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Abstract 

We present a framework and preliminary experimental results for real-time recognition of human operator 
actions. The goal is, for a collaborative industrial robot operating on same assembly-line as workers, to allow 
adaptation of its behavior and speed for smooth human-robot cooperation. To this end, it is necessary for the 
robot to monitor and understand behavior of humans around it. The real-time motion capture is performed using 
a “MoCap suit” of 12 inertial sensors estimating joint angles of upper-half of human body (neck, wrists, elbows, 
shoulders, etc…). In our experiment, we consider one particular assembly operation on car doors, which we have 
further subdivided into 4 successive steps: removing the adhesive protection from the waterproofing sheet, 
positioning the waterproofing sheet on the door, pre-sticking the sheet on the door, and finally installing the 
window “sealing strip”. The gesture recognition is achieved continuously in real-time, using a technique 
combining an automatic time-rescaling similar to Dynamic Time Warp (DTW), and Hidden Markov Model 
(HMM) for estimating respective probabilities of the 4 learnt actions. Preliminary evaluation, conducted in real-
world on an experimental assembly cell of car manufacturer PSA, shows a very promising action correct 
recognition rate of 96% on several repetitions of the same assembly operation by a single operator. Ongoing 
work aims at evaluating our framework for same actions recognition but on more executions by a larger pool of 
different human operators, and also to estimate false recognition rates on unrelated gestures. Another interesting 
potential perspective is the use of workers’ motion capture in order to estimate effort and stress, for helping 
prevention of physical causes of some musculoskeletal disorders.  
 

Keywords: Technical gestures recognition, collaborative robotics (cobotics), factory assembly-line.  

1. Introduction  

Recent advances in motion capture technologies 
make it now easier to perform real-time monitoring 
of human activities, for various purposes. 
Meanwhile, a current trend in manufacturing 
robotics is the development of collaborative 
robotics (cobotics), in which robots perform 
activities jointly, or at least side-by-side, with 
human operators. As already highlighted long ago 
by (Inagaki et al., 1995), for humans and robots to 
have a common goal and work cooperatively, 
human intention inference by robots is required. 
This in turn necessitates robots to be able to 
recognize human actions.  

Prototyping a framework (from sensors to data-
processing) for real-time human technical gestures 
recognition in the context of automotive assembly 
line is precisely one of our research goals within the 
“Chaire PSA Peugeot-Citroën on Robotics and 
Virtual Reality”. Technical gestures are invented by 
a specialist minority for use strictly within the 

limits of their particular activity. These gestures are 
meaningless to anyone outside the specialization, 
and make sense only in their narrow operating field. 
In automotive assembly lines and more precisely in 
the experimental cell of PSA Peugeot Citroen, 
technical gestures can be “to remove the sealing 
sheet”, “to fit the windows sealing sheet”, “to screw 
up without tightening”, “to hammer” etc. 
Recognition of human gestures and activities has 
become an important research area with numerous 
potential applications including sign language 
interpretation, automated surveillance and human 
robot collaboration. In order to capture human 
motions, several systems can be used, as illustrated 
on Figure 1. The oldest and most commonly used is 
the video from RGB cameras. More recently the 
apparition of real-time depth cameras, like the 
Microsoft Kinect, brought new possibilities for 
human motion capture and monitoring. Thirdly, 
inertial motion sensors (IMS) like MotionPod of 
Movea (see http://www.movea.com/), or the 

http://www.movea.com/technology
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motion capture suit developed by AnimaZoo (see 
http://www.animazoo.com/), enable the direct 
acquisition of motion information in real time.  

 
Figure 1 : Framework for human motion capture and 
gesture recognition. 

When using information provided by RGB camera, 
in order to be able to perform gesture recognition, 
some features have to be extracted. In (Laptev and 
Lindeberg, 2003) and (Schuldt et al., 2004), authors 
introduce space time interest points, features 
computed in a spatio-temporal domain. More 
specifically to human, (Gorelick et al., 2007) use 
body motion as a space time feature. In (Laptev and 
Perez, 2007) authors use optical flow histograms 
and spatial gradient histograms. In (Lv et al., 2007) 
authors compare silhouettes extracted in the frames 
with key poses, using an extension of the PMK 
(Pyramid Match Kernel) described in (Grauman 
and Darrell, 2005). Similarly in (Sullivan and 
Carlsson, 2002) authors compare key frames to the 
frames computing shape equivalences. 

With inertial motion sensors, the output is the 
angles of joints, which can directly be used as 
features for gesture recognition. However, there are 
several possible choices for rotational 
representation: for instance Euler angles as in 
(Piovan and Bullo, 2012), quaternions as in 
(Bachmann et al., 1999) or Direction Cosine Matrix 
(DCM) as in (Bar-Itzhack et al., 2010).  

As for depth cameras, a skeleton posture has to be 
estimated first, before extracting the joint angles. 
For example, in case of the Microsoft Kinect, a 
default skeletonization is performed by the 
provided SDK. It enables real-time pose estimation, 
restricted however to human standing up and facing 
the sensor. This limitation is because this 
skeletonization relies on a randomized decision 
forest (Lepetit et al., 2005) trained on a database of 

depth images of human poses, very large but 
limited to standing-up and facing postures (Shotton 
et al., 2011). 

Various approaches have been proposed to handle 
dynamic gestures recognition by exploiting the 
features previously calculated. Most of the 
problems have been solved with statistical 
techniques: Hidden Markov Models (HMM) as in 
(Lovell et al., 2004), (Kellokumpu et al., 2005) or 
(Oka et al., 2002) and/or Principal Component 
Analysis (PCA) as in (Kim and Song, 2008). SVM 
(Support Vector Machine) are also becoming a 
popular way for visual spatio-temporal pattern 
recognition as in (Schuldt et al., 2004). Template-
matching is also sometimes used for matching with 
temporal templates, as in (Bobick and Davis, 2001). 

This article presents our research work on 
development of a technical gesture recognition 
system for human-robot collaboration in an 
experimental cell of PSA Peugeot Citroen. 
Section 2 presents our approach, sensors and 
algorithms used, and our experimental protocol. 
Section 3 then provides and analyzes results of our 
experiments. Finally, section 4 contains our 
conclusions and perspectives for this work. 

2. Methodology 

Technical gestures are strongly related to the 
movement of parts of the body, what is called 
“motion”. But, what we mean by the word 
“motion” and how can we analyze it? Motion 
analysis intends to describe the body movements, 
but in most applications not all the details of the 
human body is required. The representation and 
structure of human motion should be simplified 
according to the application.  

In the case study of the Human-Robot 
Collaboration (HRC), a good simplification of the 
complexity of the human body is to estimate only 
position of joints, or angle of segments, since they 
can provide a sufficient representation of the human 
posture. Other information, such as clothing, 
tendons, muscles etc, are absolutely unnecessary for 
the technical gesture recognition for HRC in 
general, and in particular for our specific case study 
of PSA. In order to avoid self-occlusions and scene 
occlusions of the gestures, we have chosen to 
capture rotational information of body segments 
using inertial sensors. 

2.1.  Inertial motion sensors for technical gesture 
recognition 

Two different types of IMS have been tested with 
virtually performed gestures: a) 3 individual and 
non-hierarchical inertial sensors from Movea 
(MotionPod); b) 12 hierarchical inertial sensors for 
the upper part of the body from AnimaZoo 
(IGS120+). Both of these technologies are 

http://www.animazoo.com/
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unaffected by occlusions (contrary to vision-based 
techniques), and they provide a rotational 
representation of the gestures. 

For using Movea inertial sensors, two of them 
have been mounted on the wrists of the worker and 
the third one on his torso. The latter has been used 
as a reference point for the other two sensors. The 
acquired data are angular accelerations for the X, Y, 
Z axes for the wrists, and they have been 
normalised a posteriori to Euler angles in order to 
train the HMMs. 

 
Figure 2 : On the left, a worker fitting the windows 
sealing-sheet on a door in the experimental cell of PSA, 
while he wears the AnimaZoo IGS120+; on the right 
3 inertial sensors from IGS120+. 

The IGS120+ is a product designed for an industrial 
use, with robustly packaged inertial sensors and 
specific sensor data correction to reduce potential 
disruptions due to possible magnetic fields that may 
exist in the industrial environment. On the other 
hand, the price of a single sensor of the IGS120+ is 
twice the price of a single Movea sensor. 
Additionally, the IGS120+ is more appropriate for 
an industrial use for security reasons. More 
precisely, the IGS120+ gives a complete 
representation of the upper part of the worker’s 
body, which is an important information required in 
order to be able to detect body postures in case of 
accidents, or other abnormal situations. The 
IGS120+ provides exactly the same type of data as 
those from Movea, but with 12 sensors placed on 
different body segments (see Figure 2).  

2.2. Gestures recognition technique 

We perform recognition of technical gestures using 
the processing pipeline illustrated on Figure 3. 
Gestures execution speed, as well as details of 
movements can vary significantly from one 
realization to another. We therefore use, for 
learning and recognition, a hybrid approach 
combining Hidden Markov Model (HMM) with a 
time-rescaling similar to Dynamic Time Warping 
(DTW); this technique was designed and developed 
by (Bevilacqua et al., 2007, 2010), and we use the 
implementation they provide in the “Gesture 
Follower” tool1. This is a template-based method 
which allows us to use a single gesture to define a 
                                                           
1 http://imtr.ircam.fr/imtr/Gesture_Follower 

gesture class, by training a HMM. One of the 
advantages of this method is the DTW-like online 
time-alignment, illustrated on Figure 4, which 
permits good robustness of recognition to variation 
in execution of same technical gesture.  

 
Figure 3 : Gesture recognition pipeline based on the 
AnimaZoo suit of wireless motion sensors for the 
upper-part of the body, and one-shot learning of HMM + 
time-alignment for robust recognition. 

A HMM is a statistical modeling method which can 
be used to establish a model for a time-series with 
spatial and temporal variability. As described by 
(Rabiner,1989), a HMM is composed of N hidden 
states {S1, S2,…, SN}, each associated with M 
possible observations. We denote the actual state at 
time t as qt and the observation at time t as Ot. A 
HMM is defined by its structure and its parameters. 
The whole is denoted by λ. The structure of a HMM 
is the number of states and the non-zero transition 
probabilities. The parameters are: 

- The starting state probabilities:                 , with                    . 
- The state transition probabilities:                       with                                

- The observation probabilities:                           
with                              . 

To simplify the HMM learning procedure, each 
learning example is defined by a left-to-right 
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Markov chain. The left-to-right model does not 
have backward paths, the state transition 
probabilities allow to stay in the same state or to go 
in the upper state. This model is appropriate to 
represent a temporal system. The learning example 
is down-sampled, with a constant sampling rate, 
and, as in DTW, each sample is associated to a 
state. The observation probability for each state is a 
Gaussian model centered on the sample value. The 
recognition procedure can be done in real time 
using the well-known forward procedure which 
computes the likelihoods for the different models 
(Bevilacqua et al., 2010). 

 
Figure 4 : The red curve represents the learning example 
and the blue curve an observation. The red arrows 
illustrate the time alignment between the reference 
gesture and the performed gesture.  Each sample of the 
reference gesture is used to generate a state of a left-to-
right HMM. 

2.3. Experimental protocol 

The gestures that have been analysed and 
recognized with our system are the following:   G1: “to remove protective paper”  G2: “to fit on door the waterproofing-sheet”  G3: “pre-stick the waterproofing-sheet”   G4: “to fit the window sealing strip”. 

The durations of all 4 gestures are about 
8-10 seconds. It has been asked to the worker to 
perform 5 times these 4 gestures. Recognition 
performances of the system have been evaluated 
offline on pre-recorded isolated gestures. 

In our use case, a dataset contains observations of 
all the 4 gestures (co-articulated, i.e. one gesture 
after the other, without interruption). In total, 
5 observations for each gesture have been recorded 
and different learning and recognition databases 
have been used in 5 iterations. We have first 
evaluated our gesture recognition approach using 
the « jackknife » method. Here, jackknifing means 
estimation of the precision of the recognition 
accuracies for isolated gestures by using subsets of 
the available gestural data. The basic idea behind 
the jackknife variance estimator lies in 
systematically recomputing the statistical estimate 
leaving out one or more observations at a time from 
the sample set. For each iteration, one dataset 
(4 observations) is left out to be used as the learning 
database and train the HMM of each gesture, until 

all the datasets are used once. The rest of the 
datasets are used as a test database.  

3. Results 

3.1. Gesture recognition performances 

The usual precision and recall metrics have been 
used to evaluate gesture recognition performances 
of our approach. 

 Precision is defined by:  
                                                                            

 

where                          is the 
number of test sequences for which the maximum 
likelihood from the HMM corresponds to the 
correct actually performed gesture, while                           is the number of 
test sequences for which HMM output is wrong. 
Precision thus measures the proportion of correct 
results among all examples for which output by the 
system corresponds to the considered gesture. 

 Recall is defined by:  
                                                                                

where                               is the 
number of test sequences for which the HMM does 
not output maximum likelihood for the actual 
gesture. Recall therefore estimates the proportion of 
correct results among all examples of considered 
class in the recognition database. 

Table 1 shows the results for the 5 iterations of the 
jackknifing for motionPods data, as well as the 
Precision and Recall per gesture. The average 
recognition performances obtained are: 

 precision  86%   recall  86% 

Gesture G3 (“pre-sticking the waterproofing-
sheet”) is perfectly recognized, with 100% recall. 
Conversely, recognition rate of gesture G4 (“to fit 
the window sealing strip”) is the worst one, with 
only 75% recall. One reason that may explain the 
very good results for gesture G3 can be the fact that 
the worker makes circular movements with his/her 
right hand without walking in his/her workspace, in 
contrast with the other 3 gestures. In other words, 
from a stochastic point of view, G3 is easier to 

Table 1: Precision and Recall per gesture obtained with 
motionPods capture, estimated by jackknifing. 

Output (maximum likelihood) 
  G1 G2 G3 G4 Recall 

O
bs

er
va

ti
on

 
(G

es
tu

re
) G1 18 1 1 - 90% 

G2 1 16 1 2 80% 
G3 - - 20 - 100% 
G4 1 3 1 15 75% 

 Precision 90% 80% 87% 88% 86% 



E. Coupeté et al., Real-time recognition of human gestures for collaborative robots on assembly-line  

 5 

discriminate, and present less variability. Regarding 
precision, gesture G2 (“to fit on door the 
waterproofing-sheet”) is the one for which 
performance is lowest (80%); the significant rate of 
confusion between gestures G4 and G2 can be 
explained by actual similarity of postures in those 
two gestures. 

 

Table 2 shows the recognition results using 
AnimaZoo data. The average recognition 
performances are therefore the following:  
 precision  96%   recall  96%. 

These rates are significantly higher than the 86% 
obtained with 3 MotionPods, which is not 
surprising, as the 12 inertial sensors of AnimaZoo 
half-suit provide much more information on upper-
body movements. Also note that per-gesture results 
are coherent with those obtained with 3 
motionPods: gesture G4 (“to fit the window sealing 
strip”) has the lowest recall (85%), and gesture G2 
has lowest precision (87%), with significant 
confusion of gesture G4 with G2. 

3.2. Test of real-time early recognition 

While the above performance evaluation has been 
done offline on isolated pre-recorded gestures, it is 
essential for our application to be able to recognize 
gestures online in real-time, as early as possible. 
For testing this, we analyzed the probabilities 
returned on every timestep for each learnt gesture, 
on a continuous sequence of actions. We used the 
AnimaZoo™ for the learning and the testing. 
As we can see on top of Figure 5, there is almost 
always a gesture with an estimated probability 
around 1 issued by one of the trained HMM. 
However, if we look at the gesture with the highest 
probability in real-time (see blue curve on bottom 
of Figure 5), there are some fluctuations at each 
gesture transition due to overlapping movements 
that occur during the gesture sequence (gesture co-
articulation). For short time periods, the gesture 
model with the highest probability may not 
correspond to the actually performed gesture. 
Indeed, the system needs a minimum amount of 
data to establish which gesture is currently being 
executed. These fluctuations are longer for the 
fourth gesture G4 because the beginning of the 
gesture is similar with the G2 gesture, and only the 
end of G4 is really characteristic of this gesture. 

To prevent false recognition and add robustness to 
the output of our system, we process data in real-
time to establish which gesture is being performed. 
For each timestep, we analyze instantaneous 
likelihoods in a time-window with a length equal to 
1/3 of duration of the shortest gesture. In our 
experiment the duration of this time-window is 
1.64 second. 

 
Figure 5: On top, gesture probabilities output in real-time by our recognition system. On bottom, the gesture with the highest 
probability in real-time (blue), the final result (estimate of performed gesture) obtained after time-window filtering (red), and 
the ground truth (black). The four performed gestures are successively G1, G2, G3 and G4. Their time intervals are 
represented with color background: blue for G1, red for G2, green for G3 and yellow for G4. 

Table 2: Precision and Recall per gesture obtained with 
AnimaZoo inertial “MoCap suit” IGS-120+, estimated 
with jackknifing. 

Output (maximum likelihood) 
  G1 G2 G3 G4 Recall 

O
bs

er
va

ti
on

 
(G

es
tu

re
) G1 20 - - - 100% 

G2 - 20 - - 100% 
G3 - - 20 - 100% 
G4 - 3 - 17 85% 

 Precision 100% 87% 100% 100% 96% 
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We calculate which gesture has the largest number 
of highest probabilities in this window, taking into 
account only the probabilities above 0.7. If this 
gesture has the highest probabilities for at least 75% 
of the timesteps in the window, the system returns 
this gesture, otherwise the system returns 0. The ‘0’ 
output means that no gesture is recognized with 
enough certainty. As we can see on bottom of 
Figure 5 (red curve), our time-window filtering 
prevents most of the false recognitions. At the 
beginning of gesture G2 and gesture G3 and in the 
middle of gesture G3, the system returns 0. There is 
still an error at the beginning of the fourth gesture. 
The confusion between gesture G2 and gesture G4 
is too long to be ignored. A solution could be to 
extend the window but we will take the risk to not 
recognize gesture G4. Note that this is totally 
coherent with the lower recall and precision 
observed for gesture G4 on tables 1 and 2. Finally, 
it can be noted that the average time between the 
actual gesture beginning and its recognition by our 
system is 3.4 seconds, which is an acceptable early-
recognition for our application. 

4. Conclusions & perspectives 

In this paper, we have presented a framework and 
preliminary experimental results for real-time 
recognition of human operator actions on factory 
assembly-line. The goal is to enable a collaborative 
industrial robot, to understand behavior of humans 
around it, so that it can adapt its own actions and 
execution speed accordingly.  

Our experiments shows that it is possible to obtain 
very good gesture recognition rates (96% precision 
and recall on several repetitions of the same 
assembly operations by a single operator), using 
real-time motion capture with a “MoCap suit” of 12 
inertial sensors (AnimaZoo) estimating joint 
angles of upper-half of human body (neck, wrists, 
elbows, shoulders, etc…). The great advantage of 
the chosen motion capture technology is total 
avoidance of any occlusion problems, contrary to 
visual-based motion capture. Also, we find that 
somewhat lower but nevertheless rather good 
recognition rates (86% precision and recall) can be 
obtained with only 3 inertial sensors placed 
respectively on the torso and the two wrists of the 
operator. Finally, we have tested real-time 
recognition capabilities of our framework using 
MoCap suit, during continuous sequences of 
actions performed by a human operator. These tests 
show that our system is able to perform online early 
recognition, after an average delay of less than 
4 seconds after gesture beginning, with very little 
erroneous output. 

Ongoing work aims at evaluating our framework 
for same actions recognition but on more 
executions by a larger pool of different human 
operators, and also to estimate false recognition 

rates on unrelated gestures. Another interesting 
potential perspective is the use of workers’ motion 
capture in order to estimate effort and stress, which 
could be helpful for prevention of physical causes 
contributing to initiate or worsen some 
musculoskeletal disorders.  
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