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ABSTRACT

The morphological tortuosity of a geodesic path in a medium can be defined as the ratio between its
geodesic length and the Euclidean distance between its two extremities. Thus, the minimum tortuosity of
all the geodesic paths into a medium in 2D or in 3D can be estimated by image processing methods using
mathematical morphology. Considering a medium, the morphological tortuosities of its internal paths are
estimated according to one direction, which is perpendicular to both starting and ending opposite extremities
of the geodesic paths. The used algorithm estimates the morphological tortuosities from geodesic distance
maps, which are obtained from geodesic propagations. The shape of the propagated structuring element
used to estimate the geodesic distance maps on a discrete grid has a direct influence on the morphological
tortuosity and has to be chosen very carefully. The results of our algorithm is an image with pixels p
having a value equal to the length of the shortest path containing p and connected to two considered opposite
boundaries A and B of the image. The analysis of the histogram of the morphological tortuosities gives access
to their statistical distribution. Moreover, for each tortuosity the paths can be extracted from the original
image, which highlights the location of them into the sample. However, these geodesic paths have to be
reconstructed for further processing. The extraction, because applying a threshold on the tortuosities, results
in disconnected components, especially for highly tortuous paths. This reconstruction consists in reconnecting
these components to the geodesic path linking the two opposite faces, by means of a backtracking algorithm.

Keywords: 3D images, fibrous media, geodesic paths, mathematical morphology, tortuosity.

INTRODUCTION

The morphological tortuosity is one of the

measurements which have been processed on 3D

images to characterize a fibrous material called

Thermisorel, and which is made of wooden fibres.

This medium was used as a reference material in

the Silent Wall project for its good properties in

thermal and acoustical insulating (Peyrega et al., 2009;

2010; Peyrega, 2010). The main objective of the

Silent Wall ANR1 project consisted in optimizing the

acoustic properties of fibrous media by modifying their

microstructures. Since the morphological tortuosity

of the microscopic pores has a direct influence on

the acoustic absorption on such a material at the

macroscopic scale, this morphological parameter was

studied for this project.

This paper focuses on methods and algorithms to

estimate the morphological tortuosity of a medium

and to reconstruct on discrete grids in 2D and

3D geodesic paths it contains. After presenting an

algorithm (Decker et al., 1998; Peyrega, 2010) to

estimate the morphological tortuosity of any phase

into 2D and 3D images from geodesic dilations

(Lantuejoul and Beucher, 1981; Serra, 1988; Soille,

2003), we will focus on the influence of the shape

of the propagating structuring elements on this

estimation. Then, the studied phases can be separately

characterized by histograms of tortuosities in the

corresponding directions of propagation. Moreover,

since geodesic propagations are handled by the

algorithm, it is possible to extract the shortest paths in

any direction, i.e., the geodesic paths, linking any point

to two separate components which are in the same

phase. Finally, these methods were applied to 3D X-

Ray CT images of fibrous materials used for acoustic

absorption.

ESTIMATION OF THE

MORPHOLOGICAL TORTUOSITY

DEFINITIONS

Geodesic distance

In order to define the morphological tortuosity, we

must start with the definition of the geodesic distance

1http://us2b.pierroton.inra.fr/Projets/Silent Wall/description.htm
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(Lantuejoul and Beucher, 1981; Serra, 1988; Soille,

2003). Considering two points x and y belonging to

a set X , the shortest paths connecting them, while

constrained to remain in X , are called the geodesic

paths in the geodesic mask X . Thus, using the

definition (Eq. 1) proposed by (Soille, 2003), with

X a connected component of an image, the geodesic

distance Geo DistX (xy) between two points x and y

in X is the minimum length L of all the paths P =
(p1, p2, p3, ..., pn) linking x and y included in X . We

note pi the ith pixel of the path P between x and y

composed of n connected pixels belonging to X .

Geo DistX (xy) =

min{L(P) |p1 = x, pn = y,P⊆ X} . (1)

The geodesic distance between two points x and

y belonging to a medium X is illustrated by Fig. 1.

According to this definition, the distance between

x and w is infinite because both points belong to

two different connected components of the set X .

One of the challenges of this work consists in

estimating a geodesic distance map on a discrete grid.

Previous publications proposed methods to estimate it

in different contexts (Borgefors, 1986; Soille, 1992;

1994; 2003; Coeurjolly et al., 2004).

From a morphological point of view, this can

be processed with geodesic dilations from x to y

into X . In Fig. 2, the propagating fronts are circular,

which is intuitive to estimate a Euclidean distance map

in a continuum framework. However, in this paper,

working on digitized images on a grid of points,

we show to what extent the shape of the structuring

element influences the estimation of the geodesic

distance map.

Morphological tortuosity

We consider two separate subsets A and B of a

medium X , that will be used as propagation sources.

The geodesic distance of a point x ∈ X to a subset A

is defined by Lantuejoul and Beucher (1981), and by

Soille (2003) in Eq. 2.

Geo DistX (x,A) =

min{Geo DistX (xy) ,x ∈ X ,y ∈ A} (2)

The geodesic paths connecting x to A are the

paths corresponding to Geo DistX (x,A) (Soille, 2003).

In the remaining part of the paper, we consider two

parallel planar sources A and B in 3D, and their

separation noted Euclidean Dist (AB). For every point

x ∈ X , the morphological tortuosity corresponding to

the sources A and B is defined as the ratio Eq. 3.

Fig. 1. Geodesic distance in the set X between x and y.

Fig. 2. Geodesic distance in the set X between x and y

estimated by geodesic dilations.

TortuosityXAB
(x) =

Geo DistX (x,A)+Geo DistX (x,B)

Euclidean Dist(AB)
. (3)

In what follows, the morphological tortuosity of

every point of a set X (namely fibres or pores)

will be estimated by means of geodesic dilations

(Lantuejoul and Beucher, 1981; Serra, 1988; Soille,

2003) implemented on a grid of points, since we are

using 3D digitized images of a real material.

Acoustic tortuosity in physics

In acoustics, the tortuosity α(ω) has a physical

interpretation linked to both the frequency ω of

the acoustic wave, and to the geometry of the

microstructure, through which the wave front is

propagating. Moreover, we note α∞ the acoustic

tortuosity for sound waves having an infinite

frequency. According to Allard (1993) and Allard

et al. (1994), we can write the relationship between

the tortuosity α(ω) and the acoustic velocity ~u of

the propagating wave through the microstructure into

Eq. 4.

α∞ = lim
ω→+∞

α(ω) = lim
ω→+∞

〈

~u2
〉

〈~u〉2
. (4)
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Thus, the physical interpretation of α(ω) is
directly linked to both the average acoustic velocity
of the wave and to the morphological tortuosity of the
microstructure. For straight paths, both morphological
and acoustic tortuosities are equal to 1 because in this

case, we can write:
〈

~u2
〉

= 〈~u〉2.

THE ALGORITHM

The algorithm makes use of the geodesic dilation
(Lantuejoul and Beucher, 1981; Serra, 1988; Soille,
2003), defined as follows.

Consider an elementary structuring element
defined on the grid of points from a point and its
nearest neighbours. It defines a connectivity on the
graph generated by the grid, for instance the C4 and
the C8 connectivities starting from a square grid and
the 4 or the 8 nearest neighbours, the C6 and the C26

connectivities on a cubic grid by means of the 6 or
the 26 nearest neighbours. Noting δ (A) the dilation
of a set A by the elementary structuring element, and

δ
(1)
X (A) the geodesic dilation of size 1 defined from the

set X , we have:

δ
(1)
X (A) = δ (A)∩X .

The geodesic dilation of A of size n in X is obtained

after n iterations of δ
(1)
X (A). From its definition,

the result of the geodesic dilation depends on the
choice of the elementary structuring element and
of its corresponding connectivity. In the rest of the
paper, we will compare geodesic paths and geodesic
distances obtained on images with different elementary
structuring elements.

In order to estimate the morphological tortuosities
of every path linking a voxel v of a set X to two
opposite faces A and B of X (Eq. 3), the algorithm
proposed in 3D by Decker et al. (1998) has been used.
It consists of the following steps using morphological
operations such as geodesic dilations (Serra, 1988) to
estimate the geodesic distance map:

1) Estimation of the geodesic distance of each voxel
of the medium X to the face A:
→ ImGeoDistForward

2) Estimation of the geodesic distance of each voxel
of the medium X to the face B:
→ ImGeoDistBackward

3) Addition of both images:
ImGeoDistForward + ImGeoDistBackward

→ ImAddFwdBwd

4) Infinum of both images:
INF(ImGeoDistForward, ImGeoDistBackward)
→ ImInfFwdBwd

5) Extraction of the percolating paths:

IF ImInfFwdBwd ≥ 0:

ImTortuosity = ImAddFwdBwd,

ELSE:

ImTortuosity = 0

6) Normalization of ImTortuosity by the Euclidean

distance between A and B to get the tortuosity

This algorithm is illustrated in 2D by the Fig. 3

but its principle is the same in 3D. Let X be the

set composed of every connected components (white,

green and pink) different from the background in

black. Let the top A and bottom B faces be the so-called

marker-faces used as markers to be dilated into the set.

Fig. 3. Estimation of the tortuosity into the white set

between the top (blue) and the bottom (red) faces.

The steps 1 and 2 calculate the geodesic distance of

each pixel of the set X respectively to the top and to the

bottom faces. After these two steps, the components

in pink are eliminated because they are not connected

to a marker-face and consequently not reached by the

propagating fronts in the vertical Oy direction.

The results of step 3, ImAddFwdBwd, is an image

where the value of each pixel of the white component

of X is the length of the geodesic path linking the

two marker-faces and going through the corresponding

pixel. However, the pixels in the green components

of X are just linked to one marker-face and are then

eliminated by steps 4 and 5, which isolate all the pixels

belonging to the paths linking the two marker-faces.

The pixels of the background are set to zero elsewhere.

Finally the resulting image ImTortuosity, giving for

each pixel the tortuosity of the shortest paths in which

it is contained, is then normalized by the Euclidean

distance between both marker-faces.
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INFLUENCE OF THE

PROPAGATING STRUCTURING

ELEMENT

TWO DIFFERENT STRUCTURING

ELEMENTS

The geodesic dilations on a digitized image are

morphological operations and then directly depend

on the shape of the structuring element used (Serra,

1988). Previous publications (Soille, 1992; 1994;

2003; Coeurjolly et al., 2004) highlighted the influence

of the propagating structuring element on the geodesic

distance map. The images processed in the framework

of the Silent Wall project are in 3D. That is why two 3-

dimensional structuring elements have been compared,

on the one hand the cube with 26 neighbors, and on the

other hand the sphere.

Considering the problem of acoustics handled in

the Silent Wall project, the assumption is made that the

wave fronts propagate only outwards in the direction

perpendicular to the marker-faces and do not return

to the source face. Thus the structuring elements are

not isotropic. On the contrary, they are half cubes or

half spheres. The Fig. 5 illustrates structuring elements

with a radius equal to 15 voxels obtained from 3D

dilations of the point-pattern shown in Fig. 4.

(a) (b)

Fig. 4. Pattern of points on the faces and at the center

of a cube. (a) 3D view, (b) 2D projection of the point-

pattern (red: visible points ; blue: invisible points ;

green: central point invisible on the 3D view.)

(a) (b)

Fig. 5. 3D structuring elements of size 15 propagating

in the Oz+ direction on the point-pattern of Fig. 4. (a)

Half cubes, (b) Half spheres.

SQUARES AND CUBES

The 8-connectivity square in 2D

We first used the 8-connectivity square and

26-connectivity cube to estimate the morphological

tortuosity of fibrous media respectively for 2D and

3D images. However their shapes involve problems

of inaccuracy because of their square corners, which

do not correctly suit to estimate the geodesic distance

between two faces of a sample. From a physical point

of view, the cubic propagating fronts do not estimate

a geodesic distance faithful to the definition illustrated

in Fig. 2.

The Fig. 6 shows how rough the estimation of the

tortuosities in the white part represented in Fig. 3 can

be, when it is processed with squares as structuring

elements. The histogram of the tortuosities of this

white part (Fig. 6c) shows that 45% of the pixels of the

path have a tortuosity equal to 2.70, with a maximum

tortuosity equal to 2.89. Moreover according to the

Fig. 6b, the paths with a minimum tortuosity equal to

2.70 (in yellow) are physically incorrect because they

do not follow the curves of the white part in Fig. 3.

To sum up, the 2D square propagating front

underestimates the geodesic distances and then

underestimate the tortuosities. This is observable on

the histogram which has consequently a high number

of pixels with a tortuosity close to 1. This problem is

observable in 3D with cubes as well.
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(c)

Fig. 6. Estimation, from propagations of squares, of

the tortuosities of the 2D white part of Fig. 3. (a)

Forward propagation, (b) Image of the tortuosities

(minimum tortuosity: 2.70 in yellow), (c) Histogram of

the tortuosities.

The 26-connectivity cube in 3D

In 3D the cubic fronts involve a too high number

of pixels having a tortuosity close to 1. Consider a

straight composite tube composed of concatenated big

and small cylinders (Fig. 7). The Fig. 7a represents a

cropped 3D view of the real object in order to see the

fronts inside it.

Thus discontinuities of the fronts are introduced at

the interfaces between big and small cylinders. Since

the structuring element is cubic, these discontinuities

do not deform the propagating fronts enough, that is

why most of them look like plane waves especially in

the first input cylinder on the left (Fig. 7b).

As shown in Fig. 7c and Fig. 7d, 84% of the voxels

have a tortuosity equal to 1 which makes the cube blind

to the discontinuities of the composite tube, when it is

used as propagating structuring element.

(a)

(b)

(c)

0

10

20

30

40

50

60

70

80

90

1 1.01 1.02 1.03 1.04 1.05 1.06

%
 o

f t
he

 v
ox

el
s 

of
 th

e 
pa

th
s 

lin
ki

ng
 th

e 
2 

fa
ce

s

Tortuosity

Tortuosity along a COMPOSITE TUBE (by CUBE)

Tort_TUBE ; AVG: 1.003 ; std_dev: 0.008

(d)

Fig. 7. Tortuosity along a 3D discontinuous composite

tube processed with cubes. (a) Forward propagation,

(b) 2D projection of the forward propagation, (c) 2D

projection of the tortuosities (minimum tortuosity: 1 in

yellow), (d) Histogram of the tortuosities.
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FAST MARCHING DISCRETIZED DISCS

AND SPHERES

The square in 2D and the cube in 3D are irrelevant

to estimate the morphological tortuosity from geodesic

dilations. Intuitively, the disc in 2D and the sphere in

3D are the solutions to this problem. However both

must be discretized on 2D or 3D lattices to be handled

in the image processing algorithm.

The fast marching method

The fast marching was originally introduced by

Sethian (1996). It consists of iteratively solving the

Eikonal equation (Eq. 5) into a narrow band around

the marker seed, with T (p) the arrival time at a point p

of the propagating front starting from the marker seed

p0 (T (p0) = 0), and f the cost function related to the

speed of propagation:

‖∇T‖= f . (5)

The cost function can be compared to the refractive

index n in geometrical optics (Cohen and Kimmel,

1997; Petres et al., 2005). Thus, the speed v(p) of the

front at the point p can be written as a function of the

celerity of light: v(p) = c
n(p) =

c
f (p) . In the case of this

study, the cost function is homogeneous and equal to

1, which leads to fronts propagating at the speed of one

pixel (in 2D) and one voxel (in 3D) per iteration. The

fronts travel outwards and do not return to the source

of the propagation.

As explained by Sethian (1996), solving the

Eikonal equation (Eq. 5) with the fast marching

algorithm is made by solving the second order Eq.

6 in 2D and Eq. 7 in 3D for T(p), with fi, j and

fi, j,k, the cost functions respectively at the pixel (i, j)
and at the voxel (i, j,k). We note Ti, j and Ti, j,k the

arrival time T(p) at the point p respectively (i, j) in 2D

and (i, j,k) in 3D. Thus, the algorithm only handles

the 4-connectivity neighborhood in 2D and the 6-

connectivity neighborhood in 3D of the voxels into the

narrow band.

(

max
{[

Ti, j−Ti−1, j

]

,
[

Ti, j−Ti+1, j

]

,0
})2

+
(

max
{[

Ti, j−Ti, j−1

]

,
[

Ti, j−Ti, j+1

]

,0
})2

= f 2
i, j

(6)

(

max
{[

Ti, j,k−Ti−1, j,k

]

,
[

Ti, j,k−Ti+1, j,k

]

,0
})2

+
(

max
{[

Ti, j,k−Ti, j−1,k

]

,
[

Ti, j,k−Ti, j+1,k

]

,0
})2

+
(

max
{[

Ti, j,k−Ti, j,k−1

]

,
[

Ti, j,k−Ti, j,k+1

]

,0
})2

= f 2
i, j,k

(7)

The algorithm itself is precisely described and

illustrated by Sethian (1996), Cohen and Kimmel

(1997) and Petres et al. (2005). An implementation

using hierarchical priority queues (algorithms 12 and

13) is proposed by (Peyrega, 2010). Moreover, if the

cost function f = 1 inside the geodesic mask and if

f = ∞ outside, then the speed is equal to 1 voxel per

iteration, and the time of arrival T (p) at a point p

inside the geodesic mask is equivalent to the geodesic

distance U(p) between p and the marker seed inside

the mask.

Discs in 2D

To be compared to Fig. 6a, the Fig. 8a represents

the forward propagation from the top to the bottom

of the white part represented in Fig. 3, obtained by

successive geodesic dilations by discs. The fronts have

circular shapes approximating the geodesic distance on

the 2D discretized grid.
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Fig. 8. Estimation, from propagations of discs, of

the tortuosities of the 2D white part of Fig. 3. (a)

Forward propagation, (b) Image of the tortuosities

(minimum tortuosity: 3.01 in yellow), (c) Histogram of

the tortuosities.
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The resulting minimum tortuosity path in yellow

in Fig. 8b is more acceptable that the one in Fig. 6b,
because it correctly follows the interior of the curves
of the white part in Fig. 3. The minimum tortuosity
reached is about 3.01.

The histogram of the tortuosities estimated with
discs (Fig. 8c) is completely different that the one
obtained with a square. It is totally shifted to higher
tortuosities between 3.01 and 3.23 and the reached
tortuosities are more regularly distributed since no
prominent maximum is observable like in Fig. 6c.

Spheres in 3D

Three dimensional propagations with spheres in
the straight composite tube are illustrated in Fig. 9a.
Contrarily to the Fig. 7b, the spherical propagating
fronts in Fig. 9b are influenced by the discontinuities
between the large cylinders, even if the fronts in the
first input cylinder on the left look like plane waves.
Moreover, as soon as the first discontinuity after the
first input cylinder has been passed, the propagating
fronts do not recover their plane wave shapes.

On the contrary, according to Fig. 9c and Fig.
9d the sphere as structuring element is sensitive to
the discontinuities of the paths through which the
fronts propagate. On the one hand the yellow path of
minimum tortuosity equal to 1 in Fig. 9c is logically
exclusively located around the axis of the composite
tube but does not touch the sides of the cylinder as
it was observable in Fig. 7c. On the other hand the
histogram of Fig. 9d still highlights a high number of
voxels with a tortuosity equal to 1 because of the global
straightness of the tube, but it is not blind to higher
tortuosities, as the cube is.

Finally estimating the tortuosities of the paths
through a medium is highly dependent on the shape
of the structuring element used to process the geodesic
distances. Thus the best choice are the disc in 2D and
the sphere in 3D which are more consistent from a
physical point of view to simulate propagating fronts.
Moreover they are more sensitive to the discontinuities
and changes of directions of the paths through which
they propagate. This makes them consequently more
accurate in estimating the tortuosities and especially
high tortuosities.

HALF DISCS AND HALF SPHERES

Considering acoustics, we make the assumption
that the outward propagating fronts globally travel
in a specific direction perpendicular to the origin
faces. Thus half spheres are finally used to estimate

the morphological tortuosity of fibrous media in both

phases (fibres and pores) for the Silent Wall project.

Using half spheres highlights the direct paths linking

the opposite faces.

(a)
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Fig. 9. Tortuosity along a 3D discontinuous composite

tube processed with spheres. (a) Forward propagation

along the tube in 3D, (b) 2D projection of the forward

propagation, (c) 2D projection of the tortuosities

(minimum tortuosity: 1 in yellow), (d) Histogram of the

tortuosities.
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(a) (b)

Fig. 10. Influence of isotropic and half discs on the paths in X1. (a) Isotropic discs, (b) Half discs.

(a) (b)

Fig. 11. Influence of isotropic and half discs on the paths in X2. (a) Isotropic discs, (b) Half discs.

For example, in order to propagate half discs or

half spheres in the increasing Ox direction (noted

Ox+), the Eikonal equation solved into the Fast

Marching (algorithm 12 and 13) is modified as Eq. 8

in 2D, and as 9 in 3D.

(

max
{[

Ti, j−Ti+1, j

]

,0
})2

+
(

max
{[

Ti, j−Ti, j−1

]

,
[

Ti, j−Ti, j+1

]

,0
})2

= f 2
i, j

(8)

(

max
{[

Ti, j,k−Ti+1, j,k

]

,0
})2

+
(

max
{[

Ti, j,k−Ti, j−1,k

]

,
[

Ti, j,k−Ti, j+1,k

]

,0
})2

+
(

max
{[

Ti, j,k−Ti, j,k−1

]

,
[

Ti, j,k−Ti, j,k+1

]

,0
})2

= f 2
i, j,k

(9)

Let X1 and X2 be two sets respectively illustrated

in Fig. 10 and 11. The set X1 is the same as in

Fig. 3, and X2 is slightly different. Like in Fig. 3,

the pink zones are not reached by the propagating

fronts in the vertical Oy direction between both faces

A and B. The green areas are just linked to one

marker-face (A or B). Finally, the white zones are

the percolating paths between both marker-faces in

the direction of propagation. Thus, using half spheres

inside the set X1 (Fig. 10b and 11b) leads to non-

percolating paths in the vertical Oy direction, and

then prevents us from estimating the morphological

tortuosity of it with such a structuring element. On the

contrary, isotropic spheres should be used to process

the geodesic distance maps (Fig. 10a and 11a ).

RECONSTRUCTION OF

GEODESIC PATHS

THRESHOLDING THE TORTUOSITY

In Fig. 8b, the value of each pixel p is equal

to the morphological tortuosity of the geodesic

paths containing p, connecting it to the opposite

marker faces A and B in the vertical Oy direction.

Thresholding this image at a value higher than the

minimal tortuosity inside the yellow path, equal to

3.01 (Fig. 8), will result in components disconnected

from the marker faces A and B (for example the red

parts). Thus these disconnected components must be

reconnected to the marker faces in order to extract

the full geodesic paths from their tortuosities, for
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further morphological characterization or for further

processing like flow simulation. These components

are reconnected to the paths with the minimum

tortuosity. These reconstructions are processed from

source backtracking.

SOURCE BACKTRACKING

The algorithm

Since the fast marching algorithm processes the

voxels in the narrow band around the propagating

front, it is possible to extract the source voxel

in the 4-connectivity (2D) or 6-connectivity (3D)

neighborhood of each voxel of the narrow band. This

source voxel v is the last one from which the time of

arrival at a voxel vn in the narrow band is updated,

and consequently is the nearest voxel from the starting

markers. The source backtracking is directly processed

during the propagation, which does not extend the

processing time.

INPUT images: ImMark, ImSpeed

OUTPUT images: ImSrc4C 6C, ImDistFM

Initialization()1.1

{1.2

Declaration of the Priority Queue FM PQ;1.3

Allocate and initialize all the voxels v of ImLabels1.4

at the value FAR;

Initialize all the voxels v of ImDistFM at ∞;1.5

Initialize all the voxels v of ImSrc4C 6C at 0;1.6

foreach voxel v of ImMark do1.7

if ImMark[v] 6= Value BG then1.8

ImLabels[v]← ALIVE;1.9

ImDistFM[v]← 0;1.10

foreach voxel vn of the 6C-Neighborhood1.11

of v do

ImSrc4C 6C[vn]← RP[v, vn]+1;1.12

if [(ImLabels[vn] = FAR ) &1.13

(ImMark[vn] = Value BG)] then

Speed[vn]←
(

1−
ImSpeed[vn]
VAL MAX

)

;1.14

f[vn]← 1
Speed[vn]

;1.15

ImLabels[vn]← TRIAL;1.16

Add vn into FM PQ with the1.17

priority f[vn];

ImDistFM[vn]← f[vn];1.18

end1.19

end1.20

end1.21

end1.22

}1.23

Fig. 12. Initialization of the Fast Marching algorithm.

FM Loop()2.1

{2.2

while FM PQ is NOT EMPTY do2.3

foreach voxel v of the 1st plateau TP of2.4

FM PQ do

if ImLabels[v] 6= ALIVE then2.5

Top Priority← priority of TP[v] into2.6

FM PQ;

ImLabels[v]← ALIVE;2.7

ImDistFM[v]← Top Priority;2.8

foreach voxel vn in the2.9

6C-Neighborhood of v do

ImSrc4C 6C[vn]← RP[v,2.10

vn]+1;

if (ImLabels[vn] = FAR) then2.11

ImLabels[vn]← TRIAL;2.12

Calculate a 1st estimation of2.13

the arrival time T [vn]0 by

solving the Eq. 7 from f[vn]

and the ALIVE

6C-Neighbors of vn in

ImDistFM;

Add vn into FM PQ with2.14

the priority T [vn]0;

ImDistFM[vn]← T [vn]0;2.15

else2.16

if (ImLabels[vn] = TRIAL)2.17

then

Update the arrival time2.18

Ti, j,k[vn]UPDAT E by

solving the Eq. 7 from

f[vn] and the ALIVE

6C-Neighbors of vn in

ImDistFM;

Add vn again into2.19

FM PQ with its new

priority T [vn]UPDAT E ;

ImDistFM[vn]←2.20

T [vn]UPDAT E ;

end2.21

end2.22

end2.23

end2.24

end2.25

Remove the 1st plateau TP from FM PQ;2.26

end2.27

}2.28

Fig. 13. Iterative loop of the Fast Marching algorithm.

Table 1. Coding square for the 8-connectivity

neighbors vn of v in 2D.

5 6 7

3 v 4

0 1 2
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The instructions in line 1.12 and line 2.10

(respectively in algorithms in Figs. 12 and 13) mean

that the value of a voxel vn of the image ImSrc4C 6C

is equal to the identification number of the relative

position (RP) of the current voxel v compared to its 4-

connectivity (2D) or 6-connectivity (3D) neighboring

voxel vn.

4-connectivity (2D) backtracking

In 2D, the relative positions of the neighbors vn of

v in 4- and 8-connectivities are coded from the Table

1. Thus, the global principle of our source coding,

consists in setting the value of each pixel v of the

geodesic path, to the relative position (7− vn) of the

neighboring pixel vn which has the smallest geodesic

distance to the starting image boundary.

9 
{-1,-1,0} 

0 
{-1,-1,-1} 

1 
{0,-1,-1} 

2 
{1,-1,-1} 

3 
{-1,0,-1} 

4 
{0,0,-1} 

5 
{1,0,-1} 

6 
{-1,1,-1} 

7 
{0,1,-1} 

8 
{1,1,-1} 

6 
{-1,1,-1} 

7 
{0,1,-1} 

8 
{1,1,-1} 

14 
{-1,1,0} 

15 
{0,1,0} 

16 
{1,1,0 } 

23 
{-1,1,1} 

24 
{0,1,1} 

25 
{1,1,1} 

17 
{-1,-1,1} 

18 
{0,-1,1} 

19 
{1,-1,1} 

9 
{-1,-1,0} 

10 
{0,-1,0} 

11 
{1,-1,0} 

0 
{-1,-1,-1} 

1 
{0,-1,-1} 

2 
{1,-1,-1} 

17 
{-1,-1,1} 

0 
{-1,-1,-1} 

20 
{-1,0,1} 

12 
{-1,0,0} 

3 
{-1,0,-1} 

23 
{-1,1,1} 

14 
{-1,1,0} 

6 
{-1,1,-1} 

23 
{-1,1,1} 

24 
{0,1,1} 

25 
{1,1,1} 

20 
{-1,0,1} 

21 
{0,0,1} 

22 
{1,0,1} 

17 
{-1,-1,1} 

18 
{0,-1,1} 

19 
{1,-1,1} 

2 
{1,-1,-1} 

11 
{1,-1,0} 

19 
{1,-1,1} 

5 
{1,0,-1} 

13 
{1,0,0} 

22 
{1,0,1} 

16 
{1,1,0} 

25 
{1,1,1} 

8 
{1,1,-1} 

Z X

Y

Fig. 14. Pattern of the coding cube for the 26-

connectivity neighbors vn of v in 3D.

6-connectivity (3D) backtracking

Based on the 26-connectivity cubic neighbor

pattern illustrated in Fig. 14, the identification numbers

of the relative positions (25 − vn) of the voxels v

are determined from v and vn in 3D. Note that the

voxel v is supposed to be at the center of the square

in 2D (Table 1) and of the cube in 3D (Fig. 14).

The ”+1” instructions (lines 1.12 and line 2.10) are

handled because all the voxels of ImSrc4C 6C which

are not reached by the propagating front are set to zero.

Thus, to sum up, the value of each voxel of the image

ImSrc4C 6C corresponds to the relative position of

its nearest 4-connectivity (2D) or 6-connectivity (3D)

neighbor from the marker seeds. More details about

this method of source backtracking can be found in

(Peyrega, 2010).

8-connectivity (2D) and 26-connectivity

(3D) backtracking

Another method can be handled to process a source

backtracking in 8-connectivity for 2D images, or in

26-connectivity for 3D images. However, this induces

additional processing time. In order to extract the

nearest voxel from the marker seed among the 8

neighbors vn of any voxel v into the geodesic mask,

it is necessary to scan the full 8-connectivity (2D) or

26-connectivity (3D) neighborhood around v to find

the voxel vn with the minimum value into the image

ImDistFM of the geodesic distance map (algorithms

12 and 13). Both Table 1 and Fig. 14 are used to fill

the corresponding values of the voxels of the image

ImSrc8C 26C of the sources in 8-connectivity (2D) or

26-connectivity (3D).

PATH RECONSTRUCTION

After having defined the source of each voxel

of the geodesic mask for both forward and

backward propagations of the algorithm estimating

the morphological tortuosity, it is then possible to

reconnect any components into this mask to both

marker faces, even if they have been disconnected

by thresholding the tortuosity. The method to process

the path reconstruction consists in reconnecting the

isolated components to the marker face by using the

source images (forward and backward) which indicate

the path to follow until the marker faces.
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Fig. 15. Reconnections of the disconnected

components in green into the loops to the top

and bottom faces. 2D vertical 4-connectivity

reconstructions along Oy.

Fig. 16. Reconnections of the disconnected

components in green into the white part (Fig. 3)

to the top and bottom faces. 2D vertical 4-connectivity

reconstructions along Oy.

4-Connectivity reconstruction

On both Fig. 15 and 16 the disconnected
components in green are reconnected to both top
and bottom faces using the previous method in
4-connectivity. Since the source backtracking is
processed only in a neighborhood of size 1, and
since this processing is made on discrete cubic grids,
the reconstructed paths are approximations of the
minimum geodesic paths linking the disconnected

components to the marker faces.

8-Connectivity reconstruction

As shown in Figs. 17 and 18, the path

reconstructions in 8-connectivity are fairly better

approximations of the minimum geodesic paths than

in 4-connectivity. In 8-connectivity, the reconnected

paths better follow the curves of the geodesic mask.
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Fig. 17. Reconnections of the disconnected

components in green into the loops to the top

and bottom faces. 2D vertical 8-connectivity

reconstructions along Oy.

Fig. 18. Reconnections of the disconnected

components in green into the white part (Fig. 3)

to the top and bottom faces. 2D vertical 8-connectivity

reconstructions along Oy.

APPLICATION TO 3D IMAGES OF

FIBROUS MEDIA

TORTUOSITIES OF THERMISOREL

For illustration of this work, we show an

application to 3D X-Ray CT images of a fibrous

network. In the framework of the Silent Wall project,

the reference fibrous material is the Thermisorel,

which has very good thermal and acoustic insulation

properties. The Fig. 19 illustrates a 3D X-Ray

CT-image of this material. Among the different

morphological measurements made on such 3D

images of Thermisorel (Peyrega et al. 2010; Peyrega

2010), the tortuosity was estimated with the previously

described algorithm using Fast Marching propagations

of half spheres in the Ox, Oy and Oz directions.

The histograms of tortuosities in Fig. 20 gives
access to the distribution of the connectivity into
the considered media (fibrous and porous phases).
The Tables 2 and 3 give more details about the
extremal and average morphological tortuosities, and
about their standard deviations respectively inside
the fibres and the pores of Thermisorel. A first
look at these histograms shows that the tortuosity is
higher for both media in the Oz direction than in
the longitudinal ones (Ox and Oy). This is a direct
consequence of the production method of this material,
which is made from a paper like process. The board
is compressed in the Oz direction, thus the fibres
are globally isotropically oriented in the xOy planes
perpendicularly to this axis (Peyrega et al. 2010;
Peyrega 2010). This explains why the morphological
tortuosities in both media are close to 1 in the xOy

planes.
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(a) (b)

Fig. 19. 3D X-Ray CT image of Thermisorel. (a)-

Gray level image. (b)-Binarized image; (Dimensions:

5.6 × 5.6 × 3.4 mm3. Resolution: 9.36 µm/voxel.

Source: US2B).

Moreover the Fig. 20b shows that the paths inside

the pores have fairly small tortuosities close to 1,

which proves that the opposite faces are mostly linked

by direct paths in the three directions.

PATH RECONSTRUCTIONS IN 3D

IMAGES OF THERMISOREL

As shown in Fig. 8, thresholding the 3D images

of tortuosities of Thermisorel leads to disconnected

components. The previously described method of

source backtracking used to reconnect these isolated

components to the minimum geodesic paths between

the opposite faces, in the corresponding directions, has

been handled. The results of such reconnections in 26-

connectivity are illustrated in Fig. 21, 22 and 23 for the

fibrous phase, and in Fig. 24, 25 and 26 for the porous

phase, where the images of morphological tortuosity

have been thresholded at the minimal, average and

maximal values.
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Fig. 20. Histograms of the morphological tortuosities

(a) into the fibres and (b) into the pores of

Thermisorel in Fig. 19 in the Ox, Oy and Oz

directions.

Table 2. Minimal, maximal, and average values, and

standard deviation of the morphological tortuosities

into the fibres of Thermisorel in Fig. 19 in the Ox,

Oy and Oz directions.

Direction Ox Oy Oz

TMinimal 1.005 1.002 1.050

TMaximal 1.092 1.084 1.418

TAverage 1.039 1.027 1.197

σT 0.015 0.014 0.063

Table 3. Minimal, maximal, and average values, and

standard deviation of the morphological tortuosities

into the pores of Thermisorel in Fig. 19 in the Ox,

Oy and Oz directions.

Direction Ox Oy Oz

TMinimal 1.002 1.003 1.004

TMaximal 1.095 1.060 1.247

TAverage 1.028 1.022 1.082

σT 0.012 0.010 0.039
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In the fibres

(a) TMin = 1.005

(b) TAverage = 1.039

(c) TMax = 1.092

Fig. 21. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Ox direction for the fibres of

Thermisorel.

(a) TMin = 1.002

(b) TAverage = 1.027

(c) TMax = 1.084

Fig. 22. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Oy direction for the fibres of

Thermisorel.
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(a) TMin = 1.050

(b) TAverage = 1.197

(c) TMax = 1.418

Fig. 23. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Oz direction for the fibres of

Thermisorel.

In the pores

(a) TMin = 1.002

(b) TAverage = 1.028

(c) TMax = 1.095

Fig. 24. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Ox direction for the pores of

Thermisorel.
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(a) TMin = 1.003

(b) TAverage = 1.022

(c) TMax = 1.060

Fig. 25. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Oy direction for the pores of

Thermisorel.

(a) TMin = 1.004

(b) TAverage = 1.082

(c) TMax = 1.247

Fig. 26. Reconstruction of the paths by backtracking in

26-connectivity after thresholding the morphological

tortuosity in the Oz direction for the pores of

Thermisorel.
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Finally, we can see in Fig. 21 to 26 that the

reconstructed paths in both phases (fibres and pores)

are homogeneously distributed in the 3D sample in

the three directions for thresholds equal to the average

tortuosities. On the contrary, extremal tortuosities

are located in specific zones of the material. Thus

these results show that the average tortuosities of the

geodesic paths in both phases of a fibrous material such

as the Thermisorel are geometrically representative

enough to be handled as macroscopic characteristic

parameters of the material.

CONCLUSION

Applied to 3D X-Ray CT images, our method

to reconnect geodesic paths to isolated connected

components lets us locate the geodesic paths within

the fibres and the pores of fibrous material according

to their tortuosities. Our original algorithm is based

on source backtracking, which uses the Fast Marching

algorithm itself to draw a source map of the

propagating front. This source map was then used

to reconnect any connected component to the nearest

geodesic path to the starting boundaries.
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