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Towards prospective Life Cycle Assessment: how
to identify key parameters inducing most
uncertainties in the future? Application to

photovoltaic systems installed in Spain

Camille Marini1 and Isabelle Blanc1

MINES ParisTech, O.I.E. center, Sophia Antipolis, France

Abstract. Prospective Life Cycle Assessment (LCA) is a relevant ap-
proach to assess the environmental performance of future energy path-
ways. Amongst different types of prospective scenarios, cornerstone sce-
narios meant for complex systems and long-term approaches, are of inter-
est to assess such performance. They rely on different types of long-term
projections, such as projections of technological evolutions and of energy
resources. In most studies, scenarios are defined with single values for
each parameter, and environmental impacts are assessed in a determin-
istic way. Inherent uncertainties related to these prospective assumptions
are not considered and prospective LCA uncertainties are thus not ad-
dressed. In this paper we describe a methodology to account for these
uncertainties and to identify the parameters inducing most of the un-
certainties in the prospective LCA results. We apply this approach to
prospective LCAs of photovoltaic-based electricity generation systems.

1 Introduction

World electricity consumption has multiplied by a factor of 4 in the last 40
years [18] and will keep increasing in the future due to population growth and
changing lifestyle. Currently more than 68% of the total electricity production
is based on fossil fuels [18]. Yet the use of fossil fuels raises growing environmen-
tal concerns, since their reserves are decreasing and their use is responsible for
significant greenhouse gas (GHG) emissions [17], largely contributing to global
warming (e.g., [2]). Environmental assessments of energy pathways being a criti-
cal issue, a large number of Life Cycle Assessments (LCA) have been undertaken,
attempting to give a quantitative assessment of the current situation for each
pathway.

An important issue we are now facing is related to the future development of
energy pathways and its associated uncertainty. Such development is linked to
critical environmental, technological and economical issues. Each energy pathway
will have to deal with major changes in the future, such as availability and
rate of depletion of resources, globalization and energy source supply, evolution
of the resource potential when considering renewable energies, or technological



developments. Uncertainties associated with these key parameters are significant
and inherent to the prospective nature of the assessment.

Running scenarios is essential when handling prospective assessments. It has
been applied in numerous fields and extensive research work has been undertaken
to develop scenario-based LCA models [31]. Several types of scenarios can be
distinguished depending on the purpose of the study [3]:

– Predictive scenarios, which answer the question ”What will happen?” Pre-
dictive scenarios types are forecasts (the likely scenario occurs) and what-if
(conditioned to some specific events). What-if scenarios are meant to be
defined for simple objects and short-term studies.

– Explorative scenarios, which answer the question ”What can happen?” They
are external (related to exogenous conditions) and strategic (conditioned to
some actions completed in a certain way). Cornerstone scenarios [31] are
also defined as explorative scenarios and are meant for complex objects and
long-term approaches.

– Normative scenarios, which answer the question ”How can a specific target
be reached?”

In our case, we are concerned by both predictive and explorative scenarios. Our
goal is to assess the environmental performance of energy pathways, based on
renewables and operating in 2050. Environmental performance is defined as the
ratio of environmental impacts estimated by LCA to the electricity produced
over the entire life cycle, corresponding to impacts per kWh produced. The
prospective impacts depend on the future available technologies, more related to
explorative scenarios. The prospective electricity production depends on future
available energy resources (e.g., solar irradiation for photovoltaic systems, wind
distribution for wind turbines), more related to predictive scenarios. The overall
scenario needed to assess the prospective performance of energy pathways can
be qualified as a cornerstone scenario [31], since it is partly explorative, meant
for a long-term projection, and the considered system is complex.

In most studies, scenarios are defined with single values for each parameter
over a predefined range of values and environmental impacts are assessed in a de-
terministic way. Inherent uncertainties related to these prospective assumptions
are however not considered.

This paper describes a methodology to account for these uncertainties and to
identify the key parameters inducing most of the uncertainties in these prospec-
tive performances. This methodology is based on the following steps:

1. Identification of the potential parameters to be considered (technological,
geo-localization of the supply material, among others) for a given time hori-
zon and a given area of energy production. Generation of a parametrized
model of environmental performance based on these parameters.

2. Characterization of the parameter changes between the current and future
situation. Definition of the uncertainties associated with future input pa-
rameter values. Different strategies to associate a distribution to these un-
certainties are given.



3. Generation of the distribution of future environmental performances by ap-
plying Monte-Carlo simulations. Comparison between current and prospec-
tive environmental performance.

4. Key parameters identification and ranking with a global sensitivity analysis
(GSA) based on Sobol indices.

5. Discussion and recommendations on specific key parameters inducing most
uncertainties in the performance.

This methodology is applied to assess prospective environmental performance
related to GHG emissions of photovoltaic (PV) systems (CdTe technology) in-
stalled in the South of Spain in 2050, given our defined cornerstone scenario. This
cornerstone scenario is based on projections of developments of PV technologies,
market share, and solar irradiation. Following the methodology, we are able to
identify the key parameters explaining most uncertainties in the prospective en-
vironmental performance. These key parameters need to be predicted with more
accuracy than the others to reduce the results’ uncertainties. However, some of
these key parameters may be impossible to predict, such as the manufacturing
market share. Identifying them as key parameters informs us that it is essen-
tial to consider and explore their different possible developments in order not to
underestimate results’ uncertainties.

2 Methodology description

2.1 Definition of a parametrized LCA model

We need to define as a first step a parametrized LCA model depending on a
limited number of input parameters, to assess the prospective environmental
performance of an electricity generation system based on renewable energy, and
compare them to current performance. In this paper, the considered impacts are
one dimensional, such as climate change impacts related to GHG emissions and
expressed in grams of CO2 equivalent, leading to performance in gCO2eq/kWh.
The following steps are to be taken to define this model :

1. Definition of the objective of the study and the boundaries of the
considered system As in any LCA, this step is essential. The functional
unit must be defined and the limits of the system made explicit. The tech-
nology considered, the geographical localization of the system, the temporal
horizon (for which time horizon the prospective is made), and the method-
ology must be specified.

2. Identification of the input parameters of the parametrized model
These parameters are assumed to be characteristic of the system and are
likely to vary in the future. Their identification can be based on a litera-
ture review and/or discussions with experts. Their current values are known
based on real observations, and their future values are predicted with more
or less uncertainty. These n parameters are denoted x1, ..., xn. They must
be independent (requirement for computing Sobol indices, see Sect. 2.4); if



not, dependency relations must be specified to obtain a set of independent
parameters.

3. Definition of the parametrized impacts model
First a parametrized Life Cycle Inventory (LCI) is realized. For parameters
not made explicit, data from a LCI database, such as EcoInvent [9], are used.
This parametrized LCI is converted into a parametrized LCA model by using
the characterization factors corresponding to the considered impacts. This
model is denoted fi(x1, ..., xn).

4. Definition of a parametrized model of electricity generation
It estimates the electricity produced by the system over its entire production
phase, and it is denoted fe(x1, ...xn).

5. Definition of a parametrized model of environmental performance
It is obtained by combining the parametrized impacts and electricity gener-

ation models: fp(x1, ..., xn) =
fi(x1, ..., xn)

fe(x1, ..., xn)
.

These steps to define a parametrized LCA model have already been implemented
by Padey et al (2013) [30] to assess the variability of an energy pathway.

2.2 Characterization of the parameters changes between the
current and future situation and their future uncertainties

The current values xt01 , ..., x
t0
n of the input parameters, and predicted future val-

ues xt11 , ...x
t1
n must be identified, in order to apply the parametrized model fp

and assess the current and future environmental performance.
Uncertainties consideration is a big issue in LCA. Uncertainties can affect dif-
ferent modeling components, the parameters, scenarios, and models; they can
occur at different stages of the analysis, during the goal and scope definition,
the inventory analysis, and the impact assessment; and they can have various
sources (e.g., [12]). In this paper, we focus on future input parameter uncertain-
ties, inherent to the prospective approach. We do not consider uncertainties for
current input parameter values.

Uncertainties on future parameter values may be represented by considering
these parameters as random variables, denoted X1, ..., Xn, characterized by a
distribution instead of a simple scalar value. Note that uncertainties distribu-
tions can be continuous (e.g., technology efficiency) or discrete (e.g., country
of manufacture). Depending on the type of parameters and available sources of
information, different strategies may be used to characterize uncertainty distri-
butions (e.g., [12]):

Case 1 In the best case, projections of a parameter are provided with their associ-
ated uncertainty distribution. It is the case for parameters provided in the
ecoSpold format [13].

Case 2 If enough projections of a parameter can be found, a distribution can be
estimated by distribution fitting. A statistical test can be used to check the
validity of the fit, such as a Chi-square goodness-of-fit test, or a Kolmogorov-
Smirnov test.



Case 3 If the projection of a parameter is provided with qualitative information, the
methodology defined by Weidema and Weismaes (1996) [40] based on the
Pedigree matrix and Data Quality Indicators can be applied.

Case 4 If projections of a parameter are provided for several different scenarios,
values for extreme scenarios may be used to define the uncertainty range, and
depending on the likelihood, different types of distribution can be used. For
instance, if there are 3 scenarios, a pessimistic, a realistic, and an optimistic,
a normal or lognormal distribution may be used, with a median equal to
the value provided in the realistic scenario, and a 99% confidence interval
bounded by the values provided in the pessimistic and optimistic scenarios
1. This strategy allows to transform a set of deterministic projections into
an probabilistic projection associated to a distribution.

Case 5 For decadal projections of climate resources based on climate models, projec-
tions from different models can be used to represent the range of possibilities,
assuming that most uncertainty is attributed to the model uncertainty [38].

Case 6 In the worst case, the projection of a parameter is provided without any
other information. If it is physically plausible, the uncertainties distribution
could be assumed as normal, centered on the prospective value with an 99%
lower bound equal to the current parameter value.

2.3 Comparison between current and prospective environmental
performances

Current and prospective performances are computed with the parametrized
model defined in Sec. 2.1 applied to current and prospective input parameters
values given in Sec. 2.2. The distribution of prospective performances is obtained
with Monte Carlo simulations.

2.4 Identification of parameters inducing most uncertainties in the
prospective environmental performance

We assume that we know the uncertainties’ distribution of each input parameter.
The performance becomes a random variable, denoted Y = fp(X1, ..., Xn). Using
Sobol sensitivity indices [37], it is possible to identify input parameters inducing
most variability in the results, in our case it corresponds to parameters whose
uncertainties induce most uncertainties in the performance.
More precisely, the contribution of the input parameter Xi to the total variance
is quantified with the first order Sobol index, defined as:

Si =
V ar(E(Y/Xi))

V ar(Y )
(1)

1 A lognormal distribution can be used for asymmetric distributions, and normal for
symmetric distributions. For a normal distribution with median µ and standard devi-
ation σ, 99% of values are found within [µ−3σ;µ+3σ]. For a lognormal distribution
with median µ∗ and geometric standard deviation σ∗, 99% of values are found within
[µ∗/σ∗3;µ∗ ∗ σ∗3].



where V ar is the variance. The definition of Sobol indices is based on variance
decomposition and requires the independence of the input parameters X1, ...Xn.
The first order Sobol indices can be computed using Monte Carlo simulations.
The brute force method would be, for each input parameter Xi, to run a set
of M Monte Carlo simulations to estimate E(Y/Xi) for a fixed value of Xi and
then repeat the procedure for different values of Xi, leading to a total cost of M2

(with M being large). Saltelli (2012) [35] proposed a faster procedure, requiring
M(n+ 2) runs (n being the number of input parameters).

Sobol indices have already been used in LCA of energy systems by Padey
et al. (2013) [30], not to identify parameters inducing most performance uncer-
tainties, but to identify parameters inducing most performance variability due
to the variability of systems within one energy pathway.

3 Methodology application

We apply the methodology described above to a residential building-integrated
PV system, whose characteristics are given below. Although realistic, this ap-
plication is simplified. The performance model could be refined by taking into
account more input parameters, as detailed below in the boundaries of the sys-
tem and in the assumptions made when identifying the input parameters of the
parametrized model.

3.1 Definition of the parametrized LCA model

Definition of the objective and boundaries of the study
Objective: Assess the current and prospective global warming performance in
gCO2eq/kWh of a residential PV system with the following characteristics:

– Technology: building-integrated system based on the CdTe technology and
with a peak power P of 3kWp.

– Geographical: system installed in the South of Spain at a latitude of 37◦N
and a longitude of 5◦W . The PV panel faces due South and is inclined at an
angle equal to the latitude (37◦N in our case).

– Temporal: The prospective time horizon is 2050.

– Methodology: Except for input parameters, data come from the ecoinvent
v2.2 database [23]. The characterization factor to assess the global warming
impact is from IPCC 2007 with a time horizon of 100 years [19].

Boundaries: The manufacturing and production phase of the panel are consid-
ered. As stated above, it is a simplified application; so for the sake of simplicity,
we do not consider the end-of-life phase and we omit the impacts related to
transportation. Although transportation has been shown to have secondary ef-
fects (e.g., [1]), it should be taken into account in a more detailed study.



Identification of the input parameters of the parametrized model
A literature review mostly based on [7], [10], [23], [26], [20], and [14] led us to
the identification of the following parameters:

– Life-time of the PV system (technological parameter), denoted LT and ex-
pressed in years (yr).

– Efficiency of the module (technological parameter), denoted η and expressed
in percentage.

– CdTe layer thickness in the PV cell (technological parameter), denoted e and
expressed in µm.

– Material utilization rate to produce the CdTe layer (technological parame-
ter), denoted U and expressed in percentage. It corresponds to the utilisation
rate of CdTe in the manufacturing process of the cell.

– Performance ratio (technological parameter), denoted PR and expressed in
percentage. It corresponds to a correction factor to consider deviation from
ideal conditions (dust, shadowing effects,...).

– Module manufacturing origin (parameter related to the supply chain).
– Electricity mixes in the manufacturing countries (parameter related to the

supply chain).
– Irradiation, denoted Ir and expressed in kWh/(m2.yr). It corresponds to the

yearly irradiation taking into account the orientation and the tilt of the PV
panel.

Figure 1 summarizes the relations between the identified characteristic param-
eters and the considered system. The surface S of the panel depends on the

peak power P and the efficiency η of the module with S =
P

η
. The CdTe

layer thickness e and the material utilisation rate U determine the mass of

CdTe necessary for the production of 1m2 of module: mCdTe =
eµCdTe

U
, with

µCdTe = 6200kg/m3 being the density of semiconductor in the layer [26].
The following assumptions are made :

– Two inverters are used over the life-cycle, independently of the life-time of
the system. It is the current situation, since the mean life-times of inverters
and PV panel are, respectively, 15 and 30 yr. It thus assumes that these
life-times will evolve in parallel, which is a realistic assumption according to
experts ([20]).

– No module degradation is considered, this should be incorporated in a more
realistic study.

– The electricity consumption during production processes is considered con-
stant, since no prospective values could be found. This should be modified
for a more realistic study.

Specification of the parametrized impacts model
The model is built with the help of Simapro software. It is based on ecoinvent
data v2.2 [23] for the processes ”Photovoltaic laminate CdTe/DE”, ”inverter
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Fig. 1. Simplified parametrized model of the global warming performance for a resi-
dential PV panel based on the CdTe technology.

2500W at plant/RER”, ”Slanted-Roof construction, integrated”, and ”electric
installation photovoltaic plant, at plant/CH” that we parametrize as a function
of the input parameters. Impacts are then obtained by combining these data
with characterization factors from IPCC 2007 with a time horizon of 100 years
[19]. The resulting parametrized model for the impacts is specified in Appendix
4.

Specification of the parametrized model of electricity generation
The electricity produced over the life cycle is based on the yearly mean produc-
tion:

fe(LT,PR, Ir) = LT.PR.Ir.η.S = LT.PR.Ir.P (2)

where LT, PR, Ir, η, S and P are, respectively, the panel life-time, the per-
formance ratio, the irradiation, the efficiency, the panel surface and the peak
power, defined in Sec. 3.1 (bold letters indicate varying parameters).

Specification of the parametrized performance model
The global warming performance model is obtained by combining the parametrized
impacts model (specified in Appendix 4) and the parametrized model of elec-
tricity generation defined in (2):

fp(η, e,U, Ielec,LT,PR, Ir) =
fi(η, e,U, Ielec)

fe(LT,PR, Ir)
(3)

This model was implemented in the Python programming language.



3.2 Characterization of parameter changes between the current and
future situation and their future uncertainties

The definition of the future situation, identified as a cornerstone scenario, re-
quires the characterization of uncertainties’ distributions of input parameters.
This characterization is made using the different strategies summarized in Sec.
2.2.

Values for ”life-time”, ”module efficiency”, and ”CdTe layer thickness” come
from [20]. In this study, 3 scenarios are defined: a pessimistic one with limited
improvements, a realistic scenario with reasonable improvements, and an opti-
mistic scenario using the best available predictions for parameters identified as
key for the CdTe technology. We derive a probability distribution for these pa-
rameters based on the values given for the 3 scenarios, as explained in Case 4 of
Sec. 2.2.

Values and uncertainty range for the ”material utilization rate” are similarly
derived from [26] (Case 4 of Sec. 2.2).

Current and prospective values (for 2030 and not 2050) for the ”performance
ratio” were extracted from [7], but no uncertainty range could be found. The
lower bound of the confidence interval is thus assumed equal to the current value,
and a normal distribution with a median equal to the prospective value (Case 6
of Sec. 2.2).

Currently, module manufacturing is shared between Germany (22%), the
USA (12%), and Malaysia (65%) [6]. No prospective data about module man-
ufacturing countries could be found, as it is almost impossible to predict such
parameter at such lead time. It is fundamentally associated to financial markets,
regulating policies, economic measures, with time scales shorter than a decade.
We thus explore 3 possibilities with equal probability: a share identical to the
current situation, an occidental share (50% Germany and 50% USA), and an
Asian share (50% Malaysia and 50% China).

Current estimates of the irradiation are derived from MERRA reanalysis
[34].This dataset results from a combination of climate model fields and irreg-
ular observations in space and time, from 1979 to the present (satellite-area),
using data assimilation. Monthly estimates of surface incident shortwave flux at
a latitude of 37◦N and a longitude of 5◦W are converted into global tilted irra-
diation considering that the panel faces South and is inclined at an angle equal
to the latitude (see 4 for more details). The mean for the 1985-2013 period is
used as the current value for irradiation.
The percentage variation of irradiation between the present and the future sit-
uation (i.e. for a panel operating from 2050 to 2080 on average) is derived from
regional climate model (RCM) simulations for the period 1950-2100 with a ”mod-
erate” emissions scenario (scenario A1B, [19]), part of the ENSEMBLE-RT2B
database [5]. Contrary to MERRA data, no observations are incorporated in
these simulations, they aim at modeling climate tendency, and not at providing
accurate predictions for a given year, consistent with a cornerstone scenario. We
use simulations from 4 different RCMs: C4I from the Swedish meteorological
service [22], KNMI from the Dutch meteorological service [39], MPI from the



Table 1. Current and prospective values of considered LCI parameters, as well as their
associated uncertainties range (99% confidence interval). Note that no uncertainties are
considered for future electricity mixes of manufacturing countries.

Parameter Current LCI Prospective LCI

Life-time
30 yr [20] Normal distribution, median: 35 yr [20]

[23] Uncertainty range:[30; 40] [15]

Module efficiency
11.7% [20] Lognormal distribution, median: 19.9% [20]

[23] Uncertainty range:[17.7; 22.7] [11]

Performance ratio
78 % [7] Normal distribution, median: 83 % [7]

Value given for 2030 and not for 2050,
without associated uncertainties

CdTe layer thickness
3µm [20] Lognormal distribution, median: 1µm [20]

[14] Uncertainty range:[0.1; 2] [26]

Material Utilization 55 % [26] Normal distribution, median: 85 % [26]
rate Uncertainty range:[70; 99]

MERRA re-
analysis

[34] Based on projections from 4 Regional Cli-
mate Models (ENSEMBLES project)

[5]

Irradiation at 37◦N,
4◦W

Mean irradi-
ation 1985-
2013 2169.7
kWh/(m2.yr)

Irradiation from MERRA for 1985-2013
+ changes between 1985-2013 and 2050-
2080 estimated from the projections
based 4 regional climate models.
Normal distribution for changes, median:
+3.3%,
uncertainty range:[+1.2; +5.5]

CdTe module manu-
facturing origin

Germany: 22%,
Malaysia:65%,
USA:12%

[6] 3 explorative possibilities with equal
probability: Current share, Occidental
share (50% Germany, 50% USA), and
Asian share (50% Malaysia, 50% China)

Electricity mix of Data from [16] Prospective for 2035 [16]
manufacturing coun-
tries

2009 based on the ”New Policies Scenario”, No
uncertainties range is considered

Max Planck Institute for Meteorology in Hamburg [21], and SMHI from the
Swedish Meteorological and Hydrological Institute [24]. Similarly to MERRA
data, monthly estimates of surface incident shortwave flux at a latitude of 37◦N
and a longitude of 5◦W are converted into global tilted irradiation, before com-
puting 30 years averages over the periods 1985-2015 and 2050-2080. The varia-
tion percentages between averages over these two periods ranges between 1.2%
and 5.5% depending on the model, reflecting small changes of future irradia-
tion, consistent with [33]. Note that similar values are obtained when shifting
the averaging periods by ±5 years. This range is used as the 99% confidence
interval for the variation percentage of irradiation (Case 5 of Sec. 2.2), and a
normal distribution is assumed. These variations percentages are added to the
1985-2013 mean from MERRA irradiation.

http://www.ensembles-eu.org/


3.3 Comparison between current and prospective global warming
performances

According to the parametrized model defined in Sec. 3.1, the current global
warming performance of the considered PV system reaches 23.1 gCO2eq/kWh
(represented by the dashed-dotted line in Fig.2). Although the parametrized
performance model could be further refined, this figure is consistent with the
literature [7] [29].

The distribution of prospective global warming performances, obtained with
future parameter values specified in Table 1 (right column), is shown in Fig.2
by the histogram. The mean value of the prospective performance distribution
equals 9.8 gCO2eq/kWh, its standard deviation is 0.77 gCO2eq/kWh, and val-
ues range between 6.9 and 13.9 gCO2eq/kWh. The mean value is consistent
with the prospective value obtained in [7] for 2030 (equals to 10 gCO2eq/kWh).
These prospective performances are significantly lower than the current value,
the maximum prospective value being even 40% smaller than the current per-
formance.

The lines on the left-hand side of Fig.2 (on the left part) indicate the prospec-
tive performances obtained with median prospective values of input parame-
ters (right column of Table 1) and for a fixed share of manufacturing countries
(dashed line for the Occidental share, dotted line for the current share, and solid
line for the Asian share). Not surprisingly, a higher value is obtained for the
Asian share, where the electricity mix will remain mostly based on coal; and a
lower value for the Occidental share, where the electricity mix will rely on more
renewable energy. Given the differences between these performances, the market
share seems to considerably influence the prospective performances, as will be
shown and discussed in the next section.

3.4 Identification of parameters inducing most uncertainties in the
prospective environmental performance

As described in Sec. 2.4, Sobol indices are computed to estimate the contribu-
tions of the different parameters to results’ uncertainties, more precisely to the
variance of the results that is induced by input parameters’ uncertainties. The
most important parameter is life time (SLT ∼ 41% of the total variance), fol-
lowed by the share of module manufacturing origin (Sorigin ∼ 37%), efficiency
(Sη ∼ 18%), and performance ratio (SPR ∼ 7%). Uncertainties on irradiation,
CdTe layer thickness, and material utilization rate have almost no impact on the
results uncertainties (their Sobol indices are smaller than 3%). If one wants to
narrow uncertainties on prospective global warming performance, uncertainties
on prospective life time must be reduced as a priority.

These results also show that the share of module manufacturing origin, which
is almost unpredictable at such lead time, highly contributes to the variance
of the results. It is, therefore, important to take into account all conceivable
possibilities for this parameter in the analysis, in order not to underestimate
uncertainties on the prospective performances. Indeed, if only one possibility
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gCO2eq/kWh

Fig. 2. Distribution of prospective global warming performances in gCO2eq/kWh (his-
togram), calculated with input parameters specified in Table 1 (right column). The
three lines on the left indicate prospective values obtained with median prospective
values of input parameters and for a fixed share of manufacturing countries: 22% Ger-
many, 12% USA, 65% Malaysia for the dotted line; 50% Germany and 50% USA for the
dashed line; 50% Malaysia and 50% China for the solid line. The current performance
is indicated by the dashed-dotted line, and obtained from input parameters specified
in Table 1 (left column).

for the share of module manufacturing origin is considered (e.g, the current
share), the performance standard deviation drops from 0.77 gCO2eq/kWh to
0.61 gCO2eq/kWh, corresponding to a decrease of 37% in the variance.

4 Summary and discussion

In this paper, we proposed a methodology to assess the prospective environmen-
tal performance of an electricity generation system based on renewable energy, as
well as the associated uncertainties, and to identify parameters contributing the
most to these uncertainties based on global sensitivity analysis. The latter need
to be predicted with more accuracy in order to reduce the results’ uncertainties.

Prospective LCA of electricity generation systems can be found in the lit-
erature (e.g., [7], [32]) but, to our knowledge, uncertainties are not estimated,
although essential to any predictive approach. Our approach is original in con-
sidering these uncertainties and in identifying parameters contributing most to
performance uncertainties.
Another original feature of this work is the combination of different types of
predictions (projections of technology evolutions, climate predictions to estimate
future renewable resources, and projections of market share evolution), coming
from different types of scenarios, both predictive and explorative.



The methodology was applied to the global warming performance of a resi-
dential PV panel based on CdTe technology, installed in the South of Spain and
operating in 2050. We showed that performance decreases significantly compared
with the current situation, from 23.1 gCO2eq/kWh to 9.8 gCO2eq/kWh on av-
erage with a standard deviation of 0.77 gCO2eq/kWh due to uncertainties. The
latter were mostly explained by uncertainties in the life time parameter and in
the share of module manufacturing origin. Uncertainties in life time should be
thus reduced to narrow performance uncertainties. It is not possible to reduce
uncertainties on market share, since this parameter is hardly predictable; but it
shows that possible values must be considered to avoid underestimating results
uncertainties.

The methodology was illustrated for a system installed at a given location,
but we could easily extend the methodology to create maps of future environ-
mental performances at any location. Indeed, irradiation values were taken from
MERRA reanalysis and regional climate models, which provide spatio-temporal
irradiation that can be combined to other data to obtain maps of environmental
performance. Maps allow to geographically optimize installations of PV systems
with other sources of energy and to know where new installations of PV systems
should be prioritized. Maps of environmental performance for PV have already
been produced [27], but not yet for any prospective assessment.

It should be emphasized that parameters identified as key in this methodology
correspond to parameters mostly contributing to the performance variance that
is induced by input parameters uncertainties. It would also be interesting to
identify another type of key parameters: those whose variations between the
current and future situations induce most performance changes. However, it is
not an easy task, since the performance model is non-linear and changes cannot
be considered as local (so that a first order Taylor expansion would not give
accurate results).
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Appendix A: Specification of the parametrized impacts
model

From Sec. 3.1 results the following parametrized impacts model for a residential
PV panel based on the CdTe technology:

fi(η, e,U, Ielec) = Iwir + Iinv + Isup.
P

η
+ Imod(e,U, Ielec).

P

η

where:

Imod(e,U, Ielec) = α1 + β1.Ielec +
e.µCdTe

U
.Icdte(Ielec) (4)



Icdte(Ielec) = α2 + β2.Ielec +m1.(α3 + β3.Ielec +m3.ITe)

+ m2.(α4 + β4.Ielec +m4.(α5 + β5.Ielec)) (5)

with:
- Ielec being the gCO2eq/MJ of electricity, obtained by combining the module
manufacturing origin and the electricity mix of the corresponding countries,
- Iwir, Iinv, Isup, Imod, and Icdte being the gCO2eq of, respectively, the wiring
system, the 2 inverters, 1m2 of the buiding-integrated support, 1m2 of module,
and 1kg of laminate CdTe,
- α1 being the gCO2eq/m2 of module without considering the electricity con-
sumption, or the production of laminate CdTe,
- α2 being the gCO2eq/kg of laminate CdTe without considering the electricity
consumption, or the production of semicondutors Cd and Te,
- α3 (α4) being the gCO2eq/kg of semiconductor Te (Cd) without considering
the electricity consumption, or the production of Te (Cd),
- α5 being the gCO2eq/kg of Cd without considering the electricity consump-
tion,
- ITe being the gCO2eq/kg of Te,
- β1, β2, β3, β4, and β5 being the MJ of electricity necessary to produce 1kg of,
respectively, laminate CdTe, semiconductor CdTe, semiconductor Te, semicon-
ductor Cd, and Cd,
- m1, m2, m3, and m4 being the mass of semiconductor Te, semiconductor Cd,
Te, and Cd necessary to produce 1kg of CdTe.

Appendix B: From monthly horizontal irradiation to
irradiation on inclined surfaces

Monthly horizontal irradiation, Gm, is converted into irradiation on inclined
surfaces, GTIm, using algorithms defined in the European Solar Radiation Atlas
[36]. It is based on the following steps:

1. Conversion of Gm into daily horizontal irradiation, denoted Gd, and calcu-
lation of the daily diffuse radiation Dd from Gd using the empirical model
of Erbs et al (1982) [8].

2. Estimation of hourly global horizontal irradiation (Gh) and hourly diffuse
radiation (Dh) fromGd andDd using the relations defined in Collares-Pereira
and Rabl (1979) [4] and Liu and Jordan (1960) [25], respectively. The hourly
direct radiation, Bh, is then derived with: Bh = Gh −Dh.

3. Calculation of the hourly global tilted irradiation, GTIh, as the sum of the
three components: direct irradiation Btilted

i , diffuse irradiation Dtilted
i , and

reflected irradiation Rtilted
i . Btilted

i is obtained with a geometric relation.
Dtilted
i is derived using the Muneer algorithm (1990) [28]. Rtilted

i is calculated
from Gh, the tilt angle, and the ground albedo (assumed equal to 0.2).

4. Conversion of GTIh into GTIm.
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[5] Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C., Jacob, D., Lenderink,
G., Christensen, O.: The spread amongst ensembles regional scenarios: regional
climate models, driving general circulation models and interannual variability.
Clim. Dynam. 38(5-6), 951–964 (2012)

[6] Dominguez-Ramos, A., Held, M., Aldaco, R., Fischer, M., Irabien, A.: Carbon
footprint assessment of photovoltaic modules manufacture scenario. In: Proc. 20th
Eur. Symp. Comput. Aided Process Eng (2010)

[7] Dominguez-Ramos, A., Held, M., Aldaco, R., Fischer, M., Irabien, A.: Prospective
co2 emissions from energy supplying systems: photovoltaic systems and conven-
tional grid within spanish frame conditions. Int. J. Life Cycle Ass. 15(6), 557–566
(2010)

[8] Erbs, D., Klein, S., Duffie, J.: Estimation of the diffuse radiation fraction for
hourly, daily and monthly-average global radiation. Sol. energy 28(4), 293–302
(1982)

[9] Frischknecht, R., et al.: The ecoinvent database: Overview and methodological
framework (7 pp). Int. J. Life Cycle Ass. 10(1), 3–9 (2005)

[10] Fthenakis, V., Frischknecht, R., Raugei, M., Kim, H.C., Alsema, E., Held, M.,
de Wild-Scholten, M.: Methodology guidelines on life cycle assessment of photo-
voltaic electricity. Tech. rep., IEA-PVPS Task 12 (2011)

[11] Garabedian, R.: First solar technology update. Tech. rep., First solar Inc. (2013)
[12] Heijungs, R., Huijbregts, M.: A review of approaches to treat uncertainty in lca.

Orlando, Fla.: Elsevier (2004)
[13] Heijungs, R., Frischknecht, R.: Representing statistical distributions for uncertain

parameters in lca. relationships between mathematical forms, their representation
in ecospold, and their representation in cmlca (7 pp). Int. J. Life Cycle Ass. 10(4),
248–254 (2005)

[14] Houari, Y., Speirs, J., Candelise, C., Gross, R.: A system dynamics model of
tellurium availability for cdte pv. Prog. in Photovoltaics 22(1), 129–146 (2014)

[15] IEA: Technology roadmap: solar photovoltaic energy. Tech. rep., International
Energy Agency (2010), Link

[16] IEA: World energy outlook. Tech. rep. (2011), link
[17] IEA: co2 emissions from fuel combustion, highlights. Tech. rep. (2013), link
[18] IEA: Key world energy statistics 2013. Tech. rep. (2013), Link
[19] IPCC: Climate change 2007. ipcc fourth assessment report. the physical science

basis. Tech. rep. (2007), Link
[20] Itten, R., Wyss, F., Frischknecht, R.: Lci of the global crystalline photovoltaics

supply chain and of future photovoltaics electricity production. Tech. rep., Treeze
Ltd, Uster, Switzerland (2014)

http://www.climatechange2013.org/images/report/WG1AR5_Chapter10_FINAL.pdf
http://www.iea.org/publications
http://www.iea.org/publications/freepublications/publication/name,37085,en.html
http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2013.pdf
http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf
http://www.ipcc.ch/ipccreports/ar4-wg1.htm


[21] Jacob, D.: A note to the simulation of the annual and inter-annual variability
of the water budget over the baltic sea drainage basin. Meteorol. Atmos. Phys.
77(1-4), 61–73 (2001)

[22] Jones, C.G., Willén, U., Ullerstig, A., Hansson, U.: The rossby centre regional
atmospheric climate model part i: model climatology and performance for the
present climate over europe. AMBIO 33(4), 199–210 (2004)

[23] Jungbluth, N., Stucki, M., Flury, K., Frischknecht, R., Büsser, S.: Life cycle in-
ventories of photovoltaics. ESU-services Ltd., Uster, CH (2012)

[24] Kjellström, E., Bärring, L., Gollvik, S., Hansson, U., Jones, C.: A 140-year sim-
ulation of european climate with the new version of the rossby centre regional
atmospheric climate model (rca3). SMHI reports meteorology and climatology
108 (2005)

[25] Liu, B.Y., Jordan, R.C.: The interrelationship and characteristic distribution of
direct, diffuse and total solar radiation. Solar Energy 4(3), 1–19 (1960)

[26] Marwede, M., Reller, A.: Future recycling flows of tellurium from cadmium tel-
luride photovoltaic waste. Resources, Conservation and Recycling 69, 35–49 (2012)

[27] Ménard, L., et al.: Benefit of geoss interoperability in assessment of environmental
impacts illustrated by the case of photovoltaic systems. Selected Topics in Applied
Earth Observations and Remote Sensing, IEEE Journal of 5(6), 1722–1728 (2012)

[28] Muneer, T.: Solar radiation model for europe. Build. Serv. Eng. Res. T. 11(4),
153–163 (1990)

[29] Nugent, D., Sovacool, B.: Assessing the lifecycle greenhouse gas emissions from
solar pv and wind energy: A critical meta-survey. Energ. Policy 65, 229–244 (2014)

[30] Padey, P., Girard, R., le Boulch, D., Blanc, I.: From lcas to simplified models:
A generic methodology applied to wind power electricity. Environ. Sci. Technol.
47(3), 1231–1238 (2013)

[31] Pesonen, H.L., et al.: Framework for scenario development in lca. Int. J. Life Cycle
Ass. 5(1), 21–30 (2000)

[32] Raugei, M., Frankl, P.: Life cycle impacts and costs of photovoltaic systems: cur-
rent state of the art and future outlooks. Energy 34(3), 392–399 (2009)

[33] Remund, J., Müller, S.C.: Trends in global radiation between 1950 and 2100.
In: 10th EMS Annual Meeting, 10th European Conference on Applications of
Meteorology (ECAM) Abstracts, held Sept. pp. 13–17 (2010)

[34] Rienecker, M.M., et al.: Merra: Nasa”s modern-era retrospective analysis for re-
search and applications. J. Climate 24(14) (2011)

[35] Saltelli, A.: Making best use of model evaluations to compute sensitivity indices.
Computer Physics Communications 145(2), 280–297 (2002)

[36] Scharmer, K., Greif, J.: The European solar radiation atlas, vol. 2. Presses des
MINES (2000)

[37] Sobol’, I.: Sensitivity Estimates for Nonlinear Models. Mathematical Modeling
and Computational Experiment 1(4), 407–414 (1993)

[38] Stainforth, D.A., et al.: Uncertainty in predictions of the climate response to rising
levels of greenhouse gases. Nature 433(7024), 403–406 (2005)

[39] Van Meijgaard, E., Van Ulft, L., Van de Berg, W., Bosveld, F., Van den Hurk,
B., Lenderink, G., Siebesma, A.: The knmi regional atmospheric climate model
racmo version 2.1. Tech. rep. (2008)

[40] Weidema, B.P., Wesnæs, M.S.: Data quality management for life cycle invento-
riesan example of using data quality indicators. Journal of Cleaner Production
4(3), 167–174 (1996)


	Lecture Notes in Computer Science
	Introduction
	Methodology description
	Definition of a parametrized LCA model
	Characterization of the parameters changes between the current and future situation and their future uncertainties
	Comparison between current and prospective environmental performances
	Identification of parameters inducing most uncertainties in the prospective environmental performance

	Methodology application
	Definition of the parametrized LCA model
	Definition of the objective and boundaries of the study
	Identification of the input parameters of the parametrized model
	Specification of the parametrized impacts model
	Specification of the parametrized model of electricity generation
	Specification of the parametrized performance model

	Characterization of parameter changes between the current and future situation and their future uncertainties
	Comparison between current and prospective global warming performances
	Identification of parameters inducing most uncertainties in the prospective environmental performance

	Summary and discussion


