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Abstract

In this work, we determine the optimal investment strategy of a wind producer in a local prices

environment, taking into account the penalties for real-time imbalances. We assume these imbal-

ances come from forecast errors on the considered renewable production only. To do so, we solve

a bilevel optimization problem. The upper level problem corresponds to the revenue of the con-

sidered producer, and the lower level problems correspond to the market clearings, taking place

a day ahead of operations and on real-time. Indeed, we consider that imbalances penalties cor-

respond to real-time prices such as is done in the American market PJM. Indeed, in a local prices

framework, using real-time prices is a simple way to recover the financial amounts corresponding

to the imbalances in power.

1 Introduction

The share of renewable energy sources in the

energy mix of several countries worldwide is

rapidly increasing. As regards the European

Union (EU-27), the European Commission has

set the target of having 20% of EU-27´ s energy

consumption coming from renewable sources

by 2020. Wind energy is anticipated to be a

major contributor to this target with an installed

capacity which is expected to extend from 121

GW by the end of 2013 in EU-27, to 230 GW

by 2020 according to EWEA projections (see

[1], [2]).

Such large-scale integration of wind en-

ergy raises several challenges in operating and

managing power systems, as they are a great

deal more subject to variability. And yet, the

electricity being a non-storable product, the

balance between production and consumption

must be maintained. Therefore, it is now recog-

nized that accurate short-term forecasts of wind

farms´ power output over the next few hours to

days are important factors for the secure and

economic operation of power systems with high

wind power penetration [3]. Today, significant R

and D efforts are being undertaken to improve

the performance of wind power prediction

models and related weather forecast models.

Increased overall wind power predictability is

expected to be beneficial for several actors,

such as transmission or distribution system

operators, to efficiently perform functions such

as estimating reserves, unit commitment, and

congestion management.

In addition to increased predicitbility (forecast

quality), adapting the incentive policies is

a way to improve the renewable energy´ s

adaptation to the system. This corresponds

to the introduction of renewable production

in the traditional electricity markets. In con-

crete terms, this means that deviations of the

produced energy from the contracted energy

(imbalance) especially due to forecast errors

are exchanged at a different price called the

imbalance price. This imbalance price is fixed

in order to repay the network operator for his

expenses to maintain the system´ s balance

when generators do not produce the amount



contracted on day-ahead markets. Indeed,

with growing integration of renewable energy,

countries tend to shift from a feed-in tariff

policy difficult to sustain in the long-run (given

the fixed remuneration per kW.h, predictability

does not play any role in decision-making for

producers), to a management of imbalances

with imbalance prices so that variability is

regulated by prices whose design can be

adapted. This direct translation of wind power

forecast errors into a financial cost, as well as

strategies for the reduction of this cost, have

already been studied (see e.g. in [4, 5, 6, 7]).

Yet it is still difficult to quantify the economic

benefit of increasing predictability. The direct

consequence of this is the difficulty in devising

clear economic incentives aiming at greater

predictability.

From the producer or the investor´ s point

of view, this change of paradigm questions the

usual decision-making process concerning the

choice of location of wind farms. It is usually

based on well-established ”resource assess-

ment” study based on capacity factor. However,

the costs incurred from forecast errors could

damage benefits, all the more as the more

wind farms are installed the less the choice

among sites is large and the more complex

the sites´ terrains are. Indeed, previous works

like the benchmarking exercise performed in

[8] have shown to what extent predictability is

dependent on terrain complexity; the higher the

complexity, the lower the predictability. It was

shown also in [9] that predictability tends to de-

crease when wind speeds increase. Therefore,

the wind power production investment issue

has to deal with a new factor : the cost for

imbalances from forecast errors.

This paper addresses this issue by proposing

a model to derive optimal investment strategy

taking into account penalties charged for im-

balances due to forecast errors. It may enable

to measure the impact of predictability in an

energy mix with strong renewable penetration.

The issue of predictability as a decision factor

has been treated in [10] and the article [11]

based on empirical, nowadays data. They deal

with the new questions which are increasingly

being asked by end-users: Can a compromise

between resource potential and predictability

be beneficial when choosing among two sites

where to install a wind farm? Is some com-

promise to be found when choosing among

two sites, let us say one with high potential but

low predictability (i.e. a complex terrain site)

and one with lower potential but higher pre-

dictability (i.e. a flat terrain site), so that such

a compromise might lead to choosing the site

with lower potential if the loss in revenue can

be compensated by lower penalties? For these

analyses, it has been shown that predictability

had a limited impact on the revenue formation.

However, in an energetic mix with a stronger

renewable share, the results might be different.

This work is undertaken in a nodal pricing

market. Indeed, today several local prices

markets are emerging. Moreover, the growing

share of renewable energy in the electricity mix

should increase the local constraints on the

network, all the more in a liberalized context

where independent investors build capacity

according to personal interest without a global

perspective on the system. In this view, we con-

sider a nodal day-ahead market, but we also

take local prices into account to determine the

imbalance prices, such as is done on the Amer-

ican PJM market[12], because this structure

seems to follow the trend of the development

of an integrated, continuous marketplace.

However, in a first approach, we consider that

the imbalances have to be dealt with locally,

i.e. local reserve has to compensate for imbal-

ances coming from difference between energy

actually produced and the amount contracted

on the day-ahead market. Moreover, in this

paper we consider that imbalances occuring

in real-time are only coming from wind power

production forecast errors. Further work could

interestingly benefit from emphasizing errors

coming from conventional generators (linked to

unexpected outages or strategic behaviors).

The actors concerned by this work could

be independent power producers, wind farm

developers, aggregators or virtual power plant

operators who need to decide where to install a

new wind (or solar) farm, or how to compose an

optimal portfolio of wind farms to participate in

an electricity market. In addition, penalties paid

by producers who deviate from the day-ahead

contract are settled by the transmission system

operator and market operator, who will thus be

concerned by the results of this paper.

To sum up, this paper may present an in-

terest for investors and producers in order

to help them choose the optimal strategy to

maximize their revenue, but it also presents

an interest for the power system and market



operators, who may want to incite wind farm

operators to adopt practices which increase

predictability in order to lower the wind pro-

duction´ s impact on the system. In this paper

we propose a methodology to study the above

questions, in a context of strong renewable

penetration. In Section 2, we present the model

which enables us to solve the problem. In

section 3 we present the case study on which

we carry out the optimization. In Section 4

we show results and in Section 5 we draw

conclusions and give a few hints for future

work.

2 The Model

2.1 Introduction to the revenue for-
mation

We consider producers selling their forecasted

production in a day-ahead market. A producer´

s revenue can be decomposed in two terms :

the product of sales, given by the amount of en-

ergy sold on the day-ahead market times the

spot price, and the imbalance cost, which can

be positive or negative and is determined by

the amount of error between the forecasted (as-

similated to the amount bid, as all wind energy

produced should be accepted, sold at a zero-

price) and the actual amount of energy sold

on the real-time market (which corresponds to

the amount produced). This revenue term can

therefore be expressed as :

Revenue = (πc.Ec) + (π∗.d∗)

(1)

where

πc is the spot price,

Ec is the energy contracted,

π∗ is the imbalance price

d∗ = E∗ − Ec is the error between the actual

energy delivered and the bid, with E∗ the con-

tracted energy.

Low predictability is reflected through imbal-

ance costs in the second term of the revenue

expression.

There are several potential factors which may

influence the magnitude of the imbalance price

(which basically corresponds to the offer price

of the last bid accepted on the real-time market,

or the cost of loss of load if the demand is not

satisfied):

→ The availability of interconnections with

the exterior which brings flexibility to the

system (storage is also another flexibility

mean). However, we will not consider this

aspect here;

→ The availability of low-cost balancing power

such as hydropower. Basically it is this ef-

fect which we are interested in: how the

coszt of reserve means affect the amount

of imbalances;

→ The impact of renewable energy in the gen-

eration mix : the larger the share the big-

ger the imbalances and the costs of regula-

tion when errors do not balance out; Here

it will always be the case because diver-

gence between day-ahead and real-time

operations will come from the considered

producer;

→ The size of the area or the level of aggre-

gation: variability can be smoothened by

compensating shortages in one area by the

production in another.

2.2 Notation

Optimization variables

Xi represents the amount of capacity installed

on node i (in MW).

P c
nt represents the wind power contracted on

the day-ahead market for node n for time period

t.

e∗nt represents the error between contracted

and injected wind energy.

git represents the production of generator i for

time period t.

fDA

kt
represents the power flow on line k result-

ing from day-ahead operations.

δDA

o(k)t δDA

r(k)t represent the voltage angle result-

ing from day-ahead operations, for the emitting

and receiving node of line k, respectively.

Rntω represents the reserve production for

node j at time period t.

LMPDA
nt represents the day-ahead local

marginal price at node n for time period t.

LMPRT
nt represents the real-time local marginal

price at node n for time period t.

Parameters

djt represents the demand j at time period t.

N represents the number of nodes of the grid

considered.

T represents the number of time period consid-

ered.

Cinv represents the cost of investment per MW.

ci represents the marginal cost of production



for generator i.

cr represents the marginal cost or reserve

means of production.

o(k) represents the emitting node of line k.

r(k) represents the receiving node of line k.

Bk represents the susceptance of line k.

Xmax represents the maximal amount of ca-

pacity which can be installed at one node.

fmax

k
represents the maximal power flow in line

k.

gmax
i

represents the maximal power production

for generator i.

Rmax
n represents the maximal power production

of reserve generator n.

Data

Pred(n,t) represents the normalized production

forecast.

Error(n,t) represents the normalized error

between forecasted and observed wind energy.

Sets

ΩG represents the set of generators.

ΦG
n represents the set of generator installed at

node n.

ΦD
n represents the demand present at node n.

ΩR represents the set of reserve generators.

2.3 The generic model

An investment decision (the capacity to install

on each node considered) is based on an opti-

mization to maximize the producer´ s revenue

i.e. minimize his minus profit. This comes down

to:

minimizeX=(X1,...,XN )

CinvX −
∑

T

∑

N

LMPDA
nt P c

nt

+1/N ×
∑

T

∑

Ω

∑

N

e∗ntωLMPRT
ntω

(2)

s.t

P c
nt = Xn × prev(n, t) (3)

e∗ntω = Xn × erreur(n, t, ω) (4)

with

erreur(n, t, ω) = prev(n, t)− prod(n, t, ω) (5)

and

0 ≤ Xn ≤ Xmax
(6)

The error corresponds to the forecast produc-

tion minus the actual, observed production.

s.t
minimize

∑

i∈ΩG

cigit (7)

∀n
∑

i∈ΦG
n

git−
∑

o(k)=n

fDA
kt +

∑

r(k)=n

fDA
kt +P c

nt =
∑

j∈ΦD
n

djt : LMPDA
nt

(8)

∀k
fDA
kt = Bk(δ

DA
o(k)t − δDA

r(k)t) : Φ
DA
kt (9)

−fmax
k ≤ fDA

kt ≤ fmax
k : (ΦDAmin

kt ,ΦDAmax
kt ) (10)

∀i
0 ≤ git ≤ gmax

i : (ϕmin
it , ϕmax

it ) (11)

∀n\n : ref

−π ≤ δDA
nt ≤ π : (ξDAmin

nt , ξDAmax
nt ) (12)

n:ref

δDA
nt = 0 : (χnt) (13)

s.t. ∀t∀ω
minimize

∑

i∈ΩR

crRjtω (14)

∀n

Rntω = e∗ntω : (LMPRT
ntω) (15)

∀n

−Rmax
n ≤ Rntω ≤ Rmax

n : (ΦRmin
ntω ,ΦRmax

ntω ) (16)

(2) corresponds to the minus profit of the

producer, considering a zero operational cost

for wind turbines. In this objective function, the

first term corresponds to the investment cost.

Then the two following terms represent the

revenue coming from sales on the day-ahead

market and the real-time market, respectively.

The last term can correspond to a revenue or



a loss according to the sign of e∗ntω. When the

amound bade is inferior to the power actually

injected on the network, e∗ntω is positive, and

the relevant term is a cost and vice versa.

These revenue terms are non linear.

(3) means that the amount of wind energy

bid on the day ahead market corresponds to

normalized forecasts on the area times the

installed capacity whereas (4) shows that the

amount bid on the real-time market corre-

sponds to actual normalized errors, coming

from onsite observations times the installed

capacity.

This optimization problem depends on two

lower level problems, i.e. the market clearing,

both day ahead and real-time, which produce

the market prices. They deal with minimizing

the global (on all nodes) cost of supplying

energy (respectively7 and 14), whilst satisfying

the demand (respectively 8 and 15). On the

day-ahead market, conventional generators

provide their offers(8), whereas on the real-

time market(15), flexible generators provide

reserve services. (10)represents the power

flow limits on the network lines.(9),(12),(13)

represent physical constraints on the power

lines. (11)(16) represent the respective (con-

ventional and reserve) units´ minimal and

maximal output.

2.4 Methodology

We use a simplified model where the real-time

problem is decorrelated from the day ahead

problem. A simplifying hypothesis is to consider

that the power flows remain the same as those

obtained with the day ahead market clearing,

so that imbalances have to be compensated

on the nodes where they are generated. This

enables to get rid of the non convex part of

the objective function (coming from the depen-

dance between day ahead and real-time.

To solve this optimization problem, we trans-

form the lower level problems into constraints

of the upper level problem using their Karush

Kuhn Tucker (KKT) conditions. We are able to

linearize the objective function using the strong

duality theorem, and the non-linear constraints

using the following relation :

α ≥ 0, β ≥ 0, α.β = 0 (17)

Figure 1: The problem considered

is equivalent to:

α ≥ 0, β ≥ 0, α ≤M.(1− ω), β ≤M.ω (18)

3 The case study

3.1 The system

We use a simple 3 node system:

Figure 2: The system considered



3.2 The data

We use wind observation and forecast data

for France for the February-March 2008 period

(the investment term is scaled to match the

data period). It is generated using MERRA

reanalysis (NASA reanalysis) of wind speed

at 50 m from ground, using a 50 km*50 km

spatial resolution grid, and a hourly timestep.

These wind speed data are used as input to a

manufacturer power curve (which defines the

relation between wind and the electrical power

of a turbine).

In this work, we only use one scenario of

renwable production, so that only one scenario

is used to carry out the optimization for the

real-time market clearing. Further work could

benefit from adding other scenarios to improve

the solution´ s robustness to different produc-

tion and error levels.

Tthe french wind production data is available

for a grid of 193 points, we divide the whole

national demand data by the number of these

grid points, and consider the data for the first

three points. The wind production forecast

error’mean bias is 0.6% (respectively 2, 0.03

and -0.02% for node 1,2 and 3 illustrated side

by side in the following figure):

Figure 3: Wind power production (green) and

forecast error (red) for the 3 nodes

The conventional units are considered to have

a 20 MW capacity and the following caracteris-

tics:

Node Demand Type Cost(AC/MWh)

1 0 Coal 20

2 0 Gas 35

3 60 Nuclear 7

All the lines´value is 9.412 p.u and their

maximal capacity is 25 MW. The investment

cost considered is 900 kAC, distributed on

20 year amortization period so that Cinv is

45 kAC/MW for a year, which comes down to

45000∗1440/8760 = 7397 AC/MW when adjusted

to the February-March 2008 period considered

for the wind production. We assume one

reserve plant is installed on each node, whose

cost is 40 AC/MWh and whose installed capacity

is 20 MW.

4 Results

4.1 Computational issues

The problem is solved using R´ s package Rc-

plex with IBM´ s optimization tool CPLEX on a

64 bits, 4Go of RAM computer.

4.2 Numerical results

Reserve cost(AC/MWh) Investment Benefit (AC)

0 15.5/0/5.1 66964

10 15.4/0/4.9 42401

40 0/0/0 0

100 0/0/0 0

The investment cost wears down the revenue.

In a case where the investment cost is null,

the investment could be beneficial with higher

reserve costs:

Reserve cost(AC/MWh) Investment Benefit (AC)

0 17/46/44 561077

10 23.6/40.7/32.9 475088

40 10.5/51.6/33 266337

100 0/24/19.4 26728

5 Conclusion and perspec-

tives

Taking into account the penalties for forecast

errors in a realistic context does not enable to

carry out a beneficial investment. Indeed, the



investment, fixed cost and the reserve cost are

wearing down the wind producer´revenue. With

a realistic investment cost, the cost of reserve

has to be lower than the cost of conventional

units to have a positive benefit.

Further work could deal with the non-convex

problem we have outlined, where the real-time

market clearing depends on the day-ahead

variables. Indeed, instead of assuming that the

reserve only supplies the amount missing from

wind power locally, we could have a new market

clearing involving new power flows along the

lines. In this work, only one scenario of renew-

able production was considered. Introducing

more scenarios would enable us to determine

more robust strategies, adaptable to various

wind production and forecast errors such as

those available for an investment decision.

Also, we have introduced the cost of reserve

as a parameter of the problem and it would

be interesting to have insights on the future

cost of reserve to analyse how investment

decisions might be affected (whether the cost

of reserve increases due to renewable energy

imbalances or decreases with a mutualization

of ressources). Finally, this work would have

a larger impact by modelling the imbalances

coming from conventional generators (due to

unexpected outages), or from other renewable

producers already installed. This way the

new renewable producer may benefit from

counterbalancing the system´ s direction. This

is expected to be more profitable in the case

of imbalances from conventional generators or

renewable energy with a different production

profile in order not to have the same imbalance

direction for the considered generator and the

system.

6 Appendix

In the following we explain how the main

problem was transformed in order to solve it

using Cplex.

6.1 The upper level problem

Using the strong duality theorem on the two

lower level problems, we are able to linearize

the objective function:

minimizeX=(X1,...,XN )

CinvX −
∑

T



−
∑

i∈ΩG

cigit

+
∑

N

LMPDA
nt ×

∑

j∈ΩDn

djt

−
∑

k∈ΩK

(

Φmax
kt +Φmin

kt

)

× fmax
k

−
∑

i∈ΩG

ϕmax
it gmax

it

−
∑

n∈ΩN :ref

π ×
(

ξmax
nt + ξmin

nt

)





+1/N ×
∑

T

∑

Ω

[

∑

N

cnRntω

+
∑

N

Rmax
n

(

ΦRmax
ntω +ΦRmin

ntω

)

]

(19)

We keep the upper level constraints (3), (4), (5)

and (6).

6.2 Transformation of the lower
level problems

We transform the lower level problems into

constraints of the upper level problem using

their Karush Kuhn Tucker (KKT) conditions.

As they are formulated in an independant

way, the formulation of their KKT conditions is

straightforward.

For the day ahead market clearing, the

first order conditions give:

∀i ∈ ΩG

ci − LMPDA
nt − ϕmin

it + ϕmax
it = 0 (20)

∀k ∈ ΩK

LMPDA
o(k)t−LMPDA

r(k)t−Φkt−Φmin
kt +Φmax

kt = 0 (21)

∀n\n : ref

−
∑

k|o(k)=n

BktΦkt+
∑

k|r(k)=n

BktΦkt−ξmin
nt +ξmax = 0

(22)

for n : ref

−
∑

k|o(k)=n

BktΦkt +
∑

k|r(k)=n

BktΦkt − χnt = 0 (23)



We also keep the constraints (8) and (9).

The positivity and complementary slackness

conditions give for the day-ahead market clear-

ing:

fDA
kt + fmax

k ≥ 0 (24)

ΦDAmin
kt ≥ 0 (25)

(fDA
kt + fmax

k ).ΦDAmin
kt = 0 (26)

fmax
k − fDA

kt ≥ 0 (27)

ΦDAmax
kt ≥ 0 (28)

(fmax
k − fDA

kt ).ΦDAmax
kt = 0 (29)

git ≥ 0 (30)

ϕmin
it ≥ 0 (31)

git.ϕ
min
it = 0 (32)

gmax
i − git ≥ 0 (33)

ϕmax
it ≥ 0 (34)

(gmax
i − git).ϕ

max
it = 0 (35)

δDA
nt + π ≥ 0 (36)

ξDAmin
nt ≥ 0 (37)

(δDA
nt + π).ξmin

DAnt = 0 (38)

π − δDA
nt ≥ 0 (39)

ξDAmax
nt ≥ 0 (40)

(π − δDA
nt ).ξDAmax

nt = 0 (41)

For the real-time market, the first order condi-

tions give:

cr − LMPRT
nt − ϕRmin

ntω + ϕRmax
ntω = 0 (42)

We also keep the equilibrium constraint

(15).

The complementary slackness conditions give

for the real-time market clearing:

Rntω +Rmax
n ≥ 0 (43)

ϕRmin
ntω ≥ 0 (44)

(Rntω +Rmax
n ).ϕRmin

ntω = 0 (45)

Rmax
n −Rntω ≥ 0 (46)

ϕRmax
ntω ≥ 0 (47)

(Rmax
n −Rntω).ϕ

Rmax
ntω = 0 (48)

6.3 Linearization of the constraints

The non-linear constraints coming from the

complementarity conditions are linearized using

(17):

fDA
kt + fmax

k ≤Mp(1− ωDAmin
kt ) (49)

ΦDAmin
kt ≤MΦp(ωDAmin

kt ) (50)

fmax
k − fDA

kt ≤Mp(1− ωDAmax
kt ) (51)

ΦDAmax
kt ≤MΦp(ωDAmax

kt ) (52)

git ≤Mp(1− ωmin
it ) (53)

ϕmin
it ≤MΦp(ωmin

it ) (54)

gmax
i − git ≤Mp(1− ωmax

it ) (55)

ϕmax
it ≤MΦp(ωmax

it ) (56)

δDA
nt + π ≤Mp(1− ωDAmin

nt ) (57)

ξDAmin
nt ≤Mp(1− ωDAmin

nt ) (58)

π − δDA
nt ≤Mp(1− ωDAmax

nt ) (59)

ξDAmax
nt ≤Mp(ωDAmax

nt ) (60)

Rntω +Rmax
n ≤Mp(1− ωmin

ntω ) (61)

ϕRmin
ntω ≤MΦp(ωmin

ntω ) (62)

Rmax
n −Rntω ≤Mp(1− ωmax

ntω ) (63)

ϕRmax
ntω ≤MΦp(ωmax

ntω ) (64)
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