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Abstract 

In recent years, pirate attacks against shipping and oil field installations have become 
more frequent and more serious. This article proposes an innovative solution to the 
problem of offshore piracy from the perspective of the entire processing chain: from the 
detection of a potential threat to the implementation of a response. The response to an 
attack must take into account multiple variables: the characteristics of the threat and the 
potential target, existing protection tools, environmental constraints, etc. The potential of 
Bayesian networks is used to manage this large number of parameters and identify 
appropriate counter-measures. 
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Introduction 
Currently there are over seven thousand oil platforms scattered throughout the world, 

each of which requires on the one hand, equipment for the extraction, processing and 

temporary storage of petroleum, and on the other hand shipping capable of transporting 

crude oil between production and consumption sites.  

Modern piracy is currently the major threat to the security of these energy production 

sites and maritime crude oil transport. In 2011, 552 attacks on ships and platforms were 

registered with the International Maritime Bureau5 compared to 487 reports in 2010. At 

production sites, monitoring methods are a major weakness in the detection of a threat, 

and the procedures to be applied in the event of an attack are often inefficient and 
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inappropriate. It is therefore essential to have a system that ensures the security of oil 

fields and offers them appropriate protection and effective crisis management.  

The SARGOS6 system, funded by the National French Research Agency7 (L’Agence 

Nationale de la Recherche) and recognised by regional organisations addresses this need 

by offering a global protection system in the fight against oil infrastructure piracy. 

This article is organised into three parts. It first addresses the issue of acts of piracy 

against oil fields. Next the method used for the planning of counter-measures is described 

in detail. This includes notably, the construction of Bayesian networks from two datasets: 

the “Piracy and Armed Robbery” database of the International Maritime Organization 

(IMO) and the collection and formalisation of the knowledge of domain experts. Finally, 

the article describes how the model was tested using realistic and comprehensive pirate 

attack scenarios and the results are discussed. 

Piracy against Oil Installations:  

a Serious Threat and Limited Defences 
Offshore oil infrastructure is subject to a constantly increasing risk of piracy. The 

consequences of these actions have repercussions as much at a local level (on operations) 

as globally (on distribution). This section highlights both the economic and the political 

implications of pirate attacks and describes an increasingly insecure context where actors 

in the offshore oil and gas industry, without effective tools to protect themselves, find 

themselves helpless. Finally, it presents the SARGOS system and describes the 

contribution that this new system is expected to make to dealing with the problem of 

maritime piracy. 

Economic and political issues 

Offshore oil exploration is expanding rapidly. The exploitation of offshore oil 

resources currently represents about a third of global petroleum production. This energy 

resource, despite its scarcity, is being explored in many areas some of which are located 

in dangerous territorial waters, notably the Gulf of Guinea. In the offshore waters of 

politically unstable countries, attacks on oil field infrastructure generate significant 

additional costs – caused by, for example the payment of ransoms, increased insurance 

premiums and the installation of security equipment. The annual cost of piracy is 

estimated at 7-12 billion United States dollars (BMI, 2011). These additional costs 

directly affect the international price of oil. 

Moreover, oil fields form the interface between the maritime world and the oil and 

gas industry. The heterogeneity of applicable regulation (rather than the absence of law) 

makes the status of installations a legal headache. Moreover, this complexity can lead to 

political conflicts between nations; when the nationality of the company operating the 

platform does not correspond to physical location of the installation, the problem arises of 

who has responsibility for the protection of the area (Schroeder et al., 2004). 

                                                
6 The Offshore Warning and Graduated Response System (Système d'Alerte et de Réponse Graduée 
OffShore). 
7 The SARGOS project includes participants from private sector organisations such as DCNS (a 
French naval shipbuilder) and SOFRESUD (a supplier of high-tech equipment to the defence 
industry), and public research centres including ARMINES (a French contract research 
organisation) and TéSA (Telecommunications for Space and Aeronautics). 
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The importance of oil installations in the global economy and industry and the 

potential political consequences of piracy therefore require that such assets are better 

protected. 

Violent attacks 

Although attacks against oil fields are infrequent and mostly low-profile, they are 

extremely disturbing because of the severe impact on the crew and infrastructure. 

The following examples demonstrate the point: 

 On 22nd September, 2010 the tug Bourbon Alexandre located in the Addax oil field 

off the Nigerian coast was attacked by four speedboats; three French sailors were 

taken hostage. This was the fourth attack against the Bourbon Company since 2009. 

 The attack on the Exxon Mobil platform off the coast of Nigeria, led to the 

kidnapping of nineteen of its employees and significant damage to the oil facility 

caused by explosive devices used by the pirates. 

 Finally, on 17th November, 2010 pirates aboard a speedboat attacked a ship owned 

by the French company Perenco that was carrying Cameroonian security forces near 

an oil platform in the Gulf of Guinea. The attack killed six people. 

Infrastructure managers, employees and safety officers do not want to continue to see 

their ships or other assets become the subject of substantial ransoms, nor crewmen 

injured, killed or kept in extreme conditions for days or even weeks. At the same time 

insurers are unwilling to continue to provide cover for such high risks indefinitely. 

Finally, nations do not want to continue to see the price of oil affected by such events. 

Emerging operational requirements 

The attacks described above are a perfect illustration of the weakness of current anti-

piracy tools. At the present time, there is no comprehensive system capable of managing 

the entire threat processing chain. Current systems treat the detection of a threat and the 

response to it as independent operations. Among the available detection tools, radar-

based (pulse) systems8 can spot large or medium-sized cooperative mobile objects but 

perform poorly in the detection of small craft (e.g. fishing boats and motor boats) in a 

rough sea; moreover the analysis of a large domain is relatively slow. There are also 

optronics surveillance systems9 that, despite their ability to detect small targets at long-

range, are handicapped by the problem of solar reflection from the sea and are very 

sensitive to weather conditions. As for the tools used to counter an attack, they are often 

inadequate or incorrectly used (e.g. water jets, Ship Security Alert System). 

In terms of the threat response, the targets in danger can currently send alert messages 

to other units in the area but this diffusion is restricted to a very small geographic area. 

Moreover, even if a security vessel is alerted to a threat, it cannot be assumed that it will 

be able to intervene, particularly if it is not close to the location of the attack. 

                                                
8  In these systems, a radar antenna emits microwave pulses towards the target. These 
signals are reflected back, and then intercepted by the radar receiver, which collects an electrical 
signal called the echo. 
9  These electronic and electrical systems generally consist of an optical sensor, an image 
processing system and a data storage, or display device. 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

Therefore, the aim of the SARGOS system is to offer a new method that is able to 

both detect threats and plan a response. The response implements a graduated series of 

non-lethal counter-measures (sonic cannons, barring infrastructure access, etc.) that can 

be applied in order to eliminate the danger. 

The contribution of the SARGOS system 

The SARGOS system addresses the need to protect civilian infrastructure that is 

vulnerable to acts of piracy or terrorism at sea. It is a global system that takes into 

account the whole threat processing chain, from the detection of a potential danger to the 

implementation of the response. It can be integrated into the operations of the installation 

and takes into account regulatory and legal frameworks at both national and international 

level. The creation of the system, which involved the development of an overall 

protection method, automatic threat detection and identification, risk assessment and 

management of an appropriate response, required professional skills from many domains. 

The functional diagram of the SARGOS system (Figure 1) describes the threat 

processing cycle. The overall system operates as follows: when the detection module 

instruments (Frequency Modulated Continuous Wave radar, infrared cameras, etc.) 

identify a vessel in an area near to the oil field, the system evaluates the threat and the 

potential danger and generates an alert report containing comprehensive data describing 

the scenario. This information includes details such as visibility, time of day, the speed, 

longitude and latitude of the detected vessel and its potential target, etc. The distance 

between the two entities and the theoretical response time of the security vessel is also 

calculated from this data. If the threat is identified as suspicious or hostile, the system 

generates an alert report every second. The alert report is used in the planning stage 

where external and internal means to respond to the attack are mobilised. This paper 

particularly addresses this aspect of response planning and the management of internal 

and external resources available on the installation (such as searchlights or sonar alarms). 

Figure 1: from the information detected by the FMCW radar, the system identifies the 

threat and then calculates the ranking and generates an alert report containing all the 

information necessary to assess the situation in order to use internal and external 

resources to manage the threat. The ranking is calculated in corresponding to the time 

required (in seconds) to the threat to go the distance to CPA asset considered taking into 

account the assumption that at any time the threat may change course and coming in on 

the target constant radial. The terms are: [ranking <300 s], [300 <ranking <900 s] or [s 

900 <ranking <1800 s]. 
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Figure 1. Functional diagram of the SARGOS system 

Elements of threat analysis and principles for resource management  

There are significant obstacles inherent in addressing the problem of maritime piracy. 

An initial difficulty concerns how to manage the large number of parameters necessary to 

describe an attack. These parameters, which form the inputs and outputs of the system, 

characterise the asset in danger (type, criticality, vulnerability, on-board safety tools, 

etc.), the threat (the type of ship used by the attackers, its speed, their weapons, etc.) and 

the environment (the time of day, visibility, sea state, etc.). A second problem lies in the 

fact that these parameters may interact with each other. For example, whether it is 

relevant to request the intervention of the security vessel will depend not only on the time 

required for it to reach the asset under attack but also how well armed the attackers are 

and how fast they are moving. Therefore, the management of the multiple interrelations 

between system variables presents another major challenge. These first two constraints 

suggest that the system be based on graph theory, which would make it possible to 

translate and exploit, using a graph, the large number of variables, their 

interdependencies and interrelationships, etc.  

However, an additional concern is uncertainty in the information describing the threat. 

The SARGOS system generates an alert report that contains on the one hand, data issuing 

from various detection instruments (type of ship detected, number of crew, potential 

weapons, etc.) and on the other hand, mathematical calculations based on dynamic 

variables (the distance between the target and its attackers, time available before the 

attackers are able to board the asset, etc.). Despite the improving performance of radars, 

this data is known to be unreliable. This situation is only made worse as the distance 

between the target and the threat increases, or if the sea state deteriorates, etc. This 

uncertainty is a constraint that emphasises the need to use a system based on probability 

theory and probabilistic calculations. 

With these constraints in mind, a solution based on Bayesian networks was explored 

(Leray and al., 2008). A Bayesian network is a system for the representation of 

knowledge and the calculation of conditional probabilities (Naim and al., 2007). The tool 

is based on Thomas Bayes’ theorem, which is one of the foundations of probability 

theory (Nielsen and al., 2009). Widely used in medical and industrial diagnosis (Lee, 

2006), Bayesian networks make it possible to capitalise on, and exploit knowledge and 

are particularly suitable when uncertainty must be taken into account (Hudson, 2002), 

(Martín, 2009). 

The aim was to automate the preparation of response plans that are tailored to the 

nature of the detected intrusion and can provide an appropriate, graduated and 

progressive response to a threat. Information concerning attacks on shipping and 

petroleum installations was gathered from a specialist database, and experts in the 

maritime domain who offered their knowledge and expertise. The data from each of these 

two sources was modelled with Bayesian networks. The network was built using 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

BayesiaLab10 software; this powerful network modelling tool provides an intuitive 

graphical interface.  

Recently, Bayesian networks are used in risk assessment because the model can 

perform forward or predictive analyses as well as backward or diagnostic analyses. Some 

methodologies have been proposed to structure Bayesian networks and perform risk 

assessment.  

 Several authors have already used Bayesian networks in order to solve problems in 

offshore. Among these authors, (Baoping and al., 2012) who modeled a Bayesian 

network for the quantitative evaluation of the preventive operation underwater eruption 

wells. The choice of using Bayesian networks has been done because they are models to 

perform predictive analytics and diagnostics systems. Another application described in 

the article of (Eleye-Datubo and al., 2008) is the use of a Bayesian network to provide an 

intuitive and vital representation that mimics the real world. The integration of the human 

element in a model based on probabilistic risk requires integrated appropriate technical 

and essential contributions of the linguistic nature. For this reason, the author proposed a 

Fuzzy Bayesian network as fuzzy logic is an excellent tool for such integration and 

Bayesian networks can make a probabilistic framework and cross the boundaries of 

possibility theory. The implementation of this method was demonstrated in a study of 

human performance at sea.  

Khakzad and al. (2013) looked at preventing the risk of blowouts during drilling 
operations. The authors demonstrate the application of both the “bow-tie” and Bayesian 
network methods. In the first method, fault trees and an event tree are developed for 
potential accident scenarios. In the second method, individual Bayesian networks are 
created for accident scenarios and an object-oriented Bayesian network is constructed by 
connecting the individual networks. The dynamic Bayesian network method is a better 
approach than the “bow-tie” model because it can take into account common cause 
failures and conditional dependencies along with performing probability updates and 
sequential learning based on accident precursors.  

Ren et al. (2007) also addressed the contribution of Bayesian networks when taking 
into account human factors. The authors designed and developed a methodology based on 
the “Swiss cheese” model developed by James Reason (Reason, 1990). Reason’s model 
provides a generic framework for risk assessment linked to human factors. Five levels are 
used to characterize latent failures within the causal chain of events: root causes, trigger 
events, incidents, accidents and consequences. The detailed characterization of each level 
made it possible to build the Bayesian network. A range of events was specified, and the 
prior and conditional probabilities of the model were assigned based on the inherent 
characteristics of each event.  

Trucco and al. (2008) presented an approach to integrate human and organizational 
factors into risk analysis. This approach has been developed and applied to a case study 
in the maritime industry, but it can be also be utilized in others sectors. A Bayesian Belief 
Network has been developed to model the maritime transport system, by taking into 
account its different actors ship-owner, shipyard, port and regulator and their mutual 
influences. 

Vinnem and al. (2012) addressed the issue of hydrocarbon releases at sea during the 
exploitation or maintenance phases of a platform. A generic model, based on  risk 

                                                
10  BayesiaLab software is developed by the French company Bayesia 
(http://www.bayesia.com/). 
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influencing human factors was developed and adapted to specific failure scenarios. The 
authors describe a full Bayesian network model and two implementations are outlined. 
The probability of human error, importance measurement of consequences and common 
causes and interactions are analysed. The authors demonstrate that the model is able to 
reflect human and organizational factors and safety culture.  

These references highlight the wealth of work that has been carried out into both the 
assessment of technical risks and human and organizational factors in order to prevent the 
threats that face platforms at sea. 

 

Coupling of quantitative and qualitative knowledge for the 

construction of a Bayesian network for response planning  
The creation of the Bayesian network used for response planning relied on the 

coupling of quantitative information from the IMO’s “Piracy and Armed Robbery” 

database and qualitative knowledge offered by experts in the maritime domain. 

Development was divided into two stages. The first step was to construct a Bayesian 

network from database records of attacks against shipping and oil installations across the 

globe, while the second step was to exploit the knowledge of experts in order to refine the 

results and to add counter-measures. 

Construction of a Bayesian network from quantitative data 

This first step involved the extraction of data from the IMO’s “Piracy and Armed 

Robbery” database. This is the only database currently in existence that contains historic 

data (dating from 1994) of pirate attacks at sea. On 15th July, 2011 the database contained 

records of 5,502 attacks and provided detailed information on the name of the asset under 

attack, the number of attackers, the weapons used, the measures taken by the crew to 

protect themselves, the impact on the crew and the pirates, etc. 

In the table below are listed some examples of recent attacks and armed robberies. 

Date Ship name Ship 

type 

Incident details 

2012-

12-23 

ASSO 

VENTUNO 

Supply 

ship 

Pirates armed with guns attacked and boarded the 

offshore supply ship underway and kidnapped four 

crew members. The ship sailed to a safe port after 

the incident. The other crew members did not 

sustain any injuries. 

2012-

12-29 

SANKO 

MERCURY 

Bulk 

carrier 

Robbers boarded the anchored ship while waiting to 

commence loading operations. They broke into the 

forward bosun store, stole the ship's stores and 

property and escaped unnoticed. The incident 

occurred between 29.12.2012, 2300 LT and 

30.12.2012, 0400 LT and was reported to the local 

agent and the port authorities. 

2012-

12-29 

NORD 

DISCOVERY 

Bulk 

carrier 

Duty crew onboard the anchored bulk carrier found 

that the lock of the forward store had been broken. 

After checking, he saw the ship's stores lying on the 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

deck and the robbers escaping in their two boats 

empty-handed. 

 

Table 1. Examples of recent attacks and armed robberies 

To classify this information, we applied a method of textmining to the database using 

the software RapidMiner11. 

The BayesiaLab software made it possible to automatically generate a bayesian 

network and describe the interdependencies between the principal basic elements. Among 

the unsupervised learning methods available (data segmentation algorithms or 

characterisation of the target node for examples), an algorithm for finding associations 

was chosen as it offered the most appropriate modelling. 

 
 

 
Figure 2. The Bayesian network based on IMO data 

The Bayesian network constructed from data related to attacks held in the 

International Maritime Organization's database lacks many values related to the 

modalities of the different nodes because of a lack of detail in the description of pirate 

attacks. BayesiaLab makes it possible to impute missing values by adding a state to the 

variable. Moreover, the k-means algorithm applied to the data made it possible to 

                                                
11 RapidMiner is unquestionably the world-leading open-source system for data mining. 
It is available as a stand-alone application for data analysis and as a data mining engine 
for the integration into own products 
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estimate the independence relations between database variables and thus to obtain the 

best “cause and effect” structure. For each attack scenario, the network performs a 

statistical calculation by applying the parameters given as input to simulations of similar 

cases. The large amount of missing data in the database therefore does not impact any of 

the parameters for the simulation of attack scenarios. 

Figure 2 shows the Bayesian network constructed from the information contained in 

the IMO database. Some information, such as the longitude, latitude, name of the asset 

attacked, etc. is not included. This is due to the fact that this data was not specified for all 

attacks. The network contained around twenty nodes that described the type of vessel 

under attack, the location of the attack, the type of weapons used by the pirates, their 

numbers, etc. The interrelationships between these variables were also identified through 

a machine learning process. 

A classical statistical analysis of this data provided some initial findings, which 

included the observation that most ships coming under attack are bulk carriers or tankers; 

48% of attacks take place in international waters (due to the absence of security patrols); 

and pirates prefer to attack in numbers (68% of attacks are organised by teams of more 

than five pirates). The network therefore provides a very clear view of the tactics of 

pirates, the weapons they use, and above all the number of individuals involved.  

In the example below, specific modalities were set for nodes that characterise the 

threat in order to identify the counter-measures used by the crew of the asset under attack. 

Figure 3 illustrates the following assumptions: 

 The asset under attack: a tanker 

 The location of the accident: international waters 

 The type of attackers: thieves 

 Type of weapons: armed personnel 

 

The Bayesian network indicates that in this case (as in most cases) the assailants fired 

shots at the potential target and that the crew, to protect themselves from the threat, tried 

to apply evasive manoeuvres and aimed water hoses at the attackers.  

 

 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

Figure 3. Hypothetical attack against a tanker 

The network created from the IMO database therefore helped to define the principal 

steps taken by the crew of attacked entities in order to protect themselves, namely: 

initiate evasive manoeuvres, activate the Ship Security Alarm System (SSAS), contact 

the security vessel, secure the crew, turn on searchlights, etc. It also made it possible to 

assess the effectiveness of these tools and to define the probability of occurrence of 

certain types of attacks. 

It is necessary to carry out an initial analysis of the IMO database to establish the 

challenges posed by these threats to the crew, the platform, the economy and national 

security. It makes it possible, in a second step, to identify the frequency of attacks, risk 

zones, types of ships used to carry out attacks, etc. and to list the most commonly used 

and effective counter-measures. 

Coupling the Bayesian network based on IMO data with the qualitative knowledge 
of marine experts 

The Bayesian network created from the modalities and conditional probabilities found 

in the IMO database provided an initial formal framework. Domain experts were then 

able to enrich this initial network by integrating their knowledge and expertise in order to 

create the final SARGOS network (Hudson, 2002). 

The second step of the approach was for experts in the maritime and petroleum 

industries to analyse the information provided by the Bayesian network that had been 

constructed from the IMO data. As the information contained in the IMO database related 

primarily to attacks on shipping, experts were able to contribute their knowledge of 

attacks on oil fields in order to extend the results: nodes and arcs were added to the model 

in order to make it as versatile as possible. Consequently, the Bayesian network was able 

to model both main target categories (shipping and fixed installations). While the inputs 

to the network (type of vessel used by the attackers, its movements, etc.) are identical 

regardless of the nature of the target, the counter-measures recommended by the 

Bayesian network are tailored to the type of target under attack (for example, evasive 

manoeuvres are not proposed when a fixed installation is the subject of the attack). 

The design of this enhanced Bayesian network, adapted to the constraints and 

conditions associated with fixed installations came about as a result of many 

brainstorming sessions during which various maritime security experts shared their 

experiences and discussed the modalities and probabilities of the network. 

The combination of information from the IMO database and the knowledge and 

experience of experts in marine and offshore safety made it possible to create the 

SARGOS response planning network, which consisted of four modules and five sub-

modules (Figure 4). 
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Figure 4. Structure of the SARGOS Bayesian Network 

In the SARGOS Bayesian network, each module or sub-module consists of one or 
more nodes that receive input from and/or output to other nodes. Each node is a matrix of 
conditional probabilities that are calculated from an assessment of the interactions 
between nodes and the reality represented by the node itself. For example, the probability 
distribution of the node to activate searchlights (‘ActivateSearchlight’) is the direct result 
of interactions with other nodes that describe visibility, time of day and technical 
constraints such as availability and remote control. The probabilities of the basic nodes 
are initially standardised as no specific attack characteristics are set.  

 
The definition of the scope of each module is directly related to the composition of its 

constituent nodes. The module classification included: basic parameters, the overall 
danger level of the situation, aggravating factors and constraints, counter-measures and 
nodes related to communication and the request for assistance. These modules are 
described in detail below. 
Basic parameters 

The basic parameters module comprises static or dynamic physical data that 

characterise the threat and the target. These data are the direct result of, or are derived 

from the intermediate calculations of the alert report. Basic parameters represent the 

minimum, but sufficiently detailed level of modelling required for a full understanding of 

the threat and the target when assessing potential responses to an attack. They include, for 

example, threat identification (the node ‘IdentityClass’ which has two values: suspicious 

or hostile), the distance between the threat and the target (the node ‘DTGThreat/Asset’), 

and the criticality of the target (the node ‘AssetAssessment’ that takes four values: 

critical, major, significant or otherwise). 

In the Bayesian network, we take into account the longitude and latitude of the pirate 

ship for the calculation of the kinematics of the vessel to determine the distance between 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

the graft vessel and the platform. These two variables are passed in the alert report but 

not included in the network nodes. 

The overall level of danger of the situation 

The overall danger level of the situation is arrived from the basic parameters. The 

node ‘ShowGradationLevel’ is used to formalise this module in the Bayesian network. 

The grading system runs from level 1 (least serious) to 4 (most serious). This level and 

the planning of counter-measures are constantly adapted to the situation. 

Aggravating factors and constraints 

The aggravating factors and constraints module consists of elements that are both 

internal and external to the system. Aggravating factors make it possible to take into 

account a potential deterioration in the situation and thus to anticipate potential planning 

options. The nodes in this module represent the environment, for example visibility (the 

node ‘Visibility’) and time of day (‘PeriodOfDay’). Constraints are represented by 

parameters which reflect the effectiveness of the response both technically and 

operationally. Technical constraints are directly related to the use of counter-measures, 

and include nodes that represent their availability (‘ImmediateReadiness’) or the potential 

for remote control (‘RemoteControlled’). 

Counter-measures 

Counter-measures include all defences that are mobilised by a target under attack in 

order to protect itself against an identified threat. They are the concrete realisation of the 

response plan and constitute the set of means and actions intended to normalise, as 

quickly as possible, the situation. Counter-measures are divided into five sub-modules, 

which reflect the concept of a graduated response through increasingly forceful measures 

that correspond to the nature of the detected threat. Measures range from communication 

and a request for assistance, through deterrence and small-scale repulsion, repulsion, anti-

boarding measures and neutralisation, to procedure management and securing the facility. 

They are described in detail below. 

Communication and the request for assistance are two key responses to a threat. 

Internal communication can be used to alert all relevant personnel on the target (e.g., the 

node ‘InformOIM’ which represents informing the crew master), while external 

communication makes it possible at various levels to alert the different actors involved in 

maritime security – for example to request the intervention of the security vessel 

(represented by the node ‘RequestSecurityVessel’) or to activate the Ship Security Alarm 

System (represented by the node ‘RaiseSSAS’) etc. Both of these types of 

communication enable fixed installations and shipping to prepare their response plan and 

to establish if external intervention is available. 

From the position of the ship security (BIR), the system calculates the time required 

for the intervention on the location of the threat. If the estimated response time is greater 

than 300 seconds, the ship security may be required, in which case a request must be sent. 

Deterrence and small-scale repulsion measures are intended to inform the attacker that 

the target is aware of the attacker’s intentions, can follow the attacker and that it is not in 

the attackers’ interest to continue. These measures include the ability of the target to repel 

an attack with low-impact devices such as searchlights, fire hoses or sonic cannons (Long 

Range Acoustic Devices), represented by the node ‘ActivateLRAD’.  
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Repulsion, anti-boarding and neutralisation are high-impact counter-measures whose 

main function is at least to mitigate an attack, if not neutralise the attackers. The node 

‘EngageRepellentEquipment’ represents a growing number of tools available on the anti-

piracy market that are designed for the repulsion of an assault at long-range (while 

remaining within the bounds of legitimate, non-lethal defence). Like repulsion 

equipment, the main function of anti-boarding tools is to prevent attackers from gaining 

access to the facility or vessel. The function of the ‘SetCrowdControlMunition’ node is to 

delay the progress of the attackers in order to exhaust or even neutralise them and thereby 

provide the crew with maximum time to mobilise other safety measures. 

Procedure management is composed of two counter-measures. On the one hand, the 

node ‘CrewManagement’ represents the sounding of crew Action Stations and the 

reporting of crew to their pre-assigned post or station. On the other hand, the 

‘AssetAssaultManagement’ node represents activities related to securing the target of the 

attack. The modalities of this node are: activate the Citadel, engage evasive manoeuvres 

(for mobile units and shipping), and declare the security post (a set of individual 

procedures to be applied by each crew member as necessary). Like procedure 

management, the SARGOS system offers a way to secure the installation through the 

planning of actions designed to safely stop production and prevent access to sensitive 

areas. 

Demonstration of the contribution of the Bayesian network 

and discussion 
Once the probability distribution of the various modalities has been established, an 

interesting exercise is to test the Bayesian network by using it to simulate different attack 

scenarios through the selection of certain criteria. An examination of these scenarios 

made it possible to finalise the network before integrating it into the SARGOS system.  

 

The integrated data that provides the input to the network is interpreted from images 

captured by cameras and various sensors. The uncertainty of this information increases 

with the distance between the target to be protected and the pirate ship. In its current 

form, the Bayesian network cannot handle the temporal evolution of the attack and there 

is no connection between response reports generated for the same attack. This issue is 

addressed in other research based on dynamic Bayesian networks (Dabrowski and al, 

2013). 

 
Attack scenarios 

The example below (Figure 5) shows the results of setting parameters to simulate an 

attack on a Floating Production, Storage and Offloading (FPSO) unit by an unknown 

vessel. In this example the danger level of the situation is 2 with a 64.68% probability of 

occurrence and the counter-measures to be applied are: inform the crew master; request 

the intervention of the security vessel; broadcast a strong, clear message by loudspeaker; 

activate the searchlight; activate the security post; and engage repulsion equipment. 

Figure 5 shows that the planning of the response corresponds to the danger level of the 

situation and is able to adapt to changes in parameters representing the threat and the 

target. Setting parameters to represent the threat, the target, the environment, etc. creates 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

different attack scenarios that make it possible to refine the probability of an attack and 

test the response of the Bayesian network.  

In this case it is necessary to inform the master of the crew of the FPSO, request the 

intervention of ship safety and security since the probability of their action is equal to 

80% (close to the ship attacked infrastructure). Several counter-measures can be activated 

as the speakers, bright lights and water jets. Following the evolution of the situation a few 

moments later and the increased level of danger that follows, it should then alert the crew 

to use the security station. 

 
Figure 5. Result of response planning using the scenario of an attack from an 

unknown vessel 
Integration of the Bayesian network into the SARGOS system 

In order to integrate the Bayesian network into the SARGOS system, a prototype was 

developed that included an alert report as input and a planning report (which listed all the 

counter-measures to be applied either by the crew or automatically by the system) as 

output. The BayesiaEngine software provides a module that makes it possible to select 

and set attack parameters. This module consists of an application programming interface 

(API) and a Java library. Intermediate calculations are carried out on the basis of these 

parameters and the results are fed into the enhanced Bayesian network created from 

expert knowledge.  

The resulting list of counter-measures varies according to the attack scenario. 

Consequently, a threshold must be set in order to only activate those measures that 

provide the most relevant response at a particular time, and in a particular situation. This 

threshold was set at 70%. In other words, only those counter-measures where one of the 

modalities had a probability greater than 70% were selected for further processing. This 

threshold was arrived at by domain experts as it reflects actual events in more than two-

thirds of real-life cases. Following an extensive period of testing, the selected counter-

measures were found to correspond to realistic and reliable responses. 

Once the counter-measures had been selected, they were added to the planning report 

in a specific order. The main factors determining this order of priority were: the action 

mode of the counter-measure, its ease of implementation, the degree of automation or the 
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need for a large number of crew members to activate it, the time required for it to become 

effective and its potential additional functions. 

The SARGOS system can handle multiple threats contained in a single alert report. 

Consequently, priorities must be established. In the system, the first threat to be treated is 

always the one where time available to react is the shortest for the target that is most 

exposed. 

 
 
 

The system detected several potential threats heading towards the oil field and has 

classed them into ‘Enemy’, ‘Unknown’ or ‘Friend’. An alert is only generated following 

a classification of Enemy or Unknown. Once a threat has been detected and analysed, the 

response planning report is prepared. It is divided into two parts: the first concerns 

communication and a general request for assistance directed at the entire oil field; the 

second concerns the specific asset at risk. The response planning report also displays the 

counter-measures to be activated in chronological order (Figure 6). 

The representation of the probability that a particular measure will be implemented 

can be seen in the counter-measure ‘Security Vessels’, where the proportion of the blue 

segment suggests a 60-70% probability that this method will be called upon.  

 

 

 

 

 

 

 

 

 

 

 Figure 6. The user interface of the SARGOS system showing global counter-

measures on the left (in order: inform the crew master, request the intervention of the 

security vessel and inform other installations in the field) and specific counter-

measures on the right (assemble crew, block access to infrastructure, activate 

searchlights and activate the sonar cannon).  

Conclusion 
Acts of maritime piracy against oil field infrastructure present a complex problem. 

The effectiveness of current measures designed to protect infrastructure is significantly 

affected by the vast terrain and environmental constraints. Moreover, it is difficult to 

assess a potential threat given the constantly changing nature of a dangerous situation and 

the huge number of parameters that must be managed.  



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

The implementation of a Bayesian network therefore offers a significant advantage 

for the SARGOS system as this type of network is able to handle all possible 

combinations of parameters. These include not only the characteristics of the threat and 

the target under attack, but also the environment and variables related to crew and facility 

management. Most importantly, the system is able to adapt in real-time to changes in the 

danger level of the situation. The SARGOS system offers a response planning solution 

that manifests in the preparation of a planning report created from an intelligent 

assessment of successive alert reports, and which can react to an evolving situation.  

The activation threshold of counter-measures has been determined by experts. Most 

counter-measures are against-enabled manually by the crew. Some of them are not 

systematically exploited if their activation requires setting a crew danger. The Bayesian 

network was developed specifically for the protection of static targets (platforms) and is 

therefore not suitable for ensuring the safety of ships. 

The network can be continuously improved through the integration of feedback from 

attacks that have already been managed. It is therefore possible to continue to enhance 

and tailor the planning module iteratively. 

Finally, an interesting approach that may improve the modelling of knowledge 

embedded in the Bayesian network could be to establish an appropriate ontology. The use 

of a suitable ontology would make it possible to formalise knowledge upstream of the 

Bayesian network in order to consolidate the threat detection and identification steps. 

The use of dynamic Bayesian networks is a way to explore. These networks have 

been an interesting development as a generalization of models hidden Markov models or 

Kalman filters for applications such as speech recognition, state estimation of a dynamic 

system, etc. A dynamic Bayesian network is a factored representation of a Bayesian 

network whose nodes are indexed by time on a discrete scale. The Bayesian network is 

represented by nodes and indexed by generic no time and two types of links: links 

classical Bayesian networks and so-called temporal relationships that define the 

conditional probability tables of the nodes according to their parents located to lower 

time indices. The application of a dynamic Bayesian network would integrate the notion 

of time on decisions to be taken in case of attack and its influence on the evolution of the 

threat. 
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