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Abstract

Void elimination through mechanical closure remains of prime importance for industrial applications. This
paper presents a critical review on a large number of studies dealing with void closure in hot metal forming
processes. In the literature, two main approaches were identified at two different scales: a macroscopic
approach at the process scale and a micro-analytical approach at the void scale. Using the macroscopic
approach, entire processes are generally considered with workpieces containing one or several voids, dealing
with hot forging, hot rolling and related processes. Qualitative results, as well as empirical criteria and
empirical prediction models are presented and discussed in this paper. Using the micro-analytical approach,
an isolated void in an infinite matrix is considered and its evolution is analytically predicted. Analytical
and semi-analytical prediction models involve a certain number of assumptions that are discussed in an
industrial context. This paper presents a comparison between seven prediction models, in terms of void
volume evolution under conditions that are typical for industrial applications. Stress triaxiality ratios
are over the range [—1.2,0] and several material behaviours are considered. Empirical models are hardly
generalizable, as they are based on particular case studies involving one given void state or one given process.
On the other hand, analytical and semi-analytical models suffer from strong assumptions. Consequently,
their use in an industrial context remains limited. The use of a meso-scale approach is shown as a potentially
powerful approach, as it may take advantage of both existing approaches from literature.

Keywords: void closure, hot metal forming, prediction model, criterion

1. Introduction

Industrial needs for large metal components for aerospace, transport, or energy applications constantly
increase. After casting, the presence of internal voids may be observed in large ingots or preforms. Such
internal defects must obviously be eliminated before delivery, as they may significantly affect the mechanical
properties of final products. Void elimination is classically performed during the first steps of elaboration,
involving hot metal processes (e.g. hot forging or hot rolling). This paper presents a review of various
criteria and models that may be used to predict void closure in an industrial context.

Void closure generally involves two stages: the mechanical closure of the void (reducing the void volume
to zero), and the final bonding of internal surfaces providing complete healing and thus a sound material [1].
The present work focuses on the first stage only: the mechanical closure.

Two different approaches are presented in literature regarding the mechanical closure phenomenon: an
explicit macroscopic approach and a micro-analytical approach. The explicit macroscopic approach consists
in studying a whole process with a workpiece in which voids are explicitly defined. The influence of various
parameters on void closure is studied using experimental data [2, 3] or finite element (FE) simulations [4-9].
Criteria and prediction models are presented in a first section, as well as a discussion regarding their benefits
and limitations.
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The micro-analytical approach considers a single void in an infinite matrix [10-13]. The void volume
evolution is analytically predicted, according to a certain number of assumptions. A review of these analyt-
ical prediction models is presented in a second section, and the assumptions are discussed. Gurson-based
models [14] are also mentionned. Such models were initially developed for predicting the global behaviour of
porous materials and were dedicated to ductile fracture (void growth under positive stress triaxiality ratios).
However, interesting features were found out regarding void evolution and are compared to the approaches
regarding void closure.

It is worth noticing that, although prediction models for void closure are generally based on a similar
analysis than the one used for studying void growth, the involved micromechanisms are different in both
cases. Regarding void closure, the mechanical deformation is the main driving parameter leading to the
reduction of voids volume, while in void growth analyses, voids coalescence and nucleation mechanisms
must also be considered (see e.g. [15-19]). Such mechanisms are out of the scope of the present study, which
focuses on mechanical closure of voids, only.

2. Macroscopic approach

Due to the great industrial interest in understanding void closure, numerous studies on void closure
were conducted using the macroscopic explicit approach. This approach enables a process to be partially or
fully described and the closure mechanisms to be studied in accurate process conditions. The influence of
process parameters was studied in order to establish qualitative or quantitative relationships between the
parameters and the void closure efficiency.

Main qualitative results are summarized first, with a brief description of the studies conditions (considered
processes, types of voids). The two main families of processes that are typically concerned are hot forging
and hot rolling. The main features dealing with void closure are summarized for each process family.

In a second part, existing prediction models are presented and discussed.

2.1. General qualitative results

The macroscopic explicit approach generally involves experimental testing or numerical simulation. From
a general point of view, the following statements were found out:

i. large deformations, especially in the first stages of forming processes, are preferred for better void
closure [2—4, 7, 20-26];

ii. arelevant choice of process configuration may considerably improve the void closure efficiency: shaped-
dies for forging [6, 7, 20, 24, 27-29] and large roll radius for rolling [3, 23, 25, 26, 30];

iii. temperature gradient in the workpiece also plays an important role and it is shown that a colder skin
improves the closure of centerline voids |7, 26, 31-34];

iv. friction with dies may also improve the voids closure efficiency [4, 23].

The influence of strain-rate had not been studied regarding void closure evolution.

2.1.1. Hot forging

For open die forging and cogging processes, various conditions were tested and are briefly summarized
in Table 1. Most studies considered steel in its typical working temperature (900-1250°C). Aluminium,
plasticine and lead (Pb) were also used. Height reduction ratios varied between 10 and 40% per pass. In
general, it was observed that larger values are preferred for a better closure. In the case of multi-pass forging,
it was shown that the reduction of the first pass generally brings the main contribution to void closure, and
that the contribution of following passes may become insignificant [24].

Overstam and Jarl [33] investigated the effects of natural cooling and the one due to the contact with
the tools. Surface cooling generally had a positive effect on void closure. The study showed that the effect



of temperature gradient is significant for small billets (size < 200 mm x200 mm), but becomes negligible
for large billets.

Different tool shapes were investigated: bowl-shape [7, 20], V-shape [5, 9], FML (Free of Mannesmann
effect at Lower press load) [6], and BFTV (Bottom Flat Top V) [27]. Concave tools were shown to provide
better void closure. The positive effect of concave dies, compared to flat dies, results from a more compressive
stress triaxiality state at the billets center. This is coherent with the effect of temperature gradient (colder
skin) mentioned previously, as both involve more compressive states at the core of workpieces.

Banaszek and Stefanik [7] studied the evolution of a billet’s 2D—section containing circular voids during
hot forging. They proposed a relation between the total surface area of defects and forging parameters
(i.e. upper die speed, relative reduction and initial temperature). A statistical analysis on case studies was
performed using FE simulations and several experimental validation cases. The authors concluded that void
closure is enhanced when using asymmetrical concave dies in the early stages, and flat dies in the final stages
of forging.

2.1.2. Hot rolling

For the studies regarding rolling processes, steel was mostly studied as well (see Table 2). The technical
report Improsound [26] relates a large quantity of results regarding the optimization of multi-pass hot rolling.
Several pass-schedules were studied. It was shown that a one-pass schedule brings better void closure than a
two-pass schedule with identical cumulated reduction ratios. Further studies regarding multipass schedules
confirmed that the effect of the first pass is predominant regarding void closure. Lower numbers of passes
with large reductions, and without turning the billet between the passes, are thus recommended for better
void closure. Wallerd [3] studied the effect of rolling conditions and concluded that passes involving large
spread ratios are favourable for void closure.

Source Material Pr(?cess, billet T (°C) Reduc. (%) strain-rate Void shapes Vold/.blllet
dim. (mm) or eq. strain (s ) ratios
[6] plgsfiecli'ne Og;‘éoct‘)‘e 1230 30% 0.01 2D cylinder 0.07
= Open die -
[1, 27] Steel D100 % 1.80 1000-1200 0.35 0.01 Cylinder 0.1
Multipass Sphere,
[29] Steel 300550 1043848 0% 0.1-0.2 elinder 0.03
[33] Steel Open die 1100 = = = =
Open die -
[7] Steel 580 » 180 1100-1250 0.15-0.25 0.1-0.2 2D cylinder 0.05-0.12
[24] Steel Multipass 1000 30% — — —
Steel, Open die
[35] plasticine 95 x 75 x L200 1000 10-25% - - -
Cogging 390 800, 1000, _
[36] Steel 090 U200 0.8 Natural 0.5
. - Sphere, 0.01, 0.05,
[8] Aluminium Compression 450 80% - eolinder 01 0.2
Steel Open die
[8] N @40 and 35x35 x 900-1200 30% 0.02-2 Open cylinder 0.05
Phb-valid.
136
: Sphere,
[37] Steel Open die 1150-1200 42% - cylinder, 0.025-0.125
@25 x 40
tetrahedron
[38] Aluminum Multi-pass 420 1.3 - 8.9 0.02 - 0.2 Natural 0.001
forging

Table 1: Tested conditions regarding the studies on forging processes (

«

= unavailable data).

- Process, billet > Reduc. per Roll diam - Void/sheet
Source Material o Ceen) T (°C) e () Void shapes Y
31 pl:stteiecli’ne Multipass 1100 2-20% - Artificial 0.05
[32] Steel 1\/121(1)10:;2325, 1200 4-16% 450 2D Cyl. 0.25
[39] Steel HZ%;‘;‘;SOZSO 900-1200 30, 50, 70% 300 Half-open 0.06
Steel, T_pass, . Open -
[35] plasticine 80x60%200 1000 8-33% 220 cylinder
Multipass,
[26] Steel 137x137 or 1100-1200 2-15% 510-670 Natural + 0.015-0.06
A Artificial
Natural
2-pass 3x0.6x0.6 ° o B ) 1.7-8.3
[40] Aluminium Ceamples) pass 400°C(50%), pass 320°C(50%) (t):r;Z)y Y10-3

Compression

540

6—60%

Table 2: Tested conditions regarding the studies on rolling processes (

3

W

= unavailable data).



As for forging, the temperature gradient between the skin and the core of the workpieces was shown to
improve void closure.

Rolling of aluminium was studied by Toda et al. [40]. The study dealt with a succession of rolling passes
at various temperatures. A diffuse state of voids was tracked using X-ray microtomography according to
various compression ratios and annealing periods. A geometry dependence was observed regarding void
closure. An increase of void fraction was also pointed out during high temperature exposure, such as void
growth or reopening of closed voids.

2.1.8. Considered void states

Artificial model holes were generally used to investigate the influence of parameters on void closure. The
geometries were typically spheroidal or cylindrical.

Hot compression tests on aluminum samples containing cylindrical voids were conducted by Kakimoto
et al. [8]. The study showed that the critical reduction required for complete void closure is mainly influenced
by the height of the void (in the compression direction). The perpendicular dimension did not show any
significant effect on void closure.

Closure mechanisms were discussed by Chen et al. [37] with respect to various void shapes (spherical,
tetrahedral, and cylindrical), at different positions in a billet under compression. Long cylindrical voids
presented a two-stage mechanism: firstly, the upper and lower surfaces rapidly entered into contact, and
secondly, the small subsequent holes were more hardly closed up. It was also shown that tetrahedral voids
were longer to completely close than spherical voids.

According to Chen et al. [37], the position in the billet has an impact on the closure rate. Closure was
faster in the center of the billet. In the technical report Improsound [26], rolling trials were performed in
order to compare different initial states. A billet was designed to contain several pre-defined void states that
were inserted in its center. The pre-defined states were a 3 x 3 matrix of holes, a central single hole, and
a natural porosity state. From metallographic examinations, it was observed that the hole in the center of
the billet was completely closed, whereas those off-center were only partially closed.

The effect of the hole’s position in the billet was also discussed by Wang et al. [39]. In these experiments,
the holes were drilled in the direction perpendicular to the rolling direction and were drilled from the surface
of the billet, providing half-opened holes. This contrasts with the holes defined in [26], which were oriented
along the deformation direction and fully embedded in the billet. In the rolling trials performed by Wang
et al. [39], the holes were better closed when positioned near the billet’s surface. This result contrasts with
the results obtained in [26] and points out the dependence of void closure to initial void shape and process
conditions. It was also shown that shear is helpful for void closure.

From the rolling trials in the Improsound report [26], it was also observed that natural holes are harder
to close than artificial drilled holes. This result is in good agreement with the results from Chen et al.
[37], mentioning that in the case of complex initial void shapes, subsequent small voids are created during
compression and are more hardly eliminated. Simple void geometries might therefore not fairly represent
the closure behavior of natural voids.

The non-negligible influence of initial state was also demonstrated in Toda et al. [40]. Different closure
behaviors were observed using 3D X-ray microtomography on Al-Mg alloy containing hydrogen micropores
with various initial geometries. Some micropores remained visible after 60% compression, while others were
completely closed. A combination of effects related to initial shape and position was the most plausible
explanation.

2.2. Criteria for void closure

Keife and Stahlberg [21] studied the deformation of round and square voids in a rigid-perfectly plastic
material. They proposed a simple upper bound model based on the plane-strain condition, considering two
different simple deformation modes around the voids. They concluded that the reduction R, necessary for
complete void closure is a function of initial void volume fraction Vy, such that R, ~ Vol/ 2,



Tanaka et al. [5] proposed the use of the hydrostatic integration @ as an indicator for void closure. The
parameter () is the integral of stress triaxiality ratio Tx = 22 over the cumulated strain:

Q= /06 —Txdé. (1)

Nakasaki et al. [35] discussed the use of @) as a parameter for void closure in hot forging and rolling
conditions. Based on experimental and numerical results, an expression for the total void area reduction
was obtained by linear regression. In the case of rolling, the hydrostatic integration parameter was revised
to @ = @Q + 0.024, according to the observations that were made.

Hydrostatic integration was later used by Kakimoto et al. [8] to compare the closure of a void in differ-
ent configurations of forging. In this study, numerical simulations were performed after validations using
experiments on lead billets. A cylindrical hole was drilled through the billet with a void-to-billet diameter
ratio of 0.05, and multi-pass forging was performed. It was found out that the critical value of hydrostatic
integration for complete void closure is @ > 0.21. The authors used this criterion to investigate four forging
parameters and proposed industrial improvements regarding process design. Although the qualitative results
regarding process optimization show great interest, a generalization of the value of the Q-criterion remains
questionable for further processes. In this paper, experimental validations were performed using workpieces
containing a drilled open-hole, which may have a rather different behaviour than an internal void.

Recently Chen and Lin [41] used the @ criterion to study the evolution of shape parameters in the
three directions z,y,z. They introduced a tridimensional version of the @ criterion, using three values
Q; (i € {z,y,z}). The authors proposed a phenomenological expression to fit the aspect ratios of an
ellipsoidal void according to @;.

Si =(Ch+ Sio)exp(—Qi/Cg) +C3, with @Q; = / %d@ (2)
0

where s; is the the component of the stress deviator tensor s in the 4 direction. S; and S;o are the aspect
ratios and their initial values, respectively. C1, Cy and Cj are fitting coefficients that were obtained using
FE-simulations. Fitting values were obtained for several positions in a billet under a given forging process.

Tanaka et al. [5] also proposed an empirical void closure parameter VCP based on @ value, with a series
of six coefficients C;; obtained by linear regression based on numerical simulations of compression:

2 2—4

VeP =YY Cijn(1+2)] In(1 - Q), (3)

i=0 j=0

The parameter returns a degree of closure (0-100%) of a virtually existing void, at any position in the
billet. In the technical report Improsound [26], a wide campaign of numerical simulations and experimental
observations about hot rolling was performed, and Cj; coeflicients were identified. Process design was
performed using maps of void closure parameter obtained using the previous model.

A linear stress-triaxiality-based (STB) model for void closure was introduced in the commercial code
FORGE [42] [43] and was implemented as:

AV korene (4)
Vo

The variation of void volume fraction at each increment step is assumed proportional to the product of stress
triaxiality ratio with incremental strain. In this equation, the proportionality coefficient K. was identified
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using linear regression from FE simulation. The value K. = 5 is proposed in [43], which provides a first
approximation of the volume evolution of a single spherical void during compression of a cylindrical billet.
Note that for the particular case of constant stress triaxiality ratio, Eq. (4) becomes:

\%
— =1+ K. Txé. )
VO + XE ()

In the general case with non-constant stress triaxiality ratio, the actual void volume can be obtained by
summing AV in Eq. (4) over the increments of deformation. In fact, the sum Zé Tx A& can be seen as the
discretized form of @ in Eq. (1),

5 A g g
> AV K.Y TxAs = KC/ Txds = K.(—Q). (6)
- Vo 5 0

Using the value @ = 0.21 proposed by Kakimoto et al. [8] for complete closure, the predicted volume
reduction can be computed as:

4
Vo

LAV
=1+ = =1+5(-021) ~0. (M)
(Q=0.21) o Vo

As the final void volume equals to 0, the void is completely closed up. Consequently, it can be said that
Eq. (4) is in agreeement with the criterion proposed by Kakimoto et al. [8].

In all the studies presented above, the void-to-billet dimension ratio remained relatively large, i.e. around
an average value of 0.1. Though, a large number of tiny voids usually exist in workpieces [26]. Tiny voids
can hardly be considered by such a macroscopic approach, since their volume is very small and becomes
negligible with respect to the volume of the workpiece. As pointed out in 2009 by Zhang and Cui [13] and
Zhang et al. [44], there is at present a lack of applicable and accurate criterion in evaluating void closure.
Based on micromechanical results from the literature, the authors proposed two numerical models for void
closure. After a brief review of the main steps used within the micromechanical approach, the most recent
criteria are presented and discussed in the following section.

3. Micro-analytical approach

In the micromechanical analysis, a single void in an infinite incompressible matrix is considered. The
constitutive relations for the matrix are of the power-law type, with m the power exponent:

720’0

5= N
360

=\ m—1
<f5> ¢, with tr(e) =0, (8)
€0

where € is the strain-rate tensor, s is the deviatoric part of the stress tensor o, & and &g are, respectively,
the effective and the reference strain-rate, o is the reference stress. The evolution of the initial void is
studied with respect to various mechanical parameters, for different types of materials which properties
are controlled by the power exponent: linearly viscous materials (m = 1), rigid-perfectly plastic materials
(m = 0), and the general case of non-linear viscous materials (0 < m < 1).

A large number of studies regarding void evolution in an infinite matrix were reviewed by Huang and
Wang [45]. In these studies, voids are typically assumed to have spheroidal or cylindrical shapes. Most
studies do not consider any change of shape during deformation, and the resulting equations often become
inappropriate for large deformations (which is generally the case to obtain void closure).



3.1. Rigid-perfectly plastic material
3.1.1. Gurson-based models

Gurson [14] established a relation providing a yield criterion for porous materials, as a function of void
volume fraction f. The void evolution f is governed by the condition of incompressibility of the matrix,
leading to a simple void growth law given by:

f=01—fee), (9)

where € is the plastic strain-rate tensor. To obtain a yield criterion for porous materials, the material
model used in Gurson’s analysis is rigid-perfectly plastic (m = 0). A spherical cell, composed of matrix
material containing a concentric spherical void, was considered. Based on cell calculations, an upper bound
solution for yield criterion was proposed for the macroscopic behavior of porous metals.

Tvergaard [46] proposed corrective coefficients to Gurson’s model. Gurson-Tvergaard’s model is widely
used in the framework of ductile fracture due to void nucleation, growth and coalescence. Additionally,
Tvergaard and Needleman [47] introduced a modified void volume fraction f* = f*(f) for f > f., where f.
is a critical value over which the coalescence phenomenon takes place. Void coalescence phenomenon will
not occur in the case of void closure.

Various modified Gurson-based models are available in the literature, taking into account some additional
mechanisms, such as isotropic and kinematic hardening, and the effect of strain-rate sensitivity. Recently,
Scheyvaerts et al. [48] extended Gurson’s model to spheroidal voids in shear and tension conditions, using a
constitutive law considering both elastic regime and plastic hardening. More recently, Madou and Leblond
[49, 50] extended the Gurson model and proposed a yield criterion for porous material containing arbitrary
ellipsoidal voids.

However, very few studies focused on the evolution of void volume during closure. From the Gurson-
Tvergaard model, Ragab [51] established an expression to evaluate the volumetric strain-rate of a spherical
void, .

|4 q192 . 3
SEV 2 sinh (2612|TX|> ) (10)
where E, is the remote equivalent strain, and ¢; = 1.5, g2 = 1.0 are the coefficients obtained by Tvergaard
[46]. In this equation, the void is assumed to remain spherical.

3.1.2. Analytical solutions

Rice and Tracey [10] proposed a model for the evolution of a spherical void in a rigid-perfectly plastic
matrix (m = 0). In the analysis, the void undergoes an uniaxial loading under axisymmetric stress conditions.
As no analytical expression can be obtained, approximate Rayleigh-Ritz solutions were obtained using the
variational principle. The velocity field is defined as:

vV=vg+V, (11)

with vo = E - x the remote velocity field, where E is the remote strain-rate tensor at infinity, x is the spatial
coordinates vector, and v = Dvp + vg is the local velocity change due to the presence of a void. The
first term vp thus describes the spherically symmetric deformation due to the volume change of the void,
where D is the normalized dilatation rate, and vg describes the shape change of the void. Under high stress
triaxiality, it is shown that the influence of vp is much larger that the one of vy, and the void’s shape
change can be neglected. The approximation of high stress triaziality thus leads to:

v=E-x+ Dvp. (12)
The minimum principle, which consists in minimizing a functional F(v) is used to obtain a velocity field.

The normalized dilatation rate D is obtained as:

2
o 0.850 exp <3TX) vV Tx >0,
¢ —0.826 exp (—3TX> vV Tx <0.
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where E, = / %E : E is the remote equivalent strain. The coefficients are analytical values that result from
the Rayleigh-Ritz procedure.

3.2. Linear viscous material

In the case of linear viscous (or Newtonian) materials m = 1, analytical solutions were calculated by
Budiansky et al. [11] for an extended number of constant stress triaxiality ratios 7x = %. The volume
rate of a sphere may be expressed as:

o = Ty (14)

3.8. Nonlinear viscous material

3.8.1. Analytical solutions

Budiansky et al. [11] studied the deformation of a spherical void in a nonlinear viscous matrix. As for the
case presented above, the authors showed that no analytical solution may be obtained, and the Rayleigh-
Ritz procedure was used. The high stress triaziality (HST) approximation is also used to only consider the
radially symmetric contribution of the velocity field. Using this approximation, the volumetric strain-rate
of the spherical void can be written as:

1

V. 3(3m ™

In the case of low stress triaziality (LST), an expression for volumetric strain-rate is proposed by [52]:

. 1
|4 3/3 m

prst = V3 (5 o)) i v i<, (16)
Vo202

In these equations,

G(m)=(1-m)(1+4+ (In(3) —2/3)m) = (1 —m)(1+ 0.432m) vV Tx >0,
2 17
G(m) = (1 —m)(1 + ——=m) ~(1-m)(140403m) V Tx <0. a7)
9v3
Note that for m =1, G(m) = 0 and both Eqgs. ((15), (16)) reduce to Eq. (14).
Duva and Hutchinson [12] proposed an extension of Eqgs. (15) and (16) for any stress triaxiality ratios,
using an interpolation approximation. The expression of volumetric strain-rate for a sphere Dy, gives:

1
v

v 3 (3m n
Dsp — <M> — 5 <2|TX| + G(m)) + Cl‘TX| + CQ V TX, (18)
sp

which, in the case of void closure (T'x < 0), leads to:

. 1
Dy, = <E":V> = g (—SgnTX + (1 - m)(l + O403m)> —c1Tx + ¢, (19)
sp
where parameters ¢; and ¢y are tabulated functions of m [13]. The volumetric strain-rate is plotted in Fig. 1a
for m = 0.2. Note that there is a slight difference between values proposed by the generalized formula and
the solution given by Budiansky et al. [11] using the high stress triaxiality approximation. The authors
argued that the solution in Eq. (15) underestimates the deformation rate, due to the approximation made
by Budiansky et al. [11] on the velocity field. Indeed, the relative error obtained between the generalized
formula Eq. (19) and both Egs. (15) and (16) on their respective domain of validity is plotted in Fig. 1b.
A greater difference (about 20-25%) can be seen around |Tx| = 1, i.e. at the boundary between both

8
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Figure 1: (a) Normalized volumetric strain-rate for a sphere Dy, given by Eq. (19) (Generalized formula), compared to high
and low stress triaziality approximations given by Eq. (15) and Eq. (16), respectively; and (b) the relative deviation between
Eq. (19) and Eq. (15) or Eq. (16) on their domain of validity, for various values of m (given as n = 1/m).

approximations. The generalized formula for D,, was proposed in order to approach Eqgs. (15) and (16)
on their respective domain of validity, and thus considers the same approximations. Note that the relative
error is slightly negative at very low stress triaxiality values, without great influence of m-value.

A similar analysis was performed by He and Hutchinson [53], considering the deformation of a penny-
shaped crack. The Rayleigh-Ritz solution for the volumetric strain-rate of a crack gives:

1% D, 1 6 2
| = =——— (|17x|+2) for <1, 20
BV A AT/I+3m <| x| 3) or (20)

where A = a/b is a shape factor, as illustrated in Fig. 2 (A < 1 for a penny-shaped crack).
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Figure 2: Void evolution from spherical shape to a crack. Reproduced with permission from [13, 44].

Using an interpolation scheme, Zhang and Cui [13] proposed an expression for the transition state from
spherical to finally crack-like mode. The evolution of void volume can be expressed as:
\%4 _ D; exp(=DerEe) — Do exp(—D; Ee)

- Dy, E.), 21
- e exp(Dyy ) (21)

where Dj; corresponds to the change-rate of the aspect ratio of a spherical shape, which is obtained using a
Rayleigh-Ritz procedure on spherical voids:



3.8.2. Semi-analytical solution

From the analytical model in Eq. (19) for a spherical void (assumed to remain spherical) the same
authors alternatively proposed a semi-analytical extension for considering the change of shape during defor-
mation [44]. The authors introduced an empirical dependence to void shape A, assuming that it depends on
the cumulated strain, only. The coefficient ¢y in Eq (19) is replaced by a polynomial function of cumulated
strain and leads to Eq. (23). The values for parameters ¢;,i € {1,2, 3,4} are numerically obtained using FE
calculations based on a cubic cell model containing a spherical void (Fig. 3). The volume of void is obtained
using different values of stress triaxiality ratio Tx, and are given in [44] for various values of m.

Figure 3: The cubic cell model used for obtaining ¢; values. Reproduced with permission from [44].

Note that the dependence in triaxiality ratio is consistent with the results presented in Section 2 dealing
with the product of stress triaxiality ratio with effective strain. Eq. (23) is also in good agreement with
qualitative results from process studies presented above in Section 2, which relates that pore closure is faster
for high reduction ratios and large negative stress triaxiality ratios. Here, the effect of power exponent,
i.e. of a material property, is also considered.

. 1
Vv 3 (3m ™
v -3 (2|TX| +G(m)) + 1| Tx |+ 3c2EZ + 53 E; + ca. (23)
Integration of Eq. (23) over the strain path (assuming constant triaxiality ratio during deformation) leads
to:
1
Vv 3 (3m m
7o = eXp (Ee 3 (2|TX + G(m)> +a|Tx| + B2 + B +ca ) . (24)
0

The authors studied the evolution of void volume as a function of macroscopic strain E, for several
values of power exponents and stress triaxiality ratios. It is shown that stress triaxiality might considerably
increase void closure, as illustrated in Fig. 4a, and that decreasing m has a positive influence on void closure,
as shown in Fig. 4b. It is noteworthy that large stress triaxiality have an effect since the earliest stages of
void closure, by increasing the initial rate of closure. The macroscopic strain required for void closure is
thus reduced by increasing stress triaxiality.

Lee and Mear [54, 55] discussed the validity of Gurson’s models regarding a material containing aligned
spheroidal voids in axisymmetric loading conditions. Various shapes were considered, such as penny-shaped,
oblate, prolate, or cylindrical voids. The authors provided qualitative results regarding the evolutions of
spheroidal voids under various triaxiality ratios. It is pointed out that initial void shape may have a
significant influence on void closure. Randomly orientated spheroidal are also discussed. It is concluded
that it is extremely difficult to obtain accurate results, although bounds and estimates were proposed by [56].
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Figure 4: Effect of stress triaxiality ratio and of power exponent on void closure. Reproduced with permission from [44].

The qualitative data in [55] were used by Zhang and coworkers [13, 44] to compare with the results obtained
from Egs. (21) and (24).

4. Comparison of models

4.1. Comparison by Zhang and Cui [13]

The analytical model in Eq. (21) was discussed by Zhang and Cui [13]. The results were compared with
data from [55] in Fig. 5. As it can be seen for m = 0.33, the interpolation scheme and the numerical data
are in very good agreement for all tested stress triaxiality ratios. The authors implemented Eq. (21) in a
FE code to compute their prediction model at the macroscopic scale in a void-free process. They used the
case of a billet under uniaxial compression, as shown in Fig. 6. The model was able to predict the volume of
voids with very good accuracy, providing considerable reduction CPU time (the authors showed a reduction
by a factor of 10).
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Figure 5: Comparison of void evolutions, with m = 0.33, given by Eq. (21) and by Lee and Mear [55]. Reproduced with
permission from [13].
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4.2. Comparison by Zhang et al. [44]

Zhang et al. [44] compared their semi-analytical model (Eq. (24)) with the models of Gurson (G), Gurson-
Tvergaard (GT), Budiansky-Hutchinson-Slutsky (BHS), the results of Lee and Mear [54, 55], as well as the
FE results that were used for calibration. The comparison is made for two values of stress triaxiality ratios
and is presented in Fig. 7. The plot for G and GT-models were obtained using Eq. (10), with the values
(q1,92) = (1,1) and (q1,¢2) = (1.5,1) respectively. The plot for BHS-model was obtained using Eq. (15).
For very compressive stress triaxiality ratios Tx = —2, Fig. 7a illustrates that all models predict a roughly
similar evolution of void volume, although G and G-T models seem to slightly overestimate void closure. For
the less compressive triaxiality ratio Tx = —0.6, Fig. 7b shows that two different behaviors are predicted
by the models. This difference is attributed to the assumption made in the G, G-T, and BHS models, that
the initial spherical (or spheroidal) void shape remains unchanged during deformation. This difference rises
with strain F., since the actual shape of the void deforms towards a crack-shape. This difference is less
marked with larger negative stress triaxiality ratios (Fig. 7a), as the change in aspect ratios is slighter. This
observation was also made by [55]. This is coherent with the high triaziality assumption of BHS model.
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Figure 7: Comparison of the criterion of Zhang et al. [44] (Eq. (24)) plotted in black line, with data from literature and FE
simulations on cell model, with m = 0.2. Reproduced with permission from [44].

The model of Zhang et al. [44] was recently implemented in the commercial FE code DEFORM—-3D*™ by
Zhang et al. [57]. The influence of various process parameters on void closure was studied using upsetting,
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blocking and multi-pass forging. The influence of die-shapes is discussed in order to enhance void closure and
thus material soundness. Although the model showed good agreement with the result from the literature
regarding the evolution of a sphere under constant boundary conditions (Fig. 7), no validation of the model
under complex loadings was presented. The accuracy of the presented results remains thus questionable in
the case of industrial processes.

4.8. Comparison of all models

A comparison of all models is now proposed in order to discuss the reliability of the models within the
range of values of interest for typical industrial applications. According to the literature, the stress triaxiality
ratio Tx and the material parameter m are the two parameters that were taken into account. The range
of stress triaxiality ratios is Tx = [—1.2,0] in the present comparison. This range was defined according to
numerical simulations of several industrial processes [58], such as hot forging and hot rolling. Several values
of m are considered in order to illustrate the dependence of the models to material behaviour.

In total, six values of stress triaxiality ratios Tx and three values of m were defined and void volume
evolutions are plotted in Fig. 8. The six models are synthetically recalled in Table 3 with the values of
coefficients that were used to plot the 18 configurations.

Model Type Equation Constants values
STB [43] Empirical Eq. (4) Ke=5
Tanaka et al. [5] Empirical Eq. (3) C;j (Table 4)
Gurson-Tvergaard [46] Analytical Eq. (10) g =15 g =1
Budiansky et al. [11] Analytical Eq. (15) -
Duva and Hutchinson [12] Analytical Eq. (19) c1 and ¢z (Table 5)
Zhang and Cui [13] Analytical Eq. (21) -
Zhang et al. [44] Semi-analytical Eq. (24) c1, ¢, c3, ¢4 (Table 6)

Table 3: Equations of the models used to plot Fig. 8.

Coo Co1 Co2 Ci1 Cia Caa
0.0114 0.84 -2.48 2.17 12.6 -1.98

Table 4: Values of coefficients Cj; in Eq. (3), from Tanaka et al. [5].

m 1.0 0.5 0.2 0.3 0.1 0.01
c1 0. 0.5951 0.7061 0.8049 0.9002 1.0066
c2 0. -0.5479 -0.6571 -0.7340 -0.7874 -0.8329

Table 5: Values of coefficients ¢; and c2 in Eq. (19) resulting from analytic solutions from Duva and Hutchinson [12], tabulated
in Zhang and Cui [13].

m 1.0 0.5 0.2 0.3 0.1 0.01
c1 0.5048 0.4911 0.6016 1.1481 2.9132 6.5456
C2 6.4675 0.8002 -0.6981 -4.2026 -11.6464 -15.3775
c3 14.2610 53.8018 72.6397 108.2114 185.5622 324.4417
N -0.3379 -0.2314 -0.1243 -0.2480 -0.6511 -1.9575

Table 6: Values of coefficients c1, c2, ¢3 and ¢4 in Eq. (24) resulting from calibration using FE simulations obtained by Zhang
et al. [44].

From Fig. 8, it can be seen that Gurson-Tvergaard curves coincides with the ones of Duva and Hutchinson
[12] for m = 0.01, even though their expressions are rather different. Gurson-Tvergaard was developed for
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perfectly-rigid plastic materials (which corresponds to the case m = 0). The good agreement comes from
the fact that both models are based on the same assumptions and consider the evolution of a spherical void.
This is no longer the case for larger m values, as the model of Gurson-Tvergaard is valid for perfectly-rigid
plastic materials, exclusively.

Note that the simple behaviour law in Eq. (8) that is used in the analytical and semi-analytical models
Budiansky et al. [11], Duva and Hutchinson [12], Zhang and Cui [13], Zhang et al. [44] may be insufficient
to accurately model the behaviour of hot metals. Hot metal behaviour usually involve strain hardening and
softening features that cannot be considered using Eq. (8).

The influence of material was not considered in any of both empirical models (STB Lasne [43], Tanaka
et al. [5]).

The curves from Budiansky et al. [11] model tend to get closer to the ones of Duva and Hutchinson [12]
for |T'x| < 1. This is coherent with the fact that Duva and Hutchinson [12] is an extension of Budiansky
et al. [11] (based on high triaziality assumption) to all values of Tx. Both models are superimposed in
the case of linear viscous materials (m = 1), since both equations reduce to Eq. (14) for linearly viscous
materials.

The comparisons made in Zhang and Cui [13] and Zhang et al. [44] covered the range —2.7 < Tx < —0.33
(in Figs. 5 and 7). Both comparisons were made for a single value of m (for m = 0.33 and for m = 0.2,
respectively). In Fig. 8, both models are plotted over the range of interest for Ty, and for the three values
of m. Rather good agreement between both models is observed over the range —1.2 < Tx < —0.4 as well,
notably for the value m = 0.3. Void closure is obtained around similar strain values. Void evolution is
roughly similar, although a few differences may be pointed out. The analytical model provides monotonous
curves, whereas the semi-analytical model induces several changes of slope. The latter also exhibits an
asymptotic final closure, unlike the analytical model that presents a rather steep decrease until complete
closure.

Larger deviations can be observed for the less compressive triaxiality values (—0.2 < T'x < 0.0), especially
for extreme values of m (m — 0 and m = 1). Such values of triaxiality were unfortunately not discussed in
the papers, although they may require full attention, as they belong to the range of interest for industrial
applications. Very different initial behaviours are predicted between the analytical model and the semi-
analytical model. Let us finally note that, for the analytical model, the value of strain that is required for
complete closure using Tx = 0.0 is lower than for Tx = —0.2, which is physically counter-intuitive. The
best agreement between the analytical and semi-analytical models is obtained for Tx = —0.4, i.e. close to
the particular case of uniaxial compression (Tx = —%) The curves also show good agreement with the STB
model, except for the value m = 1 (although such a value remains excessively elevated regarding the ranges
of interest within this work).

The empirical model of Tanaka et al. [5] systematically underestimates void closure, although the general
tendency regarding the dependence on stress triaxiality is respected. However, the evolution of void volume
with strain remains rather different from analytical models.

5. Discussion

The STB model and the model of [5] are based on empirical results that were obtained from experiments
and numerical simulations. They were initially calibrated for the case of spherical voids using a given material
law. Both models respect the general tendency relative to stress triaxiality ratio. They do not consider any
dependence to material behaviour. Further calibration of these models is possible for considering additional
parameters. However, new coefficients might at best predict void closure for a given geometry and a given
material, and must be repeated for any configurations. Generalization is at present not permitted using
such models.

Among all analytical models, the one from [13] clearly arises as the most advanced as it covers the
largest range of stress triaxiality ratios, material behaviour, and considers the change in void shape during
deformation. However, this model suffers from the fact that a sphere is exclusively considered. Indeed, it was
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shown [55] that initial void shape might significantly influence the void closure behaviour. The reliability
of the model was not addressed in the literature regarding its use in a industrial context. In addition, some
counter-intuitive observations were made at low compressive stress triaxiality ratios (Fig. 8).

The semi-analytical model from [44] provides a comparable prediction as the analytical model from the
same authors. This model was used in [57] to design die shapes and pass schedules during hot forming
processes using a finite element software. However, the model also suffers from the fact that spherical
voids are exclusively considered. In addition, the validation cases that are presented by Zhang et al. [44]
are compared to the results of Lee and Mear [55], in which the results were obtained under constant and
uniform deformation cases. One can wonder the reliability of the model in the case of non-uniform loading
paths, as mentioned in previous work [59] using a simple prediction model.

Initial void state (morphology and position) appears as a major potential improvement, as complex
geometries were pointed out in the industrial review, and according to the significant influence that was
qualitatively exhibited in literature. The dependence to mechanical state might also be further studied in
order to better predict the phenomenon over the entire range of stress-triaxiality and deformation. The
influence of material parameters might also be further studied, notably regarding actual behaviours of hot
metals (e.g. strain hardening or softening effects).

Among all models that were considered in this paper, the stress state is described using the value of
stress triaxiality ratio only, assuming axisymmetric boundary conditions. Nevertheless, it was shown [18§]
that the value of T'x is not sufficient to completely define the stress state and the use of the Lode angle i to
complete the definition of the stress state is suggested. All models within this paper are thus implicitly based
on the particular case ;1 = 1. Several authors studied the effect of the Lode angle on void growth [60, 61]
or phenomenological ductile damage models [62] and a non-negligible influence on void growth was shown,
in particular for low stress triaxiality ratios. The use of this Lode angle parameter would thus be a major
improvement for void closure models.

To study void closure with more accuracy, the meso-scale arises as a relevant approach. The use of
a Representative Volume Element (RVE) was described in previous work [59]. In this paper, an accurate
description of the initial void was obtained using real tridimensional morphologies that were obtained from
X-ray microtomography. Boundary conditions were also accurately applied in order to faithfully represent
thermo-mechanical loadings from industrial processes. This approach enables an accurate description of void
closure under real industrial conditions, involves relatively fast computations, and thus enables parametric
sensitivity studies to be performed. Based on a wide campaign of RVE simulations, a new model for
predicting void closure was established and will be presented in a forthcoming publication.

6. Conclusions

e In the literature, void closure is studied according to two different main approaches: a macroscopic
approach and a micro-analytical approach. The former is hardly generalizable as it is case-dependent.
The latter involves a certain number of assumptions that are generally far from industrial issues,
particularly in terms of void shape.

e Considering the voids morphology and position arises as a great potential improvement for current
semi-analytical existing models.

e Dependance to mechanical state is also of prime importance. Stress triaxiality is systematically used
in the literature for the prediction of void closure. However, the use of Lode angle is not currently used
to predict void volume evolution during closure, although it is already commonly used in models for
ductile fracture and porous materials. The Lode angle thus arises as a great potential improvement
as well.

e Finally, due to the limitations of both macroscopic and micro-analytical approaches to study void
closure, an alternative meso-scale approach is suggested. Based on a wide campaign of FE simulations
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at the RVE-scale, new prediction models can be elaborated. Very promising results were obtained using
this approach [59] regarding the geometry-dependence of void closure under various stress states.
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