
HAL Id: hal-00983061
https://minesparis-psl.hal.science/hal-00983061

Submitted on 25 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imagining Knowledge, a Formal Account of Design
Lex Hendriks, Akin Osman Kazakçi

To cite this version:
Lex Hendriks, Akin Osman Kazakçi. Imagining Knowledge, a Formal Account of Design. Logic
and Interactive Rationality, Institute for Logic, Language and Computation, pp.111-126, 2011. �hal-
00983061�

https://minesparis-psl.hal.science/hal-00983061
https://hal.archives-ouvertes.fr


Imagining Knowledge, a Formal Account

of Design

Lex Hendriks and Akin Kazakci

ILLC University of Amsterdam, CGS Mines ParisTech
a.hendriks@uva.nl, osmanakin@gmail.com

Abstract

Design, as in designing artifacts like cars or computer programs,

is one of those aspects of rational agency hardly even mentioned

in traditional logical theory. As an engineering discipline, design

obviously involves reasoning but seems to depend much more on a

mix of factual knowledge, experimenting and imagination.

We will present a formal framework for the dynamic interplay between

knowledge and imagination inspired by C-K theory Hatchuel and Weil

(2003a) and discuss the possible directions for further development

of a ’logic of design’.

1 Introduction

While there are extensive studies on modeling and theorizing about design1,
most engineers still perceive design as practice or even art. Considering the
large variety of design practices, it is arguably difficult to determine a fixed
universal set of core characteristics and phenomena defining design science.

1E.g. Braha and Reich (2003), Maher and Gero (1990), Maimon and Braha (1996), Marples
(1960), Shai and Reich (2004a;b), Suh (1990), Takeada et al. (1990), Yoshikawa (1981), Zeng (2002)



2 Imagining Knowledge

Indeed, what is scientific about design? One possible answer is the specific
mode of reasoning design requires. Design is a reasoning process by which
new descriptions for new classes of objects are generated. Thus, the properties
of this creative process constitute a core phenomenon for design research.

Yet, traditional formal theories and models of design usually treat creativity
as external phenomena, for example, due to imagination, as e.g. in Simon (1969)
and Simon (1995). A first category of models aim at structuring the process,
G.Pahl and Beitz (1984)), and hence, they provide models for the organization
of design activities.

A second category describe design as the progressive refinement of the
object being designed, Gero (1990) or Braha and Reich (2003), and hence,
propose a model of the evolution of design artifacts. In both cases, the creative
mechanisms of design reasoning are not deemed as central (i.e. the models do
not seek to explain where do refinements come from or what sort of organizing
allows better creativity).

One notable exception to these works is the concept-knowledge (C-K) theory
of design Hatchuel and Weil (2002; 2003a) and Hatchuel and Weil (2009). C-
K theory places the creative generation of new definitions and objects at the
heart of design through a notion of conceptual expansion. It describes design
as a reasoning process where an object’s identity is revised by changing its
definition through the introduction of new properties. If successful, a new
class of objects has been designed.

Inspired by C-K theory and building on our previous work Kazakci (2009),
Hendriks and Kazakci (2010), the current work presents a framework demon-
strating how C-K type design reasoning can be formalized within logic.

Our contribution in the current paper is twofold. First, we introduce formal
Design Operators replacing the underspecified operators of C-K theory, and
next we sketch how Design Scenario’s can be build with such operators to fully
explain the phenomena described in C-K theory, such as the conceptual expansion
mentioned before.

This opens up perspectives of automating, at least partially, C-K type design
reasoning, along with many research questions. Computer aided design sup-
port has been one of the main inspirations for the application of formal methods
to design theory since Simon (1969). How precisely the use of constructive rea-
soning in design, e.g. intuitionistic logic, can yield a recipe for an artifact based
on a proof of its possible existence, is one such a research question. The use of
Design Scenarios on the other hand points toward another possible connection
with logic, via dynamic logic.

The plan of the paper is as follows. Section 2 gives a summary of C-K theory



Lex Hendriks et. al. 3

and previous work on its formal foundations. Section 3 introduces the basic
logical framework we use. Design stages and design concepts and body are
defined and some of their properties are summarized. Section 4 introduces
design operators and then extends these to Design Scenarios. Some concluding
remarks can be found in section 5.

2 A dynamic perspective on Design Reasoning

C-K theory describes design reasoning as the dynamic interplay of knowledge
and concepts. Concepts are (partial) descriptions of a new object which exis-
tence (or the impossibility of such existence) cannot be decided based on the
current knowledge.

Each stage in the design process is defined by its current knowledge and
its current concept. The design space can be considered as the product of the
knowledge space and the concept space.

• Knowledge Space The elements in the Knowledge Space are sets of knowl-
edge, representing all the knowledge available to a designer (or to a group
of designers) at a given time.

• Concept Space The elements of the Concept Space are (partial) descriptions
of unknown objects that may or may not be possible to exist.

Whereas knowledge consists of true propositions, concepts are propositions
whose status is unknown (based on the given knowledge). Such propositions
can neither be stated as true, nor false by the designer at the moment of their
creation (e.g., ’some tires are made of dust’).

According to C-K theory, creative design begins by adding a new and un-
usual property to an existing concept C to form a new concept C′ (e.g. ’tires for
life’). The elaboration of concept can then be continued either by further expan-
sions (tires for life are made of silicon) or by restrictions (that is by adding usual
properties of the initial concept, e.g. tires for life are round). Such conceptual
expansions or restrictions are called partitioning in C-K theory.

Note that, according to C-K theory, new concepts are formed by combi-
nations of concepts occurring in the propositions of existing knowledge. The
designer will use his or her body of knowledge K either to partition further
the concepts, or to attempt a validation of a given concept. This last type of
operation (K-validation) corresponds to the evaluation of the feasibility of a
design description (e.g. could it exist).



4 Imagining Knowledge

Often the validation of a concept will not be readily possible. In order to
validate concept C, new knowledge warranting the existence conditions of such
an object should be acquired. In terms of C-K theory, knowledge should be
expanded (K-expansion). Such new knowledge may bring new concepts into
the game, allowing for new expansions and restrictions of the design concept
C.

The central proposition of C-K theory is thus ”design is the interaction and
dual expansions concepts and knowledge” Hatchuel and Weil (2003a; 2009).

2.1 Previous work on formal aspects of C-K theory

Despite the mathematical references and metaphors used in the presentation of
the theory, a full mathematical presentation of the theory has not been provided
to date.

Nevertheless, some steps for formalizing C-K theory have been taken in
some recent work. Hatchuel and Weil (2003b) argues that there are significant
similarities between the type of reasoning described by C-K theory and Forcing,
a technique used in Set Theory for constructing alternative set theoretic models
with desired properties. It is claimed that the parallel between Forcing and C-K
theory is an important step for design theory in general but this issue needs
more formal investigation.

In a complementary approach, Kazakci et al. (2008)shows that C-K type
reasoning can be implemented with much more simple formalisms. They use
propositional term logic to model the basic ideas of C-K theory. They suggest
a notion of ”models of K space” to emphasize that different structures (or
formalism) used to model knowledge will yield different conceptive power
and degrees of flexibility in reasoning.

In Kazakci (2009) a first-order logical formal account of C-K theory’s core
notions is presented. To emphasize the constructive aspects of a design process,
intuitionistic logic is used to study the interaction and expansion of concepts
and knowledge, based on the definitions of the basic notions. Building on
this work, Hendriks and Kazakci (2010) complements this approach in that we
consider the core proposition of the theory, the dual expansion of concepts and
knowledge, and investigates the logical implications of such a principle.

2.2 Producing concepts from knowledge

One of the intriguing idea from C-K theory is the emerging of new concepts
from (new) knowledge. Can we generate concepts using logic? Recall that in



Lex Hendriks et. al. 5

C-K theory for C to be a concept it has to be ’unknown’, in as far as our body of
knowledge allows us, whether there are instances of the concept or not. From
the examples in C-K theory literature we can reconstruct a simple mechanisms
at work here, using the language LK in which our body of knowledge K is
represented. If we assume LK is a first order logic language enriched with a
set of constants for specific individuals and predicates (the signature of LK), it
is only natural that extending K may also extend the signature. The new part
of the body of knowledge may introduce new constants (Planck’s h, the star
Vega-β, President Obama) and predicates (being married to, prime, being the
president of).

Concepts can now be generated from knowledge by recombination of ex-
pressions used in the body of knowledge. If ’Beatrix is the queen of The Nether-
lands’ then ’x is the queen of y’ is a phrase in LK. Which allows us to form an
expression like: ’Planck is the queen of Vega-β’.

If we model phrases as formulas with one free variable x (a restriction we
may lift later on) this amounts to forming conjunction of existing phrases, like
in Boat(x) ∧ Flies(x).

Such a new phrase (if K does not imply that ∀x.Boat(x)∧Flies(x) and neither
that ¬∀x.Boat(x) ∧ Flies(x), could be used as a concept C and starting point for
design.

Combined with knowledge extension this simple mechanism will supply
the design process with a wealth of new concepts without any appeal to imag-
ination or hidden creative powers.

The mechanisms above can easily be extended further, e.g. by lifting the
restriction on the type of phrases used. Like in the example ’Planck is the queen of
Vega-β’, where we could start the design turning this into the question ’Wouldn’t
it be nice if Planck is the queen of Vega-β?’ This could ’branch’ (in a series of steps)
into ’absorbing very bright light to produce both energy and comfortable back
ground illumination’.

2.3 Generating knowledge from concepts

Knowledge may guide the designer in avoiding branches that are known to be
undesirable (like in case C contains some constraints on the amount of money
to spend on producing a Car(x), combined with the knowledge that Gold(x) will
raise the cost of production considerably).

One simple mechanism of knowledge expansion occurs when the designer
(or the design team) is aware of the body of knowledge K, say there knowledge



6 Imagining Knowledge

is a part of K called K0. Extending this K0 could be done be Googling the web,
searching Wikipedia, asking experts etc.

A second mechanism could involve further research in the field K. The
experts in the field might be unable to answer the questions of the design team.
Further research and experimentation could be necessary. For example we
might want to use carbon-epi-hexa-fluor-plexitude for the heat shield of our
Vega-β-surveyor, but it is unknown what will happen if carbon-epi-hexa-fluor-
plexitude is heated above 5,000 degrees Celsius.

A third mechanism may occur when we try to combine parts of theories,
say the nanotechnology with the neurobiology of humain brain, say, in order
to use nanotechnological devices to record firing patterns of neurons. Whether
such thing is possible may be a complete new subject for scientific research.

3 A logical framework

In this section, we will describe the design process as generating design stages
〈K; C〉, where K is some body of knowledge and C is a concept. In C-K theory
one is especially interested in design stages where C is totally new for K. Here
we will allow degenerated stages that can be discarded once they are seen as
inconsistent or in fact not new at all (hence C turns out to be feasible already
based on K).

The design process may extend a design stage in principle in infinitely many
ways. One could try to imagine all ’existing’ possible ’bodies of knowledge’
or all ’possible concepts’ and try to describe these as (a special sort of) sets,
such that the operations in the design process which transform a stage 〈K; C〉
into a new 〈K′; C′〉 can be defined as a special kind of (extended) ’search
operations’, not unlike known search algorithms (e.g. on databases or in linear
programming).

Not only Ockham’s Razor makes the ’existence’ of such ’Knowledge Spaces’
or ’Concept Spaces’ suspect, simply from a pragmatic point of view, some sort
of constructive reasoning in the design process seems to be attractive. Opera-
tions in the design process defined using ’mental images’ of infinite collections
containing ’lawless’ sequences are certainly not constructive Kazakci (2009).
Note that according to C-K theory there is no ’algorithm’ or construction that
will determine the next step in a design path. Such a path can be seen to be-
have ’lawless’ in Intuitionist sense Kazakci (2009). Therefore, at least from a
pragmatic point of view, it seems reasonable to assume that at each point in the
design process the body of knowledge has a finite representation.



Lex Hendriks et. al. 7

We introduce a basic logical framework that will allow us to represent in
logical terms some of the ideas in C-K theory. We will be a little vague on
the precise logical language L and the rules of the logic used. This is because
we want to extend the framework later on. This could be done in different
directions and we don’t want to assume too much about either the expressivity
of the language or the strength of the logical rules.

Without any problem the reader may assumeL is the language of predicate
logic and the logic is the usual classical logic (although all our results will be
valid in intuitionist logic as well: we will simply not use the axiom A ∨ A or
the rule A ⊢ A of classical logic). Note that, in a constructivist type of logic, like
intuitionist logic, a proof of C from K is a construction, one that under a certain
conditions can be used as a recipe to construct an instance of C(x) based on the
constructions that exist according to K - which is a suitable characteristic for
modeling design endeavor.

In our notation T ⊢ A means a formula A is provable from the set of formulas
T. T∗will be the set of all formulas (inL) derivable from T (T∗ = {A ∈ L | T ⊢ A}).
So T∗ ⊆ S∗ and T ⊢ A implies S ⊢ A.

3.1 Design stages and design space

Let us model the body of knowledge (as a first approximation) as a finite set
of formula, in the language of first order logic (predicate logic). Such a finite
theory K will always be ’partial knowledge’ and hence extendable. Again in a
first approximation, we could model the ’concept’ C as a formula (in predicate
logic).

Our definition of design reasoning is based on the one in C-K theory, where
design is defined as a reasoning activity, starting with a proposition of the design
concept and proceeding by operators adding knowledge or expanding the design
concept. The definition below is slightly more abstract, which would seem to
allow more design stages and design steps than described in C-K theory itself.

Definition 3.1. A design stage is a pair s = 〈K; C〉, where K a finite set of
sentences, called the body-of-knowledge of s and C a sentence, called the design
concept of s.

A design stage 〈K; C〉 is called consistent if K 0 ¬C.

A design stage 〈K; C〉 is called open if K 0 C ∨ ¬C.



8 Imagining Knowledge

A design step is a pair (s0, s1) where s0 and s1 are design stages. We will often
use the notation s0⇒s1 for the design step (s0, s1). Usually we will also assume
that s0 = 〈K0; C0〉, s1 = 〈K1; C1〉 etc.

A design step s0⇒s1 is called sound, written as s0
s
⇒s1, if s1 is consistent and for

all A ∈ K0 it is true that K1 ⊢ A (i.e. K1 ⊢
∧

K0) and K1,C1 ⊢ C0.

Design step s0 implies s1 if
∧

K0 → C0 ⊢
∧

K1 → C1.

Design step s0 is equivalent with s1 if s0 implies s1 and s1 implies s0.

We will use the notation s0 ⊢ s1 if s0 implies s1 and s0 ≡ s1 when they are
equivalent.

Note that in the definition above there are no constraints on the type of
sentence used as the design concept. Our C does not necessarily have the form
∃x.P0(x) ∧ . . . ∧ Pn(x), where the Pi are the desired properties for the object
that we wish to come out of the design process. It is even not required that
C is an existential formula. One can imagine for example that the ’thing’ we
try to design is a way of transforming all x with property A into some y with
relationship R between the x and the y. So C = ∀x(A(x) → ∃yR(x, y) would be
a conceivable design concept.

That we assume the body-of-knowledge K to be finite is not a real restriction
in practice (at any moment of time each finite group of people could only be
aware of a finite number of facts). We could allow for infinite K in principle,
but this would slightly complicate our formulas like in the definition of s0 ⊢ s1,
where for an infinite K the conjunction

∧
K formally is not defined.

The following facts follow directly from our definitions.

Observation 1. Let s0 = 〈K0; C0〉, s1 = 〈K1; C1〉 and s2 = 〈K2; C2〉 be design
stages.

1. If s0 is consistent then K0 is consistent (i.e. K0 0 ⊥).

2. If s0⇒s1 is sound and K0 ⊆ K1 then s0 is consistent.

3. If s0 ≡ s1 and s1 (or s0) is consistent then s0⇒s1 is sound.

4. If s0⇒s1 and s1⇒s2 are sound, so is s0⇒s2.



Lex Hendriks et. al. 9

Our definition of sound design steps is one way of formalizing the intuitive
notion of one design stage ‘implying’ another, found in most descriptions of
design (i.e. in Hatchuel and Weil (2009) and Braha and Reich (2003)). The
informal notion is sometimes used in a loose sense of ’having some reason to
go from s0 to s1’. On other occasions the ‘implication chain’ is a series of stages
where apparently more logic is involved. Our notion of soundness is a weak
form of such a logical connection, whereas the defined implication (s0 ⊢ s1) is
rather strong2

Two special cases of sound design steps may clarify the often observed
difference in direction of the ‘implication’ between ‘refining’ the specifications
and ‘refining’ the (structural) knowledge. Note that if K0 = K1 and s0⇒s1 is
sound, then K0,C1 ⊢ C0 and hence s1 ⊢ s0. On the other hand, if C0 = C1 and
s0⇒s1 is sound, K1 ⊢

∧
K0 and hence s0 ⊢ s1.

t t

t

¡
¡

¡
¡

¡✒

✲

✻

s0 s1

s2

s0
s
⇒s2

s0 ⊢ s1

s1 ⊣ s2

〈K0; C0〉 〈K1; C0〉

〈K1; C1〉

Figure 1: Splitting design steps in a K- and a C-component

As long as we confine ourselves to sound design steps that only change the
design concept or only the body-of-knowledge (which theoretically we could
obviously always do by splitting up steps if necessary, see figure 3.1), we could
use the implication of one stage by another as a basis3 for describing the design
process (taking care each time using the right direction of the ‘implication’
between the states). In a more realistic model of design steps, where both parts
of the state can change in one single step, the implication between states (e.g.
in the way defined above) becomes awkward to deal with.

Simple examples of sound steps are:

• (Adding knowledge) 〈K; C〉⇒〈K,A; C〉

2Another notion of (strict) implication would be s0 ∼ s1 defined as K0 ⊢ C0 ⇒ K1 ⊢ C1.
Implication of states implies strict implication, but not the other way around.

3This would result in a more restrictive relationship than soundness.



10 Imagining Knowledge

• (Adding properties) 〈K; ∃xC(x)〉⇒〈K; ∃x(C(x) ∧ P(x)〉

• (Introducing a definition) 〈K; C ∧D〉⇒〈K,P↔C ∧D; P〉

An example of s0 ⊢ s1 where s0⇒s1 is not sound would be s0 = 〈K; C〉 and
s1 = 〈K; C ∨D〉. If K 0 D→ C then K together with C ∨D does not imply C.

As can be concluded from the examples above, our formalism does not
require the design concept to be of the form ∃xC(x) as perhaps expected from
the informal description of the design concept as a description of something
we seek to exist. Allowing the full generality of a first-order sentence provides
us with a lot more flexibility as we will show in the sequel.

As promised in the introduction we would prove the conjecture that using
sound design steps leading to a closed design stage will provide a proof for the
original design concept.

Theorem 1. Let sn = 〈Kn; Cn〉 be a closed design stage reached after n sound design
steps from s0 = 〈K0; C0〉 (so Kn ⊢ Cn) then Kn ⊢ C0.

Proof. From the fact 1.3 we can conclude that s0
s
⇒sn. Hence, by definition,

Kn,Cn ⊢ C0. As Kn ⊢ Cn by the Cut-rule it follows that Kn ⊢ C0. ⊣

4 Design scenarios

In C-K theory design operations are made within or between ’K-space’ and
’C-space’. Translated into our formalism we get:

Create K −→ 〈K; C〉
Forming the first concept from properties of K.

Refine 〈K; C〉 −→ 〈K; C′〉
Adding a property from K to C.

Enhance 〈K; C〉 −→ 〈K′; C〉
Using properties from C to find additional knowledge.

Expand 〈K; C〉 −→ 〈K′; C′〉
Combining Refine and Enhance.

Validate 〈K′; C〉 −→ 〈K; C〉
Adding knowledge about the existence of C to K
This may or may not add C or ¬C to K.

Design concepts often are considered as (partial) definitions of an artifact,
formalized as formulasφ(x) with exactly one free variable x. In the publications



Lex Hendriks et. al. 11

on C-K theory the design concept is introduced as a set of properties. The idea
behind this (e.g. in Kazakci (2009) is that the concept C is a sentence of the
form ∃x.P1(x) ∧ . . .Pn(x) and {P1, . . . ,Pn} is the set of properties that make up
the concept C.

To treat the design concept as a set of properties within our formal frame-
work forces us to introduce properties, sets of such properties and some op-
erator ∃ to bridge the gap between sets of properties and the propositions C
introduced before.

Definition 4.1. Let S be a set of properties.
∃S will be the proposition claiming the existence of an object with all the
properties in S.
For the design stage 〈K; ∃S〉we will also use (K; S).

A further analysis of the design operations listed above shows that aparently
also other basic extra-logical operations on (sets) of properties and propositions,
like Query, Test and operators to extract properties from formulas, will play a
role in describing the dynamic interplay between knowledge and imagination.

Definition 4.2. Let A be a formula and P a predicate occurring in A, than both
P(~x) and ¬P(~x) are properties of A.
Let A be a formula and S a set, then the basic design operations are defined as:

¬ For property P, ¬P is property: the complement of P.
.Prop A.Prop is the set of properties of A.
! !S is an element of S.
!⊆ !⊆S is a subset of S.
? If S is a set of properties, ?S is a sentence (obtained by a query).
test If A is a formula test(A) is a formula.

In our extended language we will allow the use of set operations, relations
(e.g. ∪, ∩, ∈, ⊆, =, ,) and the contstant ∅ (for the empty set).

How exactly selection, e.g. of a subset of properties is made, or how the
query ? or the test are performed we keep for now formally undefined. Several
options may be investigated within (and by expanding) our formal framework.
Our definition of the complement of a property does not rule out that¬¬P is the
same property as P, nor does it requires so. Usually one surely would expect
¬¬¬P to equal¬P, but for the moment we will not fix the rules of the formalism
at this level of detail.

For selection one may thinks of a random choice. The query may be a
Google-search with a the English names of the properties, out of the result



12 Imagining Knowledge

of which somehow some piece of knowledge is selected and translated in
the language LK′ , where K′ may be an extension of K containing some new
properties.

4.1 Scenarios

We are now ready explain what we consider the core of C-K theory, the dual
expansion of concept and knowledge, in terms of our basic operations. Consider
the following scenario:

〈expand〉(K; S) := {

P := !S;
KP := ?{P};
A := !KP;
Q := !A.Prop;
KP := ?{Q};
R := !{Q,¬Q};
return (K ∪ KQ ∪ KP; S ∪ {R})
}

This scenario can be read as: Based on a property of S we expand our
knowledge to KP. This new knowledge, resulting from a query, may introduce
some new properties, e.g. the property Q. A query fed by Q could lead to new
knowledge KQ. The set of properties for the design concept is now extended
with either Q or its complement, whereas the body of knowledge meanwhile
is extended with both KP and KQ.

Assume we started with K 0 ∃S, it now might be the case that K,KP,KQ ⊢ ∃S,
or even K,KP,KQ ⊢ ∃(S ∪ {R}).

The scenario above kept close to the description of expansion in C-K theory,
as in Hatchuel and Weil (2002).

5 Conclusions

Our approach in this paper has been a mix of formal reasoning and informal
analysis of engineering design, especially as described by C-K theory. The
result is a formal framework with some ’dynamic ’features, without a well
defined semantics.



Lex Hendriks et. al. 13

References

D. Braha and Y. Reich. Topological structures for modelling engineering design
processes. Research in Engineering Design, 14:185–199, 2003.

J. Gero. Design prototypes:a knowledge representation schema for design. AI
Magazine, 11:26–36, 1990.

G.Pahl and W. Beitz. Engineering Design: a systematic approach. The Design
Council, London, 1984.

A. Hatchuel and B. Weil. C-K theory: Notions and applications of a unified
design theory. In Proceedings of the International Conference on the Sciences of
Design, page 14, INSA Lyon, France, March 2002.

A. Hatchuel and B. Weil. A new approach of innovative design: an introduction
to C-K design theory. In Proceedings, International Conference on Engineering
Design, 2003a.

A. Hatchuel and B. Weil. Design as forcing: Deepening the foundations of C-K
theory. In Marjanovic et al. (2010), page 14.

A. Hatchuel and B. Weil. C-K design theory: an advanced formulation. Research
in Engineering Design, 19:181–192, 2009.

L. Hendriks and A. Kazakci. A formal account of the dual expansion of concepts
and knowledge in C-K theory. In Marjanovic et al. (2010), pages 49–58.

A. Kazakci. A formalization of C-K design theory based on intuitionistic logic.
In A. Chakrabarti, editor, Proceedings of the International Conference on Research
into Design ICORD09, pages 499–507, Bangladore, India, January 2009.

A. Kazakci, A. Hatchuel, and B. Weil. A model of ck design theory based on
based on a term logic: a formal background for a class of design assistants.
In D. Marjanovic, M. Storga, N. Pavkovic, and N. Bojcetic, editors, Proceed-
ings of the 10th International Design Conference DESIGN 2008, pages 43–52,
Dubrovnik, Croatia, May 2008.

M. Maher and J. Gero. Theoretical requirements for creative design by analogy.
In P. A. Fitzhorn, editor, Proceedings of the first International Workshop on Formal
Methods in Engineering Design, Manufacturing, and Assembly, pages 19–27,
Colorado Springs, Colorado, January 1990.



14 Imagining Knowledge

O. Maimon and D. Braha. A mathematical theory of design. International Journal
of General Systems, 27:275–318, 1996.

D. Marjanovic, M. Storga, N. Pavkovic, and N. Bojcetic, editors. Proceedings
of the 11th International Design Conference DESIGN 2010, Dubrovnik, Croatia,
May 2010.

D. Marples. The decisions of engineering design. Journal of the Institute of
Engineering Designers, pages 181–192, December 1960.

O. Shai and Y. Reich. Infused design: I theory. Research in Engineering Design,
15:93–107, 2004a.

O. Shai and Y. Reich. Infused design: II practice. Research in Engineering Design,
15:108–121, 2004b.

H. Simon. The Sciences of the Artificial. MIT Press, Cambridge, Mass., 1969.

H. Simon. Problem forming, problem finding and problem solving in desing. In
A. Collen and W. Gasparski, editors, Design and Systems: General Applications
of Methodology., pages 245–259. Transactions Publishers, New Jersey, 1995.

N. P. Suh. The principles of design. Oxford University Press, New York, 1990.

H. Takeada, P. Veerkamp, T. Tomiyama, and H. Yoshikawa. Modeling design
processes. AI Magazine, 11:37–48, 1990.

H. Yoshikawa. General design theory and a cad system. In T. Sata and E. Water-
man, editors, Man-Machine Communication in CAD/CAM, pages 35–38. North-
Holland, 1981.

Y. Zeng. Axiomatic theory of design modeling. J. Integr. Des. Process Sci., 6:1–28,
August 2002. ISSN 1092-0617.


