9 is generalized according to: 

 

 (11).  

 

From Equation 11, the validity of the Burke and Turnbull model can be verified if the slope n 

of    )log(log 2

0

2 tfRR  , is equal to 1, and if the fitted curve leads to an α value around 0.5. 

Computed curves and their linear fits are given in Figure 5 and lead to the α and n parameters 

summarized in Table 3. 

 

Distribution Slope (n) α 
Number of 

grains in the end 

Log1 2.48 1.21 10
-7

 4078 

Log2 1.59 1.08 10
-3

 3747 

Log3 1.19 0.08 2889 

Log4 1.02 0.38 2782 

Log5 0.89 2.3 2743 

304L 1.04 0.42 3271 

Table 3: Burke and Turnbull model analysis by comparison with full field simulations results, considering six 

different initial grain size distributions (described in Table 1). 
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Figure 5:  Computed evolutions of grain structures starting with different initial grain size distributions, using 

the full field model. Linear approximations are added for comparison with the Burke and Turnbull model. 

 

As illustrated in Table 3 and Figure 5, n and α are highly dependent on the initial grain 

size distribution. Only the Log4 and 304L distributions lead to the values of n and α expected 

by the Burke and Turnbull model. Both distributions are log-normal with a value of

 (see Table 1). For the other distributions, it can be noticed in Figure 6 that n 

values decrease with the increase of , while α values increase with . These 

evolutions can be approximated by the following simple relationships: 

 

                                                (12) 

 

 
Figure 6:  Relationship between α and n fitted parameters and σ/μ of the initial grain size distributions (given in 

Table 1) 
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Thus for a log-normal distribution,  presents a power law dependence on  and n a 

logarithmic dependence. Equations 12 confirm that grain growth kinetics significantly 

depends on grain structure and neighbourhood effects. Using the numerical grain growth 

results we propose a correction of the Burke and Turnbull model. Once Equations 11 are 

experimentally verified, this corrected Burke and Turnbull model can be directly used when 

modelling grain growth phenomena. 

Figure 7 shows that the Bimodal kinetics can be divided into 2 linear parts – ‘A’ and 

‘B’. Evolution of the grain size distributions is also given at different times ‘a’ (t = 0s), ‘b’ (t 

= 4400s) and ‘c’ (t = 18000s). The slope change in the kinetics is seen to coincide with the 

quasi disappearance of the smallest grains population, i.e. with the switching from a bimodal 

distribution to a single peak distribution. 

 

 
Figure 7: (Top to botton and left to right) Burke and Turnbull model study for Bimodal distribution; grain size 

distribution at point a (t = 0 s), at point b (t = 4400 s), and at point c (t = 18000 s). 

 

It is therefore concluded that the Burke and Turnbull model is not valid for most of the 

investigated grain size distributions. The model only behaves well for lognormal grain size 

distributions, with a  value close to 0.45. 

 

Hillert/Abbruzzese model 
 

Hillert [15] and Abbruzzese [16][17][18] mean field models are derived from the von 

Neumann-Mullins theory [37][38]. Even though the proposed developments differ, both 

Hillert and Abbruzzese models finally propose the same grain growth Equation 13. Therefore, 

no distinction is done here between these two approaches. The central equation is:  
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where the grain structure is assumed to be described by a discrete set of grain families (each 

family being labeled with a subscript i),  corresponds to the average grain boundary 

velocity of the grain family i,  corresponds to the average grain size and   is a constant 

generally assumed to be 0.5 in 2D, and 1 in 3D, even though other values can be found in the 

literature. For example, in [19], Kamachali found a value of 1.25 in 3D, using a phase field 

framework combined with a finite-difference modelling technique. In [39], Rios and 

Glicksman calculated a 3D value of 0.81, using the average N-hedra method (ANH) [40].  

To check the consistency between the full field simulations and the Hillert/Abbruzzese 

model, calculated grain size distributions are compared. The mean field computations are 

based on Equation 12, implemented within a more general model described in [41] where 

     . Three different times (t = 2 min, t = 76 min and t = 150 min) were analysed, for all 

initial grain size distributions considered in Table 1. The corresponding L2 errors (see 

Equation 1) are given in Table 4. They are based on cumulative distribution functions, as 

illustrated in Figure 8 for the Bimodal and the 304L cases.  

 
 Error L2 (%) 

t = 2 min t = 76 min t = 150 min 

Log1 10.7 4.6 3.9 

Log2 4.5 4.6 6.3 

Log3 1.9 4.0 6.0 

Log4 1.6 4.5 7.6 

Log5 1.9 2.4 3.4 

304L 1.9 5.5 5.5 

Bimodal 4.9 6.8 10.3 

Table 4: L2 Errors between grain size distributions obtained with the full field model, and with the 

Hillert/Abbruzzese mean field model. Errors are computed based on the cumulative distribution functions (see 

Figure 8). 

 

 

  
(a) (b) 

Figure 8: Comparison between full field results and Hillert/Abbruzzese mean field results for (a) Bimodal, and 

(b) 304L distributions. Results are displayed using cumulative distribution functions. 

 

From Table 4, it can be concluded that the Hillert/Abbruzzese mean field model is 

overall in good agreement with the full field computations. L2 errors remain below 11% for 

all considered distributions, including the Bimodal one. A closer look at the distributions, e.g. 

those illustrated in Figure 8, shows that errors increase in the lowest grain sizes range. An 

hypothesis which explains this error is related to volume conservation issues discussed in 

[41]: volume changes of the shrinking grains are computed by redistributing the total volume 

changes of growing grains. Consequently, the rates of volume change for small grain sizes are 
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slightly modified from the values strictly deriving from Equation 12. Comparing the results 

obtained using the mean field model discussed in [41] and the direct use of Equation 12, it is 

observed that the effect of the volume conservation treatment is more important for a small 

number of representative grain families (around 50). In fact, when using 40 representative 

grain families (as the case in the comparisons presented in Figure 8), the direct use of 

Equation 12 gives better results than the model presented in [41]. However, for a statistical 

number of representative grains around 200, both methods lead to the same results, and the 

volume conservation treatment does not affect the results. A more complete study of the 

volume conservation issue will be the subject of future work.  

Full field computations give a β value (Equation 12) around 0.5 which is exactly the 

expected value. 

It is therefore concluded that, in the absence of second phase particles and under 

simplifying conditions of uniform and isotropic grain boundary energy and mobility, the 

Hillert/Abbruzzese mean field model describes grain growth with good accuracy, for a wide 

range of initial grain structures. 

4. Conclusions 
 

The validity of two grain growth models has been discussed based on full field model 

computations. The full field model is based on a finite element formulation combined with a 

level set framework. Seven initial grain size distributions have been considered in order to test 

the investigated grain growth models. Computed quasi-steady state distributions compare well 

with the Weibull distribution with a β value ranging between 2 and 2.5, and significantly 

differ from the Hillert distribution. 

The simplified Burke and Turnbull model is shown to be valid only for two grain size 

distributions. Both of them are lognormal and present a standard deviation value equal to 0.45 

times the average grain size. It can be noticed that this kind of distribution is classically 

observed in polycrystalline metals. On the other hand, the Hillert/Abbruzzes model is shown 

to be accurate for all tested distributions, even the Bimodal one. Consequently, if the 

development of full field models is justified for the description of grain growth in complex 

conditions, or for complex microstructures, their use appears disproportionate in the simple 

configurations investigated here, where the Hillert/Abbruzzese model behaves very well.  

It is important to highlight that all conclusions presented in this work are valid under 

simplified conditions: 2D grain growth, isotropic grain boundary mobility and energy and no 

dragging forces. In order to verify if these conclusions are still valid under more complex and 

realistic conditions (3D grain growth, anisotropic grain boundary mobility and energy, etc.), 

complementary numerical simulations and/or experimental tests must be performed.  

Future work will be dedicated to (i) investigating volume conservation issues in grain 

growth regime, (ii) analyzing the number of sides relationship with the grain size, particularly 

in the quasi-steady regime, (iii) extending the present study from 2D to 3D, (iv) considering 

anisotropic grain boundary mobility and energy, and (v) following the same strategy to 

compare static and dynamic recrystallization predictions of the mean field model presented in 

[41] with those obtained with the full field approach [12][13]. 
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