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Abstract: Most empirical accounts of design suggest that designing is an activity where objects and 

representations are progressively constructed. Despite this fact, whether design is a constructive 

process or not is not a question directly addressed in current design research. By contrast, in other 

fields such as Mathematics or Psychology, the notion of constructivism is seen as a foundational 

issue. The present paper defends the point of view that forms of constructivism in design need to 

be identified and integrated as a foundational element in design research as well. In fact, a look at 

the literature reveals at least two types of constructive processes that are well embedded in design 

research. First, an interactive constructivism, where a designer engages a conversation with media, 

that allows changing the course of the activity as a result of this interaction. Second, a social 

constructivism, where designers need to handle communication and negotiation aspects, that 

allows integrating individuals’ expertise into the global design process. A key feature lacking to 

these well-established paradigms is the explicit consideration of creativity as a central issue of 

design.  

 To explore how creative and constructivist aspects of design can be taken into account 

conjointly, the present paper pursues a theoretical approach. We consider the roots of 

constructivism in mathematics, namely, the Intuitionist Mathematics, in order to shed light on the 

original insights that led to the development of a notion of constructivism. Intuitionists describe 

mathematics as the process of mental mathematical constructions realized by a creative subject 

over time. One of the most original features of Intuitionist Constructivism is the introduction of 

incomplete objects into the heart of mathematics by means of lawless sequences and free choices. 

This allows the possibility to formulate undecided propositions and the consideration of creative 

acts within a formal constructive process. We provide an in-depth analysis of Intuitionism from a 

design standpoint showing that the original notion is more than a pure constructivism where new 

objects are a mere bottom-up combination of already known objects. Rather, intuitionism 

describes an imaginative constructivist process that allows combining bottom-up and top-down 

processes and the expansion of both propositions and objects with free choices of a creative 

subject. We suggest that this new form of constructivism we identify is also relevant in 

interpreting conventional design processes and discuss its status with respect to other forms of 

constructivism in design. 
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1 Introduction 

Is design a ‘constructive’ process? Certainly, the ultimate objective of a creative design 

process is to provide means (definitions, plans, blueprints etc) for allowing the 

construction of a new object. In addition to the final product, many intermediate 

representations are created and ideas are elaborated during a design process. In this 

respect, empirical accounts and observations of design processes suggest that design is a 

fundamentally constructive process. Yet, theories about design seldom take into account, 

if at all, the constructivist nature of design. In which sense design may be seen as a 

constructivist process? Are there different forms of constructivism in design? An 

extensive literature on models and theories of design bears on notions of progression, 

iteration or increments in the elaboration of some definition – without explicitly 

discussing a notion of constructivism. By contrast, in many research other areas such as 

Mathematics, Philosophy and Psychology, the notion of constructivism has been debated 

in depth and often as a foundational issue. The paper defends the idea that investigating 

whether design is a constructive process and what forms of constructivism exist in design 

is an important issue for consolidating theoretical underpinnings of design phenomena.  
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Despite this lack of explicit consideration, at least two forms of constructivism can be 

identified in design literature. The first type is what we term interactive constructivism 

developing the notion that the interaction of the designer with some media is the engine 

through which design progresses. In this conception, a designer engages a kind of 

conversation with some media on her environment. She can observe unintended 

consequences of her actions or a new perceptual rearrangement of elements on the 

medium she uses for designing. This new interpretation may lead to changes in the course 

of the activity as a result of this interaction. Work from Schön (Schön 1983; Schön and 

Wiggins 1992) and more broadly from situated cognition (Gero 1998; Suwa and Tversky 

2003) has been a major influence on this line of work. The second type is what we term 

social constructivism, which focuses on the social aspects of design that influences the 

course of a design process. In this line of work, each individual involved with the design 

process has its own unique world of expertise related to a particular aspect of the product. 

Integrating each individual’s expertise into the global design process requires handling 

communication and negotiation aspects. In this sense, designs are collectively 

constructed. Work from Bucciarelli (Bucciarelli 1988, 1994) is one of the early examples 

that has been influential in design research.  A key feature lacking to these well-

established paradigms is the explicit consideration of creativity as a central issue of 

design. 

  

Understanding the nature of the debate and issues in constructivism in other domains 

might shed some light on the issues related to the constructivism that need to be 

addressed in design. The present paper suggests a theoretical analysis for the inquiry of 

constructivism and its relation to design by considering the roots of this notion in 

mathematics. Constructivism can be traced back to the beginning of 20
th

 century where 

mathematics was in the midst of a foundational crisis. Contrasted point of views from 

pioneering mathematicians such as Frege, Hilbert and Russell were being elaborated 

while attempts were being made to build a solid foundation for mathematics. A Dutch 

mathematician, L.E.J. Brouwer contributed significantly to this foundational debate with 

his innovative research program and highly original results on Intuitionist mathematics 

(Brouwer 1907, 1908, 1948; Heyting 1975; van Dalen 1981, 1999). In Brouwer’s work, 

mathematics is essentially a process of construction of (mental) objects by a 

mathematician. The activity of a mathematician, the so-called creative subject, is an 

exercise performed throughout time in such a way that any new mathematical object can 

only be constructed with whatever previous entities constructed thus far. However, this 

does not reduce mathematics to a mere combination determined beforehand and existing 

as a totality: The creative subject should construct the mathematical objects and she may 

do so with free choices – which give the mathematician the means to conceive new and 

unprecedented mathematical entities any time.  

 

Intuitionist conception of mathematics has profound implications on what mathematics is 

and bears significant insights into its constructivist nature. First, it explains mathematical 

activity as a reasoning process performed over time. Second, it puts emphasis on the 

constructability of objects, rather than the truth of their existence. Third, it acknowledges 

the incompleteness of knowledge and the possibility of constructing new objects. Fourth, 

the construction of unprecedented and unpredicted objects is taken into account by a 

notion of creativity of the mathematician and her free choices. As we shall elaborate in 

depth throughout the paper, these points resonate with some fundamental properties of 

design processes. This is not surprising insofar as design can be defined as the elaboration 

of a definition of an object allowing its construction (or proving its existence, for that 

matter). Then, it becomes legitimate to suspect that mathematicians conduct a kind of 

design process in their everyday exercise: what is mathematics if not defining new 

(mathematical) objects with new and unprecedented properties? Under this perspective, it 

becomes interesting to analyze the reasoning process Intuitionists describe from a design 

standpoint in order to explore the limits of these similarities and to locate, if possible, 

notions that might be useful in the discussion of design constructivism. 
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Arguably, the intricate relationship between mathematics and design deserves in depth 

analyses rather than any hasty yes or no conclusions, which, anyway, would not be 

possible considering the multiplicity of mathematical practices and outputs and the 

difficulty in capturing the act of design in one universal definition. To uncover issues in 

the constructivism debate that can be relevant in design theory, we need a theoretical 

description of design that allows situating and comparing different notions and theoretical 

constructs in Brouwer’s Intuitionism with respect to design reasoning. This paper adopts 

the description that C-K design theory provides as a framework for discussing and 

analyzing some of the aspects of Intuitionist Mathematics. This choice is motivated by 

several reasons. First, C-K theory provides mathematical interpretations of its core 

notions, facilitating thus a comparison with a mathematical approach to constructivism. 

Second, it gives a description of design process where creative acts are at the heart of the 

theory (Hatchuel and Weil 2009). This makes the theory suitable to uncover the 

relationship of creative acts and construction of objects in Intuitionism. Third, it describes 

design as the creation of new concepts and new objects on the basis of what is already 

known. These aspects point to strong similarities between Intuitionist Mathematics and 

C-K theory (Kazakci and Hatchuel 2009). Finally, literature about C-K design theory 

indicates strong relationships of the theory with the Forcing technique (Cohen 1963, 

1964) in modern set theory. Incidentally, not only set theory is one of the main areas 

where Intuitionist Mathematics has had some of its most significant contributions, but 

also Forcing has some notable similarities with some intuitionist notions such as free 

choice sequences (Dummett 1977; Largeault 1993; Fraser 2006). This opens up the 

possibility to use intuitionist mathematics as a constructive foundational alternative for C-

K theory and some potential avenues for research have already been investigated (see e.g. 

(Kazakci 2009; Hendriks 2010; Hendriks and Kazakci 2010, 2011)).   

 

The results from the confrontation of design theory with Intuitionist mathematics unfold 

in two parts. The first part presents Brouwer’s work and philosophy and discusses it on 

the basis of C-K design theory. The analysis concludes with a major thesis – the 

mathematical creation process Brouwer describes can be characterized as imaginative 

constructivism where the construction of objects proceeds towards conceivable and 

imagined properties. This interpretation is new for the philosophy of mathematics and it 

stands in contrast by what we might call a pure constructivism. The second part discusses 

the relevance of this notion for design research using a historically important design 

project, the making of an atomic bomb (Groves 1962; Lenfle 2008, 2011). Our analysis of 

the case demonstrates that notions from intuitionist mathematics and imaginative 

constructivism enable capturing and describing significantly creative and constructive 

aspects of the Manhattan project, whereas, neither interactive, nor social constructivism 

takes into account the imaginative nature of genuinely creative acts and radical changes.  

 

The plan of the paper is as follows: In section 2, the paper gives a brief overview of 

interactive and social constructivism in design. In section 3, our general approach and the 

analytical framework we use (C-K theory) are presented. In Section 4, we start reviewing 

Brouwer’s work in some detail. Major concerns of intuitionism, such as the emphasis on 

definability, the reject of the excluded middle principle and free choice sequences, that 

are relevant from a design theory perspective are covered. In Section 5, an analysis of 

Intuitionism is provided. We first review and reposition its basic principles with respect 

to C-K theory to highlight strong similarities. Then, we argue that interpreting Intuitionist 

mathematical process as purely constructivist, as it has been done in the literature, is 

reductionist. Instead, we propose a new interpretation called imaginative constructivism. 

In Section 6, we describe the Manhattan project in relation with imaginative 

constructivism. Section 7 discusses some further points and concludes the paper with a 

summary. 
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2 Forms of constructivism in design 

2.1 Design as interactive constructivism 

One of the major paradigms that underlie current design research bears on the situated 

approach to cognition (Suchman 1987; Clancey 1997; Anderson 2003). In situated 

cognition, which arose as a reaction to Cartesian, symbolic conceptions of intelligence, 

reasoning and action are phenomena emerging out of the interaction of the subject with 

his environment. This line of thought has been strongly adopted in design research and 

has been widely disseminated (Gero 1998; Roozenburg and Dorst 1998; Suwa et al. 

1999; Gero and Kulinski 2000; Suwa and Tversky 2003). A salient reference on the study 

of situatedness in design is the work by Schön and colleagues on the use and creation of 

knowledge in the professional world (Schön 1983; Schön and Wiggins 1992). Criticizing 

the technical rationality and logical positivism predominant in the design literature at the 

80s, Schön is interested in the phenomenological components of design activity and 

professional work in general. Schön, following Polanyi, accepts that much of our 

knowledge is tacit and it can only be revealed within a particular context and task during 

the action. The knowing is in the action. However, knowing-in-action is not always 

sufficient since there are surprises and impasses that require the professional to step out 

of her routines. The ability to cope with these situations necessitates thinking what is 

being done while the activity is happening. Reflection-in-action is thus the ability to 

monitor and control the course of the activity in search for novelty. 

 

Schön and Wiggins (1992) building on these ideas analyze the particular activity of 

designing. They defend the notion that design research cannot ignore that designers 

interact with a medium. Design is introduced as a conversation between the materials and 

the designer. When a designer makes a move to apply a change in the design materials, 

she is going to notice the consequences of this action, which, in some cases will be 

unexpected. Seeing these emergent properties in the design medium will provoke changes 

in the original goals of the design process, which, in turn will trigger new moves and so 

on. This idea that the interaction with some design medium is the engine through which 

design progresses has been largely adopted in design literature, particularly in works that 

consider design in relation with sketching (e.g. in industrial design or architecture) 

(Edmonds and Candy 1999; Suwa et al. 1999). For instance, in a series of experimental 

studies Suwa and Tversky (2003) studied how designers conduct a visual thinking 

process using their representations: they often start with some tentative and loose sketch, 

not being able to conceive or integrate all the relevant aspects to their design right from 

the beginning. By reinterpreting what they have laid down so far, they progressively 

elaborate on the initial sketches. Suwa and Tversky (2003) called this a constructive 

perception process where conceptual reorganization skills are necessary in order to infer 

functional relationships and think of new rearrangements of elements. 

2.2  Design as a social constructivism 

Another stream of reactions to a restrictive vision of design as a technical process 

emphasized the importance of social processes in design (Bucciarelli 1988; Dougherty 

1992; Bucciarelli 1994). For instance, Bucciarelli (1994) opposes strongly to a savant 

approach of design as applied science and instrumentation. According to him, this 

traditional and dominant vision of engineering design reduces the design process to 

technical matters and obscures the real phenomena to be studied. Adopting an 

ethnographic approach to the study of design, he rather considers design as a social 

process “occurring in a sub-culture as a form of interaction with the surrounding culture”. 

This social process includes any participant who has a “legitimate say in the process 

whose words, proposals, claims and supplications matter and contribute to the final form 

of the product” (Bucciarelli 2002). Bucciarelli takes this multiplicity of point of views 

into account by the notion of “object-worlds”. Object worlds refer to the worlds of 

individual effort where an engineer, working for the most part alone, applies his or her 
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expertise to particular tasks appropriate to his or her discipline. Different participants with 

different competencies, skills, responsibilities and interests inhabit different worlds. As 

such, while admittedly working on the same object of design, they see the object 

differently and they use different languages (Bucciarelli 1988, 2002). Bucciarelli claims 

that translation is not possible, and decomposition is impossible because other object-

worlds are of interest to other participants. It is an unavoidable part of design to define 

“interfaces” (rather than translate) and this requires a constant social interaction. 

Engineers spend a significant portion of their time in documenting and communicating – 

much of it in the form of formal or informal ‘negotiations’. The design process is thus a 

socially constructed process. 

 

Social constructivism has also been used within the context of design support tools. For 

instance Subrahmanian and colleagues (Subrahmanian et al. 1993), see also (Davis et al. 

2001) emphasized the importance of social contexts in the use of any formal models. 

They stress the importance of building systems that offer flexibility in expression and 

malleability, since different designers express themselves differently and based on the 

premise that the tool should allow the possibility to have multiple models corresponding 

to those different point of views. Creating these shared information spaces would help the 

creation of shared meaning and progressing the design by mutual interaction. 

3 Background and approach: Using a formal design 
theory for interpreting intuitionist constructivism 

In order to analyze intuitionism from a design perspective, we are going to use a formal 

description of design reasoning given by C-K theory (Hatchuel and Weil 2009). The 

section starts by pointing out a common concern that connects mathematics and design. 

Then, we present fundamentals of C-K theory.  

3.1 Defining and building new objects: a common foundational concern for 

Mathematics and Design  

A central issue in design theory is the definition of objects. Indeed, one of the most 

common definitions for design is “building a definition of an object allowing its 

construction or implementation” (Evbuomwan et al. 1996). Yet, what is defining an 

object? In the field of design, it does not seem useful to adopt extensional definitions (e.g. 

enumerating and naming all the physical occurrences of an object), nor, does it seem 

reasonable to accept a static, dictionary-based approach (Hatchuel 2002, 2008). On the 

contrary, it is arguable that innovations require shifts in the definition of objects, thus 

creating new classes of objects (Le Masson et al. 2010). This presupposes the existence 

of (abstract) intensional definitions – definitions of classes of objects by their common 

attributes or properties. 

 

As we shall see shortly, the issue of definition is also fundamental for C-K design theory. 

A concept space is a hierarchy of partial and intensional definitions that are under-

construction in C space. The shift of a definition – its expansion – progresses while 

triggering attempts to build new objects corresponding to that definition in K space 

(Kazakci 2009). New definitions imagined in C space guide the construction of such 

extensional objects in K space. What can be defined depends on what can be conceived.  

 

The debate about the nature of mathematical objects is intense in mathematics and 

philosophy as well (Benacerraf and Putnam 1983). Over the last century, a variety of 

schools and point of views has seen rise about the meaning of existence, definability and 

conceivability of mathematical objects (Field 1980; Chihara 1990; Burgess and Rosen 

1997; Lakoff and Nunez 2000). A much-debated object is that of a “number” (Benacerraf 

1965; Frege 1983). How to define numbers is a fundamental issue since it is directly 

related to hard problems of mathematics such as the continuum problem or the nature of 
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infinity. An elementary result in Analysis states there are as much real numbers between 

the unit interval as in the whole real line. Both sets are infinitely expandable (Hatchuel 

and Weil 2007) so it is always possible to find or construct a number different than all the 

other number objects discovered so far. It is precisely on this issue that Brouwer has 

introduced a variety of novelties describing processes by which numbers can be defined 

using constructive means but without compromising the expandable nature of the objects. 

 

 

Figure 1. Concept and knowledge spaces, (Hatchuel and Weil 1999, 2002) 

3.2 Overview of C-K theory 

Hatchuel and Weil (Hatchuel and Weil 1999, 2002, 2003, 2007, 2009) propose a theory 

of design reasoning which captures some of the fundamental properties of design 

reasoning process as a conceptive reasoning process. The theory is based on the 

distinction and interaction between two spaces; figure 1;  

- Knowledge space A knowledge space represents all the knowledge available 

to a designer (or to a group of designers) at a given time. These are 

propositions that the designer is capable of declaring as true or false; i.e., 

propositions whose logical status are known to the designer (e.g., some phones 

are mobile). 

- Concept space A concept space represents propositions whose logical status 

are unknown and cannot be determined with respect to a given knowledge 

space. These are propositions that can be stated as neither true, nor false by the 

designer at the moment of their creation (e.g., some phones prevent heart 

attacks). 

In C-K theory, concepts are descriptions of an object of the form "C: there exist an object 

x with the properties p1,p2,..., pn such that C is undecided with respect to K". In other 

words, the designer who created the concept is not able to tell whether such thing is 

possible or not at the moment of creation. A design process (or alternatively, a conceptive 

reasoning process) begins when such an undecided formula is created. A designer can 

then elaborate the initial concept by partitioning it - that is, by adding further properties to 

C. Current writings about C-K theory distinguish two kinds of partitioning. Restrictive 

partitions add to a concept a usual property of the object being designed and expansive 

partitions add to a concept novel and unprecedented properties (Hatchuel and Weil 2003). 

Creativity and innovation are possible due to expansive partitions: such partitions lead to 

fundamental revision of the identity (or definition) of objects. Since concepts are 

elaborated by partitioning, the concept space has a tree structure.  

Concepts, although different than knowledge in their logical status, are created from 

knowledge. For this reason, different designers with different knowledge spaces may 

create different concepts. A concept space can only be defined with respect to a 

knowledge space – concepts are K-relative. 

When elaborating a concept space, a designer might use his or her knowledge, either to 

partition further the concepts, or to attempt a validation of a given concept. This last type 
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of operation is called K-validation and it corresponds to the evaluation of a design 

description using knowledge. The result of a K-validation is positive, if the designer 

acknowledges that the proposition “there exist an object x with properties p1,p2,...,pn” is 

true. The result is negative, if the knowledge available to the designer allows him to state 

that such an object cannot be built. In both cases, the conception ends for the concept that 

has been validated (or, rejected). The reasoning may continue by creating new concepts 

or other (unexplored) branches of the concept tree. 

Often the validation of a concept is not readily possible. Due to the expansions of the 

concept space, object definitions whose instances are not known by the designer have 

been created. In order to validate concepts, new knowledge warranting the existence 

conditions of such an object should be acquired. In terms of the theory knowledge should 

be expanded. The expansion of knowledge space is called K-expansion. The central 

proposition of C-K theory is thus "design is the interaction and dual expansions of 

concepts and knowledge" (Hatchuel and Weil 1999, 2002, 2009). 

4 Brouwer’s Intuitionist mathematics 

Let us now present Brouwer’s philosophy and the basic notions of Intuitionist 

Mathematics. We will start by describing some foundational debates that influenced 

Brouwer’s work. Then, the first and the second acts of intuitionism will be presented. 

Some of the main ideas and notions such as the Intuitionist notion of “existence”, the 

reject of the “law of the excluded middle” and the basics of Brouwerian set theory will be 

covered. 

4.1 Pre-intuitionist debate on definability, conceivability and existence of 
objects 

Let us start by describing the context in which Brouwer’s work developed in order to 

better understand Brouwer’s position and his contribution. Until the introduction of non-

Euclidean geometry, mathematics was widely conceived as a mixture of empirical 

knowledge and abstractions (Largeault 1993). Brouwer called this “the point of view of 

observation”. With the introduction of mathematical entities such as spaces, species of 

numbers, transfinite, … this observational point of view has become obsolete, as it was 

difficult to find concrete counterparts of such objects. Especially, the introduction of the 

transfinite by Cantor (and sets of uncountable cardinalities) and the use of abstract choice 

principles (which never gave any individuals but classes – that may not contain 

discernable entities) have seen strong objections from many pioneering mathematicians at 

the beginning of 20
th

 century.  

 

An intense foundational debate concerning the nature and the practice of mathematics has 

taken place. Russell and Hilbert have attempted to replace the previous spatial 

foundations of mathematics with logical and axiomatic foundations. While Russell has 

defended the appropriateness of logical foundations (Russell 1903), reconstructing, with 

Whitehead, the foundations of mathematics using logic (Russell and Whitehead 1910), 

Hilbert conducted a massive research program to build mathematics on axiomatic 

foundations (Hilbert 1927). These two approaches, reconcilable in many respects, have 

strong syntactic and linguistic underpinnings. 

 

An alternative set of ideas can be found in the works of a group of prominent French 

mathematicians including Borel, Baire, Lebesgue, Hadamard and Poincaré. The group, 

called pre-intuitionists by Brouwer, has criticized thoroughly the new abstract 

mathematics. Poincaré expressed his doubts about the logical and axiomatic approaches 

of Russell and Hilbert: “The syllogism cannot reveal anything fundamentally new. If all 

mathematical propositions can be derived from others, how would mathematics not be 

reduced to an immense tautology?” Presuming there was more to mathematics than 

syllogistic reasoning, Poincaré distinguishes two kinds of minds; the analyst and the 
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geometrician. The former uses logic and deduction while the latter uses intuition 

(Largeault 1993). “The logic is sure, but creates nothing; the intuition is creative but 

fallible.” Much as Poincaré qualifies Intuition as fallible, by underlining its importance, 

he puts emphasis on the role of conception in mathematics (Largeault 1993). Here lies the 

most consensual and essential idea that connects pre-intuitionists: what is definable is 

what is conceivable. Being conceivable (not necessarily by a concrete imagination) is a 

necessary condition for existence. For instance, from this perspective, the notion of actual 

infinity (infinite sets whose constructions are actually terminated) becomes criticizable. 

Baire, Borel and Poincaré have insisted that our mind is capable only of a finite number 

of acts of thought. Consequently, we can only conceive finite objects and consider only 

objects defined by a countable number of conditions.  

4.2 First Act of Intuitionism: Mathematics as the study of mental objects  

Though Brouwer agreed with pre-intuitionist on the above issues, he went beyond their 

critical reactions by offering an essential change in perspective and an alternative way to 

proceed. Beginning with his thesis in 1907, Brouwer started to build a new way of 

looking at mathematics. According to him, mathematics is a mental activity completely 

independent of the outside world, taking place in the mind of a mathematician – the 

creative subject. This activity takes place over time and thus, mathematics is a 

constructive activity. Going completely to the opposite direction of Russell, he postulated 

that this mental activity, and thus, mathematics is independent and prior to all language: 

“One cannot inquire into the foundations and nature of mathematics without 

delving into the question of the operations by which the mathematical 

activity of the mind is conducted. If one failed to take that into account, then 

one would be left studying only the language in which mathematics is 

represented rather than the essence of mathematics.” (Brouwer 1907, 1908). 

This particular view of mathematics is called the First Act of Intuitionism. In Brouwer’s 

words, the first act  

“[…] completely separates mathematics from mathematical language, in 

particular from the phenomena of language which are described by 

theoretical logic, and recognizes that intuitionist mathematics is an 

essentially languageless activity of the mind having its origin in the 

perception of a move of time, i.e. of the falling apart of a life moment into 

two distinct things, one of which gives way to the other, but is retained by 

memory. If the two-ity thus born is divested of all quality, there remains the 

empty form of the common substratum of all two-ities. It is this common 

substratum, this empty form, which is the basic intuition of mathematics. 

(Brouwer 1952) 

Hence, the basic intuition Brouwer is proposing is based on the perception of the passage 

of time – the progression of a reasoning individual from one moment to the next.  

 

The emphasis on the languageless nature of mathematics puts Brouwer’s mathematics in 

complete opposition with Russell’s efforts of reconstructing mathematics using logic. 

Although Intuitionism is not against logic (in fact, Brouwer was the first to propose a 

logic based on intuitionist principles), it firmly states that mathematics is prior to logic. 

“For intuitionist mathematics every language, including the formalistic one, is only a tool 

for communication. It is in principle impossible to set up a system of formulas that would 

be equivalent to intuitionist mathematics, for the possibilities of thought cannot be 

reduced to a finite number of rules set up in advance. […] For the construction of 

mathematics it is not necessary to set up logical laws of general validity; the laws are 

discovered anew in each single case for the mathematical system under consideration.” 

(Heyting 1983b, a). 
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4.3 The existence of mathematical objects: an emphasis on the 

constructability 

Brouwer’s view of mathematics as a mental, progressive and constructive activity has 

implications for the definability and existence of mathematical objects. According to 

Brouwer, for mathematical objects, “to exist” means “can be constructed” (Heyting 

1983a). If this were not the case, then “to exist” would have a metaphysical meaning. 

Although Brouwer and his followers have no objection to any particular metaphysical 

theory, they believe that the study of mathematics cannot be related to these; it is 

something much simpler, more immediate than metaphysics – the study of mental 

mathematical constructions (Heyting 1983a). Heyting, one of the major contributors to 

Brouwer’s program, gives the following explanation about the intuitionist view on the 

existence of mathematical objects (Heyting 1983b): 

“We do not attribute an existence independent of our thought; i.e., a 

transcendental existence to the integers or to any other mathematical object. 

Even though it might be true that every thought refers to an object conceived 

independently of it, we can nevertheless let this remain an open question.  In 

any event such an object need not be completely independent of human 

thought. Even if they should be independent of individual acts of thought, 

mathematical objects are by their very nature dependent on human thought. 

Their existence is guaranteed only insofar they can be determined by 

thought.” 

Although acknowledging that mathematical objects may be referring to the outside world, 

Heyting defends that those cannot be conceived independently of the human thought. The 

ideal mathematical objects are ascertained to exist if they can be constructed and verified 

by thought. Hence, the Intuitionists defends that the existence of an object depends on 

whether it can be mentally constructed. 

4.4 The reject of the law of excluded middle: accepting undecided 

propositions 

The above view on the existence of mathematical objects has some implications 

regarding the nature of mathematical propositions. In intuitionist mathematics, a 

proposition affirms the fact that a certain mathematical construction has been affected. In 

other terms, a proposition P(a) about a mathematical object a means “there is a way of 

constructing an object a having a property P”. This view of existence as constructability 

and mathematics as the study of mental constructions accomplished over time led 

Brouwer to reject the idea that every mathematical assertion should be either true or false. 

This principle, known as the Law of the Excluded Middle (LEM) is not tenable for the 

kind of mathematics Brouwer proposed, since, to be able to say that P(a) or its negation, 

~P(a), is true for every proposition P and every object a, we must have a general method 

for constructing any object having any property. As we have no such method, we have no 

right to use such a principle. Acknowledging such a principle would mean that laws of 

mathematics are general and refer to the objects of the world, independently of our 

knowledge. This is obviously in contradiction with the kind of mathematics Brouwer 

advances.
2
  

One of the consequences of considering undecided propositions is the reject of LEM. 

Since mathematics is an activity carried out over time, there may be stages where neither 

a property P(a) of an object a, nor its negation  ~P(a) has yet been decided by the creative 

subject.  

                                                        
2
 It should be noted however that LEM holds in finite domains and the reject concerns mainly infinity: “Of greater 

theoretical interest is the fact that LEM is also held to be valid in cases where one is operating in a strictly finite domain. 

The reason for this is that every construction of a bounded finite nature in a finite mathematical system can only be 

attempted in a finite number of ways, and each attempt can be carried through to completion, or to be continued until 

further progress is impossible. It follows that every assertion of possibility of a construction of a bounded finite character 

can be judged. So, in this exceptional case, application of the principle of the excluded third is permissible.” Heyting [12]. 
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While the reject of the LEM is only natural for intuitionist mathematics, let us note that it 

is a very controversial issue and it is widely held as unacceptable by many leading 

mathematicians such as Hilbert: Denying a mathematician use of the principle of 

excluded middle is like denying an astronomer his telescope or a boxer the use of his fists. 

To prohibit existence statements and the principle of excluded middle is tantamount to 

relinquishing the science of mathematics altogether (Hilbert 1927). 

4.5 Second act of intuitionism: generative power of intuitionism 

Contrary to the first act, which is critical and destructive, the second act of intuitionism is 

creative and constructive (Largeault 1993). Brouwer sets himself the task to deal with the 

continuum within the Intuitionist paradigm. However, the consideration of infinite sets as 

completed totalities that has been the standard mathematical practice since Cantor and 

Dedekind, cannot be accepted from an intuitionist standpoint. By contrast to the actual, 

completed infinity in the classical approach, the intuitionist approach envisions infinity as 

potential. Brouwer rejects the actual infinity since such objects are inconceivable by a 

mind that disposes only of a finite number of acts of thought. In order to construe infinity 

as potential infinity, he uses the notion of infinitely proceeding sequences – sequences of 

mathematical objects that proceed to infinity but never achieve it.  

 

In fact, pre-intuitionists have already used such sequences to define real numbers and to 

tackle the notion of continuum (e.g. by means of classes of equivalence of Cauchy 

sequences for defining sets of real numbers). Yet, this was being done by sequences that 

were ‘closed’. Brouwer realized that restraining oneself to lawlike sequences is highly 

limitative: the real numbers that can be defined by means of such sequences can only 

offer a discrete infinity and a reduced continuum. Therefore, he suggests extending the 

classical notion of infinitely proceeding sequences to that of (free) choice sequences (or, 

lawless sequences): infinitely proceeding sequences of mathematical objects of which the 

construction is not fixed by a predetermined law or algorithm but for which terms can be 

chosen arbitrarily at any stage of their construction by a creative subject. 

 

One of the implications concerns the nature of continuum and infinity. Since mathematics 

is a mental construction based on the step-by-step activity of a mathematician, any notion 

of infinity is potential – not actual. The view of infinity as potential and the continuum as 

a never completed totality brings Brouwer close to pre-intuitionists who expressed doubts 

on the transfinite and inconceivable mathematical objects. 

 

Van Dalen (van Dalen 2005) remarks that, compared to the classical point of view, 

Brouwer’s universe does not get beyond ω1 (there is no transfinite and actual infinity). 

But, what it lacks in ‘height’ is compensated in ‘width’ by the extra fine structure that is 

inherent to the intuitionist approach and its logic. This fine structure allows 

mathematically thinking the continuum in its very indeterminacy and errancy vis-à-vis 

discrete enumeration, and to do this without letting the continuum dissolve into an 

unintelligible mystery (Fraser 2006).    

4.6 Spreads and Species: Intuitionist counterparts of the notion of “Set” 

As Brouwer explains (Heyting 1975; Freudenthal 1976), the second act recognizes the 

possibility of generating new mathematical entities, firstly, in the form of infinitely 

proceeding sequences a1, a2, …, whose terms are chosen more or less freely from 

mathematical entities previously acquired; in such a way that the freedom of choice […], 

at any stage may be made to depend on possible future mathematical experiences of the 

creating subject; secondly, in the form of mathematical species, i.e. properties supposable 

for mathematical entities previously acquired, and satisfying the condition that, if they 

hold for a certain mathematical entity, they also hold for all mathematical entities that 

have been defined to be equal to it. 

With the second act, Brouwer replaces the classical notion of set by separating it to two 
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notions; spreads and species. A spread is a law that regulates the construction of infinitely 

proceeding sequences. The law determines  

- which mathematical entities are accepted as the initial segment of the sequence 

and  

- which elements are allowed to further the sequence (in such a manner that 

there is always at least one element that should be accepted).  

Figure 2 shows an example spread that corresponds to a full binary spread, i.e., infinitely 

proceeding sequences of 0s and 1s starting from the empty set. A spread can be narrowed 

down by an operation called hemmung (restriction, in German) to more specific spreads 

(e.g. the full binary spread can be narrowed down to sequences starting with < 0, 0, 1>). 

 

 

Figure 2. A graphical representation of the full binary spread. 

 

A species is a property or a relation (or a collection of properties and/or relations). The 

elements of a species are precisely those that verify the condition determined by the 

definition of that species – a condition for which we should have a definite way of 

knowing what counts as a proof of it. For instance, we can think of a species (on the full 

binary spread above) determined by the property P “the sum of whose first n terms is 

pair”. For any given element (a branch of the spread corresponding to an infinite 

sequence), it is possible to determine whether this property holds for any given n. 

The existence of a species is warranted only after a choice sequence having the 

corresponding property can be built (or an algorithm that will allow its construction is 

given). On the other hand, any property a choice sequence has can only be based on an 

initial segment of it, since it is not completed and there are infinitely many ways to 

further it.  

Clearly, the notion of spread is an extensional one whereas the notion of species is 

intentional (Dummett 1977). The introduction of species plays the role of the axiom of 

comprehension of classical mathematics. Spreads are on the side of ‘becoming’ whereas 

species are on the side of ‘being’ (Largeault 1993). The possibility to generate new 

mathematical entities (using whatever entities that were previously acquired) with 

infinitely proceeding sequences and to construct new and unprecedented species provides 

to the subject the necessary means to study the continuum. Most of the original 

contributions of Intuitionist Set Theory, such as the Bar induction theorem or the Fan 

theorem (Dummett 1977), can be interpreted only due to the introduction of ingeniously 

conceived lawless sequences used in the proofs. This is also true for results claiming the 

invalidity of LEM. 
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5. An analysis of intuitionist mathematics from a 
design point of view 

5.1 Intuitionist mathematics as a design process 

One of the most controversial traits of Brouwer’s philosophy is his explicit reference to 

the mathematician in order to argue and justify the principles by which mathematics 

should be done. This is quite different, for instance, from the approach of Hilbert who 

proposed the axiomatic method as a general method for the mathematics. By contrast to 

him and still others, Brouwer speaks about a subject – the creative subject, the mental 

constructions of this subject and her freedom to choose the way the construction should 

proceed. This is not to suggest that truth is relative, but to address the question “what 

mathematics is” by pointing out “who does the mathematics”. This induces a unique set 

of key properties to Intuitionist Mathematics that bring it closer to creative reasoning as 

described by C-K design theory. Table 1 summarizes some correspondences between the 

notions of these theories. The similarities are striking. Let us discuss some of those 

foundational features. 

 

Notions of C-K theory 

 

Brouwer’s ideas and notions of 

Intuitionism 

Designer The mathematician; the creative subject, 

the constructor 

Knowledge - All the objects, in particular sequences, 

spreads and species that have been acquired 

so far. Those include lawlike sequences. 

 - All the (proven) properties of the objects 

constructed so far. 

Concepts Species that are yet unproven to exist; 

propositions that are yet undecided 

Objects Infinitely proceeding sequences, spreads, 

species (and other conventional objects 

such as the natural and rational numbers) 

Object of which the design are finished Finite objects or Lawlike sequences 

Objects that accept “expansions” Lawless sequences 

Expansions Properties or objects obtained by “Free” 

choices 

Restrictions Properties or objects obtained by 

Hemmung 

Operators / Interactions of the C and K  - 

Table 1. Correspondences between notions of C-K design theory and Brouwer’s work 

5.1.1 Reasoning about (mental) objects 

Brouwer rejects the idea of mathematics as a study of symbols or a language based 

activity in favor of a mathematics studying objects. As we have underlined in section 3.1, 

this “elaboration of objects” perspective is a common concern both to mathematics and to 

design theory in general. Brouwer’s mathematics explicitly acknowledges the place of 

objects in mathematics. For Intuitionists, any symbolic representation or formal language 

can only be a tool for communication – not the core of mathematical activity. The activity 

itself is happening in the mind of the mathematician and it consists in the construction of 

(mental) objects.  

5.1.2 Progressing through knowledge stages 

A second aspect that brings Intuitionist mathematics closer to a design process is the 

progressive nature of the reasoning activity; Figure 3. Starting with his foundational 

writings, Brouwer emphasizes the idea of progression of the reasoning and learning 
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(Brouwer 1907, 1908) (see also paragraph 3.2). This implies in turn, the incompleteness 

of knowledge. For any given time, there may be truths that may not be known yet and 

objects that have not been constructed so far. This can also be seen in two major formal 

models describing the evolution of Intuitionist knowledge; the Theory of Creative Subject 

(see next section) and Kripke’s semantics for Intuitionist logic (Kripke 1965). This 

fundamental feature is also part of C-K theory and any realist design situation. New 

objects with new properties become known, as the reasoning progresses but the 

knowledge may never be completed – otherwise there would be no design, but only 

selection (Hatchuel 2002; Hatchuel and Weil 2002). 

 

Figure 3. The evolution of knowledge in Intuitionist mathematics. 

5.1.3 Allowing expansion of objects by free choices 

Brouwer introduced incomplete objects (Niekus 2010) in mathematics with his singular 

approach to continuum. The nature of continuum (real numbers) and infinity has been one 

of the major challenges of mathematics since Cantor. In order to attain the full richness of 

continuum while preserving the constructive nature of mathematics, Brouwer proposed 

the mental operation of ‘free choices’. From a design theory standpoint, here lies the most 

striking feature of Intuitionist mathematics. Allowing an act of free choice at any moment 

and the possibility to break away from any fully determined (lawlike) object allows the 

consideration of partially determined objects with novel properties. This offers the 

possibility to create new mathematical objects at will and it provides the most eminent 

and original characteristic of Intuitionist Mathematics. It expands the frontier of the 

Intuitionist continuum from the reduced continuum to full continuum since the totality of 

mathematical objects that can be defined can no longer be determined in advance. There 

is always the possibility to continue defining a sequence in a way that distinguishes it 

from all the others that are known so far, creating thus a novel object (van Dalen 2005). 

In terms of C-K theory, this is the same precise idea of expandable design spaces 

(Hatchuel 2002; Hatchuel and Weil 2009). With the introduction of free choices and 

lawless sequences, Brouwer extends an enumerable space, the reduced continuum, to an 

uncountable and infinitely expandable space, the full continuum. Hatchuel (2002) claims 

that uncountable sets form the basis of design expansions and the apparition of new 

objects and definitions. The operation of free choices can thus be seen as the basic 

mechanism that allows expanding the mathematical design space and that enables the 

expandable rationality that is inherent to design (Hatchuel 2002; Hatchuel and Weil 2009) 

within mathematics.  

5.1.4 Interplay of undecided propositions and constructions 

Although Brouwer does not explicitly suggest a particular notion that corresponds to 

concepts in C-K theory, undecided propositions are indeed very much present in 

Intuitionist Mathematics. It should be noted that undecided propositions in Intuitionist 

mathematics are not just about propositions whose truths values may be discovered later 

on. Brouwer makes active use of them, most notably in his counter-examples, in order to 

construct strange objects whose definitions depend on some undecided properties. The 



15 

method he uses, called “creative subject”, consists in the construction of an infinitely 

proceeding sequence A(n) whose values are not determined in advance but depends on 

some property P – which is undecided. The truth-value of this proposition depends on the 

future constructions of the creating subject. Brouwer used this type of sequences to give 

some of the most spectacular results of Intuitionism such as the (strong) counter-

examples to double negation principle (i.e. ~~P  P). In terms of C-K, such objects have 

not been K-validated; they do not have a logical status. 

 

By separating the notion of set to its intensional and extensional components (i.e. species 

and spreads), Brouwer comes even closer to capturing the impact of undecided 

propositions in design reasoning. While spreads provide a general means to construct new 

objects extensionally, species whose existence are not known at the current stage conduct 

and orient this construction. This interplay of spreads and species is reminiscent of the 

interplay of concepts and knowledge. A creative subject may very well construct (or at 

least, attempt to construct) new objects by means of spreads and free choice sequences in 

order to prove the existence of some species. Reciprocally, she can conceive some 

undecided species for which to look for a proof (a method to construct an object that fits a 

species). This possibility, together with the use of free choices and undecided 

propositions, confer to Brouwer’s theory the necessary features to take into account 

creative acts in the constructive mathematical process. 

5.2 Theory of creative subject: a reductionist interpretation of intuitionist 

constructivism  

Our analysis reveals that the mathematical activity Brouwer is describing is a kind of 

design process. It is indeed interesting from a design theory perspective since Intuitionism 

integrates both creative and constructive acts. However, this element has been missed in 

the traditional interpretations of Brouwer’s work. For instance, arguably one of the most 

genuine innovations he introduces, the creative subject method, relies on the use of 

propositions with unknown status in order to allow the possibility of future creations and 

discoveries. Despite this fact, his process description has been interpreted and modeled as 

a learning process rather than a creative one.  

 

Let us consider one such interpretation. The method of creative subject has been 

formalized by (Kreisel 1967) and developed further by  (Myhill 1968) and (Troelstra 

1969). The formalization is based on the “passing of time” and the “knowledge stages” of 

the creative subject. The stages are enumerated according to the succession of natural 

numbers. For every n and every P, either the subject S has a proof of P, or S does not 

have a proof of P (for each proposition, we are always certain whether we have a proof of 

it or not). Having a proof of P at stage n is denoted SnP. The following formulae try to 

capture the reasoning process of a creative subject
3
:  

- ∃nSnP   P, if we have a proof of P (we are able to construct an object such 

that P holds for it) at some stage n, then P is true 

- (SmP  and n > m)  SnP, if at some stage m we prove (and learn) P, then, at 

later stages n > m, we still know P 

- P  ~(~∃nSnP), if P is true, it is absurd to say that S will never have a proof of 

P  

- P  (∃nSn P), if P is true, then S will certainly have a proof of it in time 

 

The first formula imposes a principle of non-failure for proofs. The second formula 

represents a principle of accumulation of knowledge: what is learned is never forgotten. 

The third formula reflects the idea that if an object with a certain property can be 

                                                        
3
 Let us remark that although some controversies have arisen out of this formalization, 

this poses no problem for the needs of the current discussion.  
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constructed, then, there is no reason to think that it shall never be constructed with time. 

The last formula, a stronger version of the third, states that if an object with a certain 

property can be constructed, then, eventually the creative subject will construct it.  

 

Figure 4. The dual co-evolution of concepts and knowledge and two creative subjects evolving 

differently through knowledge and concept stages. 

 

Based on our design-theoretic analysis of Intuitionism, it is possible to see that theory of 

creative subject is restrictive in its interpretation of the reasoning process Brouwer 

describes. The underlying point of view inherent to these formulas is surprisingly 

limitative: This seems to be merely a model of learning with some strong assumptions. 

TCS states that, if P is true (that is, provable) , we will certainly have a proof of it at some 

stage. If every proposition P will certainly be proved at some point, then, where is the 

creativity of the creative subject? Although the learning over the time aspect is included 

in TCS model, the creativity of the subject appears nowhere. For instance, the model 

totally neglects the notion of free choices. It makes no attempt at explaining what guides 

the progression of proof construction. It makes no assumptions about the impact of what 

is not known but can be conceived, at a given moment, on how the learning will progress; 

Figure 4. 

 

For a conception of mathematics where mathematics is the study of mental mathematical 

constructions resulting from the reasoning process of a subject, it becomes legitimate to 

consider “directions of learning” and their impact on reasoning. As we can see from the 

correspondences with C-K theory, in the Intuitionist reasoning process, the questions 

“which propositions should be rather proven?” and “what has been learned so far?” 

mutually influence each other. For any given stage of knowledge of the subject, the 

choice of P to be proven next would depend on that stage. Some truths may be more 

easily accessible or valuable than others, given a stage. On the other hand, the choice of 

the undecided proposition to be proven may enable or constrain what truths would be 

more or less easily accessible in the next stages. Consequently, two creative subjects 

“choosing” to learn about different undecided propositions may evolve significantly 

different; Figure 4. As this interplay of undecided propositions with proof constructions is 

not taken into account by TCS, this model does not apprehend the totality of the 

constructivism Brouwer describes.  

5.3 Intuitionist reasoning as a form of imaginative constructivism  

The mathematical philosophy Brouwer introduced is an early approach to constructivism 

from which other constructivist approaches have benefited (Bishop 1967; Martin-Löf 

1984). As we have seen with the analysis on TCS, it has often been interpreted as a form 

we shall call pure constructivism where new objects are simply a bottom-up combination 

of previously constructed objects. In this interpretation, a monotonic learning process 

accumulates knowledge. Intuitionism provides a richer picture of the creative 

constructivist process. By allowing conceivable but undecided propositions, it offers a 

basic form of an imaginative constructivism where bottom-up constructions are not 
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necessarily lawlike and they can be combined with top-down processes (i.e. the 

generation and use of undecided propositions). A creative subject may alter the bottom-up 

construction process by unexpected elements in order to construct objects with surprising 

properties. This gives the theory the possibility to expand the repertory of known objects 

in new ways. With these features, it provides a powerful alternative to the classical 

mathematics by allowing partially defined objects and considering the continuum in its 

richest form without putting in jeopardy its constructivist nature. 

 

It should be noted that Intuitionism does not distinguish between the construction of 

definitions and the construction of the actual objects. Although Brouwer defines 

mechanisms (such as the free choices) for constructing objects, he does not explain how 

the idea of such objects appears, nor does he describe how these ideas develop over time. 

Although he considers the possibility of free choice in constructing new objects, he does 

not explain that such free choices go hand in hand with the choice of new concept of 

objects. It is not considered explicitly in Intuitionist Mathematics how the choice of the 

properties to be proven (or how these properties are chosen) may affect the next stages of 

the subject’s activity. From the view point of C-K theory, this is a lacking feature for 

explaining creative reasoning processes (mathematical or not; (Kazakci and Hatchuel 

2009)). However, it should be recognized that this is to be expected: Brouwer’s intention 

was to develop and expose an alternative way of practicing mathematics; it was not to 

describe the creative process itself. Nevertheless, the principles he established authorize 

the use of undecided propositions and Brouwer himself uses them in various ways, for 

example, by constructing propositions whose truth depends on undecided propositions. It 

is this possibility to juggle with the top-down generation of new species and the bottom-

up construction of objects that give the mathematician, as shown by Brouwer’s own 

demonstrations, the possibility to conduct an imaginative constructivist reasoning 

process. 

 

Such dynamics are reminiscent of the distinction between the formulation of a theorem 

and its demonstration by a proof. It is known in mathematics that, in some cases such as 

Fermat’s last theorem, there have been several centuries between the two processes. In 

design literature, it is possible to find cases that highlight similar dynamics. For instance, 

Eris (2006) describes an example of the human flying machine of Leonardo da Vinci that 

inspired centuries later Daedalus built by NASA engineers. Examples such as this one are 

indicative that there may be various processes of construction in design processes (e.g., 

the construction of a definition vs. construction of an actual object). Recent experimental 

data (Eris 2004 ; Edelman 2012) also supports the idea that designers think and act 

differently when thinking about what the object should be or how the object can be built 

(Kazakci 2010). The imaginative constructivist dynamics we have described allow thus to 

reveal a dual constructivism in design processes. This issue has been under-investigated 

in design literature, often collapsing both notions into a single one. Although theories of 

co-evolution (e.g. problems-solutions, concepts-knowledge, functions-structures) exist in 

design literature (Maimon and Braha 1996; Braha and Reich 2003; Hatchuel and Weil 

2009), either they do not explicit the constructive aspects or they do not take into account 

the free-choices of the designer. 

6. Design as imaginative constructivism 

Based on the previous discussions, we have now some formal grounds based on which we 

can discuss the ‘constructivist’ nature of design and its different manifestations. The 

analysis of the previous section accounted for a strong connection between creative acts 

and the construction of objects in intuitionist mathematics. The notion of imaginative 

constructivism we have identified involves projecting a yet-to-exist future state and 

progressing towards it with construction attempts. When apprehended from a design 

reasoning perspective, the process that is described in intuitionism offers indeed a set of 

interesting notions that may be useful for analyzing both formal theories about design and 
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actual design situations with strong innovative components. We shall now discuss one 

such design project, namely, the Manhattan Project and the making of an atomic bomb 

(Lenfle 2008, 2011). Although the consequences of Manhattan Project were tragic and 

burns like a scar in the collective consciousness of mankind, the making of an atomic 

bomb remains nevertheless a colossal scientific and engineering feat. During the project a 

huge number of new objects and processes were designed for the first time in the human 

history. Many of these objects, such as the barriers for uranium separation or implosive 

bombs, were breakthrough innovations by themselves. Such big-science projects 

(Weinberg 1961, 1963) have been used in recent management literature to demonstrate 

that traditional approaches to project management are unable to cope with design 

processes that requires fundamental breakthroughs (Lenfle 2008, 2011). The extremely 

innovative nature of this project makes it suitable for discussion in relation to the concept 

of imaginative constructivism and contrasting it with other notions of design 

constructivism we have identified. 

6.1 A ‘theory’ called fission: a seed for an imaginative project  

From 1932 to 1939, several prominent researchers such as Chadwick and Fermi laid 

down the theoretical foundations for nuclear reaction. In particular, (Meitner and Frisch 

1938) proposed a process that can start a chain reaction starts when released neutrons hits 

further atoms, splitting them again, which release further neutrons and energy and so on. 

Meitner and Frisch called the principle ‘fission’ in analogy with the splitting of the cells 

in biology. Their work provided a major impetus for the undertaking of an atomic bomb 

project, since, if the tremendous potential energy predicted by the theory could be used as 

a weapon, the war could be ended. Although, it is not certain that fission can be obtained 

successfully, within the context of the world war, a novel definition - ‘a bomb that would 

achieve previously unseen power using fission based chain reaction’ - was formulated 

 (Lenfle 2008, 2011).  

 

It should be noted that the fission theory formed a seed for this imaginative proposition. 

As Groves (Groves 1962) noted “the whole endeavor was founded on possibilities rather 

than probabilities. Of theory there was a great deal, of proven knowledge, not much”. 

Scientists and engineers had to admit in some cases that their estimates and predictions 

would be accurate within a factor of ten. From a scientific point of view, issues that need 

to be addressed were not a specific research problems but rather entire fields of 

exploration that would need to be studied for years to come. Also, there were significant 

engineering problems that this theoretical model induced, for example, about how to 

attain a critical mass of fissionable material and how to control the number of neutrons 

released each step (Lenfle, 2008, 2011).  

 

In that moment, the proposition P about the possibility of an atomic bomb was yet an 

undecided proposition. On the one hand, it was not possible to rule out the possibility of 

building such a device, since the theories, although yet to be verified, were predicting 

such a possibility. On the other hand, it was not known how to ‘construct’ such an object. 

Recalling that, in intuitionist terms, a proof is a method of construction, the proposition 

opened a path to an imaginative constructivist process. Considering the internally 

consistent theories, a proposition that holds great value has been formulated, even though 

within the known set of ‘methods’ (or any combination thereof) there was not any 

immediate possibility of construction for such an object. We can also recognize here that 

this is a situation where failure to prove some propositions cannot lead to the conclusion 

it can never be proven. As later examples will illustrate, within this intensive innovation 

context where knowledge is extremely scarce about the objects of innovation, the law of 

the excluded middle cannot be held to be a valid principle. 
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6.2 A massively generative exploration process: enabling and driving 

power of imaginative propositions 

Despite this lack of knowledge, two main propositions have been formulated as the 

primary branches of the project: there is a process by which fissionable materials can be 

produced (Q) and there is a process by which a device that would detonate fissionable 

materials can be produced (R). Note that these processes fit the Intuitionist description of 

a proposition. What was sought were ‘methods’ that would transform in a number of 

steps a certain set of inputs (already constructed objects), such as the Uranium or the 

bomb shell, to a desired output – a ‘constructive proof’ is required to verify not only the 

existence of objects that would make the propositions true but also indicating how to 

build them. Considering the profound lack of knowledge that has been pointed out, for 

both processes, a step by step construction that would allow the transformation of the 

inputs into the desired outputs were not known. However, as Lenfle explains (2008, 

2011), several alternative paths to be explored were identified.  

 

For fissionable materials, either U235, a derivation of natural uranium (U238), or 

Plutonium (Pu239) a by-product of nuclear fission were the two candidates. Separation of 

U235 from U238 involves extremely complex processes based on the variations in the 

atomic masses of the two isotopes. Seven different methods were under investigation, 

only three of which finally worked. Plutonium, discovered only one year before the start 

of the project, seemed to be more interesting for nuclear fission, but its production 

required the construction of nuclear reactors and associated chemical separation plants. 

Once again, this was an unchartered territory. The processes for plutonium did not exist 

before the process and chemical separation had never been applied to radioactive 

materials. Twelve different processes were studied. Aside the uncertainties on the 

possibility of producing these materials, there were also tight requirements for safety and 

sustainable mass production that increased the level of precision needed even further 

(Lenfle 2008). 

 

For the bomb design, three different propositions were being investigated (Lenfle 2008, 

2011). The ‘gun’ method was a well-mastered method. The principle is that a piece of 

fissionable material is thrown to another piece by means of traditional explosives. The 

colliding fissionable materials become critical and a chain reaction starts. The ‘implosion’ 

method was a breakthrough innovation in weapon design. It consists in placing a 

plutonium core inside traditional explosives which, when detonated, blow inward, thus 

causing a collapse of the core that attains the critical mass. The ‘super’ method was 

another breakthrough design that relies on nuclear fusion rather than fission. Its design, 

inspired from the functioning of the stars, required a fission bomb to start a nuclear fusion 

reaction based on Deuterium or Tritium.  

 

Note that in the beginning of the project, the mentioned possibility of separation and 

enrichment methods, as well as the mechanism of the bomb are again undecided 

propositions. Moreover, it can be noted that the existence of the primary imaginative 

proposition P is made conditional of their existence. This is similar to Brouwer’s famous 

counter-examples where some undecided property (such as the convergence of a real 

number) depends on some other undecided propositions (such as the existence of a 

particular sequence in the decimal expansion of π whose existence is unknown at that step 

of the reasoning). Depending on the provability of the later, the original proof will be 

decided. Thus, the choice of these dependences reflects an important aspect of the design 

strategy. Remark that this is not a decomposition strategy, quite the contrary: the path to 

the proof for the imaginative proposition is being composed by means of other yet-to-be-

proven imaginative propositions. 

 

From this summary of main issues considered within the project, it can be concluded that 

a wealth of new scientific and engineering concepts were being considered 
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simultaneously (Lenfle 2008, 2011). An important number of solution principles to be 

investigated had been identified for each proposition. In each case, even though the proof 

could not be immediately made, the propositions helped to generate issues to be explored. 

The project progressed with an abundance of knowledge produced, some of which were 

not useful for the project at hand. Nevertheless, the imagined propositions were guiding 

the learning process and the progression through stages of knowledge. Said in other 

terms, the imaginative propositions drove the construction attempts. 

6.3 Failed proof attempts and generation of alternative proofs 

In the spring of 1944, several big crises led the project to a deadlock. Several problems 

were discovered about uranium enrichment methods. The ‘barrier problem’ was about the 

separation process of uranium 235 from uranium 239. The major concept behind the 

efforts was pumping the uranium against a porous barrier that would retain slightly bigger 

U239 elements while U235 passes through. This proved to be a much more challenging 

project than expected. Smyth  (Smyth 1945) writes in his report that the barrier in the 

gaseous diffusion processes “must have almost no holes which are significantly larger 

than 0,001 micron, but must have billions of holes of this size or smaller. These holes 

must not enlarge or plug up as the result of direct corrosions or dust coming from 

elsewhere in the system. The barrier must be able to withstand pressure of a head of one 

atmosphere. It must be amenable to manufacture in large quantities and with uniform 

quality.” This proposition that looks more like a traditional design specification is still an 

undecided proposition by then. Despite all efforts, alternatives envisaged for the barrier, 

the Norris-Adler barrier made from electroplated nickel and the Kellex barrier made with 

compressed nickel powder would not meet these requirements. 

 

A second problem concerning the production of fissionable materials was the ‘Xenon 

poisoning’ problem. In September 1944, right after the start of Plutonium production 

reactor, the reactivity of the pile declined then died for a few hours. Then, came back to 

life, started to decline again and so on. This was completely unanticipated. The team soon 

suspected a poisoning problem that led them to discover that, Xenon, a by-product of 

chain reaction, was being produced during the process, absorbing the neutrons, stopping 

the pile and disappearing in the process… until the pile becomes reactive again. 

 

Yet another major obstacle became apparent about the bomb’s working principle. It was 

believed that the gun method could be used both with uranium and plutonium. Since 

plutonium was less well known, most of the efforts concentrated on plutonium assuming 

that if it worked with plutonium, it would directly work with uranium with minor 

modifications. It was soon discovered that the plutonium has a much higher spontaneous 

fission rate than uranium. This means that, unless the two parts of the gun collided 

extremely quickly, the chain reaction might start early and the bomb fizzles (i.e. pre-

detonate and does not explode). While this possibility was anticipated even at the 

beginning, precise knowledge about the phenomena was absent and most of the efforts 

during the project needed to focus on this issue. The entire plutonium path was blocked 

(with the gun design), at a time when the separation of U235 encountered major problems 

(Lenfle, 2008, 2011). 

6.4 Decisive impact of free choices in the Manhattan project 

Eventually, the problems have been circumvented. But the ways alternative proof paths 

have been obtained were quite different in each case. None of the paths explored for the 

uranium enrichment process had been satisfactory enough. But, in 1944, following 

important advances on thermal diffusion process – an alternative method for enrichment 

not considered in the project until then, Oppenheimer suggested that different processes 

could be combined. After considering several different ways to combine different types of 

processes, finally, a satisfactory process was found. Note that this step of the proof would 

have been an ordinary planning problem (i.e. finding the optimum sequence of methods), 
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had it been the combination of already known methods. Even when the sequences of 

these processes were being configured there were many unknowns on each of those 

methods. As Thayer puts it they “could never afford the luxury of awaiting the proof of 

one step before proceeding with the next”. All the methods were still being invented 

while they were being combined, which is a distinct characteristic of innovative design 

(Kazakci et al. 2010) 

 

For the barrier problem, competing processes that were being investigated could not be 

validated despite huge efforts. A combination of them was not possible, contrary to the 

enrichment process, since there was little sense in feeding the output of one process to the 

other. Eventually, a third kind of barrier combining best features of the two proposals has 

been used (Qiang 1996). This is yet another way the proof has been accomplished, since 

the process used was not a resequencing of steps, but a new kind of method – a new 

species. This is reminiscent of conceptual blending (Fauconnier and Turner 2002) where 

features from conceptually distant solutions can be combined to form new and original 

concepts.  

 

One of the most striking constructions of the entire project was yet the implosion based 

bomb design that solved the spontaneous fission crisis. The implosion method is 

conceptually so different from the originally attempted proofs (i.e. variations of the 

traditional gun method) that it cannot be qualified as a combination of known or 

candidate methods, nor a blending of suitable features. Its working principle is 

conceptually independent from that of the gun method. In fact, it can be seen as a new 

type of object, a ‘species’, that is even independent of the Manhattan project itself. This 

can be understood from the fact that, while all the other issues related to the bomb design 

with fissionable materials were issues related to nuclear physics, the implosion method 

was first and foremost a hydrodynamic problem. The possibility to construct an example 

of this species was mentioned right from the beginning of the Manhattan project, when 

scientists held a workshop on bomb design at Berkeley in July 1942. Nevertheless, efforts 

were concentrated elsewhere and although the implosion method was an imaginative 

proposition promising great efficiency at that moment, it was far from being a proven 

concept. When the spontaneous fission crisis appeared, Groves takes the decision to 

integrate the ‘implosion method’ proposition with that of the ‘atomic bomb’ proposition, 

making thus the latter species dependent on the former. Once again, the proof followed 

the proposition later on: In July 1944, Oppenheimer, in charge of critical mass 

calculations and weapon detonation, reorganized completely his laboratory according to 

the structure of this proposition, instead of the traditional research based structure. The 

implosion method proposition evolved quite significantly and in various directions during 

this two years period. Eventually a version proposed by Von Neumann in fall 1943 

helped to unlock the path to the proof, based on the idea of using explosive lenses to 

focus the explosion onto a spherical shape using a rapid succession of slow and fast 

explosions. The free choice by Groves on connecting the two species had to be proven 

with the free choices of Von Neumann and colleagues.  

6.5 Discussion: imaginative constructivism vs. other forms of 
constructivism in design 

The case study illustrates how notions from intuitionist constructivism allow capturing 

and emphasizing some of the fundamental properties of a strongly innovative design 

process. We believe that these properties are generic properties of any design process that 

combines creative and constructive acts. As can be observed from the description of the 

case, one of the properties of such a process, that we have labeled as imaginative 

constructivist, is the separation between the construction of the definition of an object 

from the construction of a method to build an object verifying that definition.  

As concluded from our analysis of Brouwerian mathematics, the notion of imaginative 

constructivism also posits that in both types of reasoning activities the designer can inject 
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unanticipated and surprising elements into the on-going construction in order to either 

change the definition of the object in a significant way or the method of construction to 

warrant (or, at least to progress towards) feasibility.  

We have seen an example of those contrasting processes in the differences between the 

barrier problem and the explosion principle. The barrier problem was circumvented with 

a novelty that changed the ‘method’ of production. In the end, the solution obtained, even 

though a genuine scientific and engineering feat, was easily recognizable as a ‘filter’ – 

which was the type of object targeted right from the beginning. Yet, concerning the 

bomb’s working principle, the solution came both from a significant change in the 

definition – creating definitely a new type of bomb – and an ingenious method allowing 

to obtain the targeted effect, after several alternatives that have been explored. 

 

A major conclusion that can be drawn from the analysis is that other forms of 

constructivism we have identified cannot fully account for these process properties. 

Naturally, designers of Manhattan project have interacted with various types of 

representations (ranging from sketches and schemas to full scaled prototypes) during the 

project. But we do not believe that the variety of thinking processes that took place in 

Manhattan project can be captured by this notion alone. These imaginative propositions 

were not inferred, nor discovered by a perceptual rearrangement of some cues in the 

immediate surroundings of the designers. An example like the implosion method is not 

just an inflexion point changing the trajectory of reasoning. It is a rupture in the reasoning 

process that can rather be taken into account by a notion of free choice from a creative 

subject. This rupture is beyond a notion of design move as it is defined by (Schön, 1983) 

in that it emphasizes both the unpredicted and the unpredictable nature of a sequence of 

moves that significantly transforms the process. Although intuitionism does not explain 

how free choices are possible, it does in the very least recognize that they are possible and 

they are the mark of genuine creative acts that break away from any current laws and pre-

established algorithms.  

 

Nor does the notion of negotiation of different object-world views make full justice to 

what has happened. In a social constructivist view of design there is an extensive 

emphasis on the communicative aspects of design. Surely, as in many other human 

enterprises, communication had a crucial role in the advancement of the project. 

However, this idea does not allow capturing that the experts involved with the project not 

only shared their knowledge to reach a shared understanding or to negotiate tradeoffs, but 

also their imaginative propositions. In a design process where the aim is a breakthrough 

innovation, necessarily design cannot be reduced to the application of technical 

knowledge, but, nor can it be reduced to communication and interfaces. It becomes 

indispensable to be able to formulate imaginative propositions and to reach a collective 

commitment to elaborate them, fueled by the expertise and imagination of each 

individual. A distinct example of the effect of such commitment can again be found in the 

Manhattan project case. Of the two greatly imaginative propositions regarding the 

detonation methods, implosive and super, only the former has been a proposition which 

generated sufficient commitment during the project, even though the latter seemed to be 

much more promising in theory. Considering the fact that at the beginning of the project 

many people did not think that the implosive design was a viable alternative, we cannot 

say that it was the feasibility concerns that blocked the way to the ‘super’. In fact, as 

(Bethe 1982) explains, Teller who proposed the ‘super’ concept was obsessed with this 

concept but he was seen as a person who would waste important resources and time on a 

problem because of personal and theoretical interest. Considering the fact that the concept 

of super has been realized later and it is known today as the hydrogen bomb, we can see 

that it was more of an issue of sharing the imaginative proposition and building a 

commitment towards it – a dimension that is lost when only expertise and knowledge are 

considered as in social constructivism. 
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We should note, however, that, none of the above arguments is meant to imply that 

imaginative constructivism is more general or important than interactive and social 

constructivism in design. Rather, we believe it transcends and complements those forms 

in any occurrences of design, be it individual or in groups, within situated or social efforts 

– by bringing in additional nuances that captures significant aspects of design. 

 

Finally, we should note some limitations of our comparison and our use of Brouwer’s 

work as a metaphor to understand design. In fact, the forms of constructivism that we 

have identified have been traditionally studied at very different levels of observation. The 

interactive constructivism has usually been treated at an individual level whereas the 

social constructivism considers mainly small teams of designers. In the Manhattan 

project, thousands of people were involved. We believe however that this is only an 

apparent limitation since all the forms of constructivism that we mentioned can appear in 

all different scales of design activity. Our aim in using an extreme case both in size and 

results was to emphasize that the imaginative aspects are ubiquitous regardless.  

Another limitation comes from the absence of some notions in Brouwer’s constructivism. 

For instance, the distributed nature of reasoning and acting do not appear in his 

constructivism, since he focuses on an individual mathematician. Similarly, the notion of 

resources used in the process is lacking. It should be noted that massive resources have 

been allocated to the Manhattan project. Groves’ main strategic approach to the project 

was to explore several and costly candidate proof paths in parallel. If the project had been 

undertaken with more limitations the history might have taken another turn. However, we 

do not believe these issues reduces the utility of the metaphors intuitionism provides, 

since, as we have demonstrated through the case, we can use them naturally to describe 

the main points of the design reasoning nevertheless. 

7 Summary  

The present contribution can be seen as a contribution to the program announced by 

(Reich et al. 2008).  They claim the necessity and potential benefits in investigating the 

relationship between mathematics and design. In design literature, many such efforts 

exist, e.g. general design theory of (Yoshikawa 1981) or topological spaces (Braha and 

Reich 2003). Our approach is different from those works: while they borrow ideas and 

methods from mathematics for modeling and explaining design, we utilize notions and 

ideas from design theory for interpreting and discussing mathematics to gain insight into 

a notion that we deem important for design research – constructivism.  

 

Our theoretical analysis of the roots of intuitionism has revealed a dual constructivism on 

the definition of objects and the methods by which they are constructed. This type of 

process we labeled imaginative constructivism involves the articulation of top-down (the 

generation of undecided and new propositions) and bottom-up (combination of existing 

objects) processes. Both the construction of definitions and the construction of methods 

may be changed significantly during the activity by the free choices of the designer.  

 

Based on the discussion of an historical and innovative design case, the making of the 

first atomic bomb, we have discussed the relevance of these notions for capturing and 

describing design reasoning. We also compared the creative constructivist approach 

derived from the intuitionism with two other forms of constructivism we have identified 

in the literature. We have concluded that imaginative constructivism transcends and 

complements social and interactive constructivism found in the literature, by capturing 

explicitly the breakthrough creativity in the design process.  
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