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Abstract

Purpose By analyzing the latest developments in the dynamic
life cycle assessment (DLCA) methodology, we identify an
implementation challenge with the management of new tem-
poral information to describe each system we might want to
model. To address this problem, we propose a new method to
differentiate elementary and process flows on a temporal
level, and explain how it can generate temporally differenti-
ated life cycle inventories (LCI), which are necessary inputs
for dynamic impact assessment methods.

Methods First, an analysis of recent DLCA studies is used to
identify the relevant temporal characteristics for an LCI. Then,
we explain the implementation challenge of handling addi-
tional temporal information to describe processes in life cycle
assessment (LCA) databases. Finally, a new format of tempo-
ral description is proposed to minimize the current implemen-
tation problem for DLCA studies.

Results and discussion A new format of process-relative tem-
poral distributions is proposed to obtain a temporal differen-
tiation of LCA database information (elementary flows and
product flows). A new LCI calculation method is also pro-
posed since the new format for temporal description is not
compatible with the traditional LCI calculation method.
Description of the requirements and limits for this new
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method, named enhanced structural path analysis (ESPA), is
also presented. To conclude the description of the ESPA
method, we illustrate its use in a strategically chosen scenario.
The use of the proposed ESPA method for this scenario
reveals the need for the LCA community to reach an agree-
ment on common temporal differentiation strategies for future
DLCA studies.

Conclusions We propose the ESPA method to obtain tempo-
rally differentiated LCIs, which should then require less im-
plementation effort for the system-modeling step (LCA data-
base definition), even if such concepts cannot be applied to
every process.

Keywords Dynamic life cycle assessment (DLCA) -
Enhanced structural path analysis (ESPA) - Life cycle
inventory (LCI) - Temporal database description - Temporal
differentiation methodology

1 Introduction

Since their inception, most life cycle assessment (LCA)
studies have considered few system variations over time
and a static environmental response to extractions and
emissions. In addition, they usually aggregate all ele-
mentary flows over the entire life cycle (Finnveden
et al. 2009), thereby preventing any explicit temporal
differentiation.

In the last 15 years, however, compelling arguments have
been proposed to explain why industrial and environmental
dynamics might have significant impacts on the results of
some LCA studies (Field et al. 2000; Finnveden et al. 2009;
Graedel 1998; Owens 1997; Reap et al. 2008; Udo de Haes
et al. 2002). Indeed, not considering temporal variability is
now recognized as one of the shortcomings of the LCA
methodology (ISO 14 040 and 14 044). This gap between

@ Springer


http://dx.doi.org/10.1007/s11367-014-0710-9

Int J Life Cycle Assess

expectations of dynamic consideration and current static im-
plementation of the LCA methodology needs to be bridged to
increase the representativeness for results of future LCA
studies.

In the last few years, many dynamic LCA (DLCA) studies
have pursued this goal and shown the relevance of considering
time for some systems and environmental impacts. Among
those publications, we distinguish two categories of discus-
sions, which relate either to impact assessment or system
modeling.

1.1 Time considerations for environmental impact assessment

Reap et al. (2008) have listed many examples of how impacts
might vary if the rate or timing of emissions changes. In their
review, they underline that Owens (1997) acknowledged that
the state of the environment and the rate of release (flow) of
pollutants might affect the level of impacts from emissions at
certain times.

Many other examples have been proposed to demonstrate
the importance of emission timing. Graedel (1998) stressed
that a certain amount of volatile organic compounds released
during daylight will produce more photo-oxidants than the
same amount released over an entire day. Udo de Haes et al.
(2002) explained how the acidification impacts change when
an ecosystem’s nitrogen holding capacity is exceeded.
Looking more specifically at impact factors, Shah and Ries
(2009) have shown how the fate level characterization of NO,
can vary by about two orders of magnitude between emission
in summer or winter across different states of the USA.

The importance of time horizons has also been taken on
board in the development of a dynamic impact assessment
method for climate change created by Levasseur et al. (2010).
Using this new impact assessment method, one case study has
shown that conclusions from an LCA study might significant-
ly vary when different time horizons are considered. Other
publications (Dubreuil et al. 2007; Field et al. 2000; Hellweg
2001; Kendall and Price 2012; Kendall 2012) have presented
similar conclusions even though some authors (Schwietzke
et al. 2011) minimize its relevance for biofuel scenarios.

The Shonan principles (Sonnemann et al. 2011) have ac-
knowledged the previous observations and proposed a list of
impact categories which might vary significantly as a function
of time. In those principles, water withdrawal and consump-
tion, land-use GHG emissions, or photochemical oxidants
creation potential (POCP) are the impacts categories consid-
ered as time sensitive.

1.2 Considering time for system modeling and life cycle
inventory calculation

Specific mathematical models have been provided to account
for a few temporal systems variations in different DLCA
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studies (Bjork and Rasmuson 2002; Collinge et al. 2011;
Field et al. 2000; Kendall et al. 2009; Pehnt 2006;
Stasinopoulos et al. 2012; Zhai and Williams 2010). Such
models usually describe how parts of systems vary over the
life cycles.

The life cycle inventories (LCIs) obtained in those studies
are different from those of more traditional LCA studies where
process flows do not evolve during the life cycle of their
systems. Those examples, considering the process variation
over time, cause some modifications to the conclusions, which
indicate that industrial dynamics can have an effect on the
results of DLCA studies. From what we could gather, most of
those time-dependent LCIs are not explicitly differentiated at
the temporal level, which precludes the use of time-dependent
impact factors with the obtained “dynamic” LCI.

1.3 Complete dynamic life cycle assessment studies

Recently, Collinge et al. (2013) have used a temporal differ-
entiation method developed by Heijungs and Suh (2002) to
model their system. They then used a calculation structure
proposed by Mutel and Hellweg (2009) in order to explicitly
describe the temporal variability in the LCI obtained. It is the
only study we could find where time is explicitly taken into
account in both LCI calculation and impacts assessment
phases.

1.4 The next implementation challenge to take time
into account in DLCA studies

When we looked more closely at the description of the
method used by Collinge et al. (2013) and developed by
Heijungs and Suh (2002), we find that the authors clearly
underline an implementation challenge by stating that: “the
extent to which differentiation is feasible will be quite re-
stricted in practice.” This is explained by the expected in-
crease in data required to describe the temporal variation of
different systems in LCA databases. And so, while complete
DLCA studies are now clearly possible, there still seems to be
an implementation challenge due to the management of tem-
poral information for system description and modeling. This
is why we propose a specific three-step strategy to address
this issue.

2 Development strategy to solve the implementation
challenge

The first step to propose a solution to the raised implementa-
tion issue is to clearly define the temporal characteristics that
are useful for environmental impact assessments (required
inputs). In the second step, we analyze in detail the method
available today (Heijungs and Suh 2002) and describe, with
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an example, why temporal differentiation is restricted in prac-
tice. In the third and final step, we identify the current char-
acteristics of process definition and explain why it is not
subjected to the same implementation restriction. Based on
this three-step strategy, we then propose a new temporally
explicit method that we call enhanced structural path analysis
(ESPA).

2.1 Temporal inputs required for impact assessment

To suggest an explicit description of the temporal variation for
a scenario, we first look at the results format that would be
useful for an impact assessment. In the work of Levasseur
et al. (2010), the dynamic impact assessment requires that life
cycle emissions be described through distributions. This un-
derscores the need to temporally differentiate all elementary
flows of a supply chain over its life cycle through discrete
temporal distributions.

The dynamic impact assessment method developed by
Levasseur et al. (2010) also calls for a temporal description
which is relative to a chosen time horizon. When we analyzed
other temporally sensitive impact categories, it became clear
that a seasonal calendar-related description might also be
useful. For example, water depletion effects are not related
to the start of a life cycle but more to the season. This is why
we think that a temporal differentiation of LCI would need to
temporally describe elementary flows in relation to our calen-
dar. The time horizon could then be set relative to a
specific date.

Looking at different impact categories also brings the issue
of accuracy in temporal differentiation. Most current DLCA
studies have arbitrarily chosen an annual time step for tempo-
ral description, but seasonal or daily variations could be useful
in some cases. A temporal differentiation method that can
model any system should make use of different temporal
precision and would probably be needed for future dynamic
impact assessment methods. As another example, impact cat-
egories such as noise (Cucurachi et al. 2012) are not specifi-
cally explained in our new method, but they would require a
differentiation of elementary flows between day and night.

To summarize, our analysis of the required temporal input
for dynamic impact assessments has brought forth three
criteria for LCI temporal differentiation. This differentiation
will need to be calendar relative, defined with temporal distri-
butions and different accuracies. Reaching those criteria for a
temporally defined LCI is the first requirement we identified
for our approach.

2.2 Current temporal differentiation method for a system
description

More than 10 years ago, Heijungs and Suh (2002) described a
method to temporally differentiate the process of any data-
base. The idea is comparable to the one used to differentiate
flows on a spatial basis. The following simplified technolog-
ical product-by-process matrixes describe how electricity and
coal production process flows can be disaggregated for two
different years (2001 and 2002 in this case).

electricity production coal mining

electricity 1 -0.1
coal -0.5 1
electricity prod. 2001 electricity prod. 2002 coal min. 2001 coal min. 2002
electricity 2001 1 0 —0.1 0
electricity 2002 0 1 0 —-0.1
coal 2001 -0.5 0 1 0
coal 2002 0 -0.5 0 1

This method can create temporal distributions of elemen-
tary flows (if applied to the environmental matrix) with annual
accuracy when each flow represents a discrete year. In fact, it
gives a calendar-relative temporal distribution, where tempo-
ral differentiation can vary in accuracy. By doing so, it meets
all the criteria we identified in the last subsection (2.1). Its
limited practical use, mentioned in Section 1, is still an issue,
and this implementation challenge is still to be solved. To find
a solution, we now describe, in detail, how Heijungs and Suh’s
method is not practical for the information structure used in
the current LCA studies.

Today’s LCA databases can describe thousands of process-
es. Using Heijungs and Suh’s method to temporally differen-
tiate all of those processes with different accuracies would
mean an unmanageable increase in the amount of process
and elementary flows to be defined. To clarify, let us take a
simplified example where we compare the environmental im-
pacts of the production of a solar energy installation with the
environmental impacts of the electricity produced in a country.
Many solar energy enthusiasts will say that for a fair compar-
ison, we should only consider the period of time when a solar
system is producing electricity (a certain number of hours per
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day). This would mean an hourly process differentiation over
the lifetime of the system, which is about 30 years. So, for this
specific comparison, our electricity production would require
the definition of up to 262,800 (30x365%24) processes. This
is, at least, two orders of magnitude above current database
sizes, and it does not consider the temporal differentiation of
elementary flows. To add to the complexity, a calendar-specific
differentiation would only work for one study since process
flows are case specific with this method. The same study made
10 years later would require the temporal definition of the same
number of processes since the temporal description is case
specific. For both those reasons, we can see the practical limit
of such a temporal differentiation method.

2.3 Current characteristics of a process definition in a LCA
database

The previous description of the only available temporal differ-
entiation method highlights how implementation will be an
issue for LCA practitioners and database managers. So, the
main challenge is to find a way of minimizing the increase in
data imposed by this temporal differentiation. In many tradi-
tional LCA studies, the large amount of data that needs to be
considered has been handled by the reuse of the same case for
processes throughout a system description. This reusability of
processes is possible because of the relative nature of defined
elementary and process flows. In other words, the flows defined
in a dataset are relative to the process and, with scaling, those
flows can describe other equivalent processes occurring at a
different place in the system. This relative nature of the infor-
mation we use today is key to minimizing the amount of data to
be managed. Our working hypothesis is that a solution to the
implementation challenge of temporal differentiation will re-
quire such a process-relative description of time.

3 New temporal differentiation method

Based on our overview of the main challenges and require-
ments of current dynamic LCA (DLCA) studies, we agree
with the proposition made by Collinge et al. (2013) that this
type of study requires addressing explicitly the temporal char-
acteristics, both for the system modeling and for the environ-
mental impact assessment phases. Our research has focused
on the explicit inclusion of temporal information to model the
systems and how it can affect the calculation of the LCI.

Our suggestion for an explicit temporal differentiation in
system modeling (database information) is to use process-
relative temporal distributions to describe both elementary
and process flows. Here, the term “distribution” is linked to
the theory developed by Laurent Schwartz and is also
called the generalized function (Schwartz 1950). From those
distributions, we can obtain temporally differentiated LClIs

@ Springer

which respect all of the identified criteria (see Subsection
2.1) for the use of a dynamic impact assessment method. In
the following paragraphs, we go over the details of defining
process-relative temporal distributions and how to calculate a
temporally explicit LCI.

3.1 Definition of process-relative temporal distributions

A process-relative temporal distribution describes flows per
unit of time (in other words, a rate of process). Table 1 presents
four different examples of process-relative temporal distribu-
tions to describe temporally differentiated process flows
linked to the description of processes A to D. In a similar
manner, Table 2 presents three temporal distributions, which
describe the elementary flows (rate of emissions) relative to
the description of processes A to D.

In those examples of process-relative distributions, the x-
axis is divided according to the temporal accuracy (monthly or
yearly). Here, a different precision could be used to describe
different flows or even one flow. The y-axis gives the amount
of flow per unit of time (rate which depends on the temporal
accuracy on the x-axis).

The distributions we use must have a compact support.
This means that the integral over time for the distribution must
be equal to a real number. This real number is equivalent to the
measure that would typically describe the elementary or pro-
cess flow in a traditional LCA database.

The definition of a time zero for process-relative temporal
distributions, which describe process or elementary flows,
should be standardized with respect to the process in which
they are described. We propose this time zero to be the time
when the product, service, or system linked to the “parent”
process is ready to be used. As an example, time zero for
process-relative distributions linked to a power plant descrip-
tion is when the power plant is ready to produce electricity. A
standardized setting of time zero is critical for linking process-
relative information to the temporal description of a case
study. This time zero for elementary flows must also be
defined according to the same logic, which means that if we
know that building a dam will create emissions of methane
5 years after the dam started producing electricity, the emis-
sions distribution for methane should start 5 years after the
time zero of that particular emission’s temporal distribution.

3.2 Temporally differentiated LCI calculation methods

The process-relative temporal distributions described in the last
subsection (3.1) can increase the reusability of data that describe
processes in DLCA studies. However, they, alone, cannot offer a
case-study specific or a calendar-relative differentiation of LCL
The LCI calculation method must be modified in order to
propagate the relative temporal information for a specific life
cycle. Two modifications must be made for such propagation.
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Table 1 Process-relative temporal distributions of process-flows linking processes A to D

Temporally differentiated process-flows of:

Description of the distributions

Process A

0.25

Flows of process B
(#/month)

0
-12 12 36 60 84 108 132156 180

Time (in months)

Temporal accuracy/differentiation: month
Total amount for process B called over time: 1
First calling after process A is ready for use: 3 years

Repetitive distribution

0.5

0.25

Flows of process C
(#/month)

-24 -12 0 12

Time (in months)

Temporal accuracy/differentiation: month

Total amount for process C called over time: 0.5

First calling before process A is ready for use: 1 year

Punctual distribution

Process B

5
) ““
0

-24-20-16-12 -8 -4 0 4 8 12

Time (in months)

Flows of process D
(#/month)

Temporal accuracy/differentiation: month
Total amount for process D called over time: 20

First calling before process B is ready for use: 20
months

Uniform distribution

Process C

9

-36 -30 24 -18 -12 -6 0 6 12

Time (in months)

(=2}

w

Flows of process D
(#/month)

Temporal accuracy/differentiation: month
Total amount for process D called over time: 25

First calling before process C is ready for use: 30
months

Gaussian-like distribution

Process D

No process flow = No distribution

First, we need to propagate the temporal specificities of a
case study across the temporal distributions used in the
process descriptions. In other words, the starting times for
the system processes need to be relative to the full life cycle
of the scenario. In the standard LCI matrix calculation
method, products would be used between two process-
relative temporal distributions, but this mathematical opera-
tion will not propagate the temporal information included in
the process-relative distributions. We need to use a product
of convolution to obtain the temporal information propaga-
tion we are looking for. The description of a product of
convolution is given in Electronic supplementary material
(ESM) 1, but this paper explains how temporal information
is propagated.

First, to understand how the product of convolution is used,
it is important to note that a linear relationship must exist to
use the mathematical operator to propagate temporal informa-
tion between elements of matrixes. To explain why this rela-
tionship must be linear, let us recall the input/output format of
the traditional LCI calculation equation:

o =E(I-T)"7 (1)
Where:
0 is the inventory vector defining the LCI of the scenario

linked to the processes defined in vector 7
E is the environmental matrix (or intervention matrix)
which defines the elementary flows for any process
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Table 2 Process-relative temporal distributions of elementary flows linked to processes A to D

Temporally differentiated elementary-flows of:

Description of the distributions

Elementary flows
(kg CO,/month)
=
IS

0
129 -

Process A
6 3 0 3 6

200
9 12
Time (in months)

Temporal accuracy/differentiation: month
Total amount of CO, emitted: 1000 kg/process A
Emissions occur around the time process A is ready

Triangle shape distribution

Process B

4800

Elementary flows
(kg CO,/year)
[}
=
S
S

-1 0 1
Time (in years)

Temporal accuracy/differentiation: year
Total amount of CO, emitted: 4800 kg/process B
Emissions occur around the time process B is ready

Uniform distribution

Process C

No emissions = No distribution

Process D

15

10

M.
4 0 4

0
-12 -8

Elementary flows
(kg CO,/month)

8 12

Time (in months)

Temporal accuracy/differentiation: month
Total amount of CO, emitted: 75 kg/process D
Emissions occur around the time process D is ready

Gaussian-like distribution

defined in the matrix T (traditionally described by the
letter B)
T  is the technological matrix which describes the process
flows (traditionally described by the letter A)
is the scenario’s vector defining the processes that are
directly required to model the scenario

—
r

In Eq. 1, the inverse operator applied to the (I-T) matrix
does not admit the use of a product of convolution between its
elements and the elements of matrix E and vector 7 . We,
therefore, had to come up with a second modification to the
traditional LCA methodology, inspired by the structural path
analysis (Defourny and Thorbecke 1984; Lenzen 2007) and
the power series (PS) methods (Suh and Heijungs 2007). Both
methods solve Eq. 1 using Taylor’s expansion. Equation 1
then becomes:

O =E(I+T+T+T+ - +T++T)F (2
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The use of equation 2 requires that the series be stopped ata
certain level of the system. In practice, this is not a critical
problem since we can use a high enough #n level to obtain a
result that converges with the result of Eq. 1, as long as the
elements of matrix T respect certain conditions:

1. Linear system modeling

2. The eigenvalues of T need to have a modulus which is
less than unity

3. The norm of (I-T) needs to be less than one—N(I-T) <1.

The previous conditions are fully explained by Suh and
Heijungs (2007).

More details are now given to understand how the product
of convolution is used in such an equation. Equation 3 pre-
sents the traditional calculation for an element o of the o
inventory vector representing the emissions of substance « for
the third level of a system.
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04 = Z:ZZX:(QQZ X (tzy X (tyx X rx))) (3)

Where:
0, is the amount of « substance linked to the first three
levels of the system defined by 7
z is a summation index over the elementary flows for

all the processes defined in T

yand are summation indexes over all the processes defined

X in Tand 7

ez is the elementary flow of matrix E for the o row and z
column

is the process flow of matrix T for the z row and y
column (the same logic applies to #,,)

We then modify Eq. 3 to use process-relative temporal
distributions instead of values for each of the elements and
replace the products by products of convolution:

Oq = ZZZ (eaz*temp (tzy*temp (tyx*temprx) )) (4)
z y X

* emp 15 the symbol we use to define a product of convolu-
tion on the temporal dimension of the distributions. This
means that the product of convolution is only applied to the
distributions and not between matrices. As said previously, the
product of convolution is the operator that propagates the
process-relative temporal information onto a specific system’s
life cycle. The propagation of information is quickly ex-
plained in ESM 1, but a more complete example is presented
in Subsection 3.3.

Equation 4 details explicitly how we modified the LCI
calculation method in order to use a process-relative temporal
distribution to obtain an element of the temporally differenti-
ated LCI which meets the criteria we had previously identified
in Section 2.1. A general definition of the equation to calculate
the inventory is, therefore, expressed in Eq. 5:

7 = E*remp (I +T+ T*tempT + T*tempT*tempT + ”')*temp? (5)

where we propose that the use of process-relative temporal
distributions and the modification of the LCI calculation be
called the enhanced structural path analysis (ESPA) method
(Beloin-Saint-Pierre and Isabelle 2011a, b).

3.3 A strategic case study for the implementation of the ESPA
method

The scenario used as example consists of four interlinked
processes and their respective CO, emissions (elementary
flows) defined by process-relative temporal distributions.
The objective is to assess the temporal distribution of CO,
emissions related to process A (functional unit = one process

A, which also defines the vector 7 ). The characteristics of
this made-up scenario have been strategically chosen to show
important aspects to be considered in the temporal differenti-
ation of database and LCIL.

Figure 1 presents the supply chain of our simplified case
study up to the third level. In Fig. 1, the process flows are
identified as thin black lines. The hollow white arrows repre-
sent CO, emissions from each process within the system.
There is no white line coming from process C since this
process does not emit any CO,. Numbers 1 to 4 will serve to
simplify the identification of an emission structure in the full
life cycle temporal distribution of the scenario.

Table 1 (see Subsection 3.1) describes process flows (ele-
ments of matrix T). Table 2 (see also Subsection 3.1) gives the
CO, emissions (elementary flows) for all those processes
(elements of matrix E). All process-relative temporal distribu-
tions (shown in Tables 1 and 2) meet the previously identified
requirements for temporal distributions. This means that the
integrals over time of those distributions are equivalent to real
values, and the time zero position is relative to their respective
processes.

We use Eq. 6 to calculate CO, emissions (the only element
of the inventory vector @ in this example) for the supply
chain described by the distributions of Tables 1 and 2. The
Taylor development is applied up to the third level as our
scenario consists only of three levels. The T# vector in the
last element of Eq. 6 is a simplified representation of the T
* temp 7 calculation of the second element in the same
equation. We use this presentation format to clearly show that
our calculation method meets the need for a linear relationship
when calculating the product of convolution on the temporal
dimension of different matrixes.

— — — —
0 = E*temp r o+ E*tempT*temp r o+ E*tempT*tempT r (6)

The result of Eq. (6) is given in Fig. 2 as a temporal
distribution over the case study’s lifetime. Setting time zero

| Lifecycle emissions for the system linked to process A
2N ‘ 5 Ei 3 N 4

Process B

Process C

Process D Process D

Fig. 1 Tree representation of the system for the example studied
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Fig. 2 Temporal distribution of 250
CO, emission over the entire life
cycle for the example studied

200

150

100

Emission flows for the life cycle (kg CO,/month)
W
S

0

-60 -48 -36 -24 -12 0

of process A to January 2013 would then create a calendar-
relative temporally differentiated LCI result. It represents, in
visual form, the distribution of the LCI data that will be
available for the impact assessment step of the LCA study
for one process A. Numbers in Fig. 2 are linked to the
description of the system’s elementary flows in Fig. 1.

An easily identifiable clue indicating that the scenario’s
emissions are correctly modeled is the recurring structure
of called process B (described in Table 1) which can be
observed in Fig. 2 with both small Gaussian-like (process
B calling emissions from process D) and rectangular func-
tions (emissions directly related to the calling of process
B). The result of Fig. 2 shows that we can reuse the same
process relative definition at different times in a scenario’s
lifecycle.

Time zero for the full life cycle of the system is the moment
when process A can be used. And so, we can easily identify
this scenario’s past and future emissions when using one
process A. When looking at the numbered emissions in
Fig. 1, we can link the first peak of final temporal distribution
to emissions from process D (arrow #4) called by process C.
The second peak describes emissions coming directly from
process A (arrow #3). The four small peaks describe the
emissions (arrow #1) from process D called by process B.
The four large rectangles describe the emissions flows coming
directly from process B (arrow #2).

In this particular case, certain structures are in gray since
they show a yearly rather than a monthly precision. This
difference needs to be well documented to use the data more
accurately once more dynamic impact assessment methods
become available, in order to take into account the effect of
varying emission flows in the environment.

When the flows’ temporal accuracy varies between calcu-
lation steps, it is important to keep the information about the
loss of accuracy for subsequent levels of the supply chain. In
our example, the accuracy loss is directly related to emissions
and does not affect the precision of subsequent emissions, but
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2]
II
Al A

2 2
I I
F 3 A

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
Time (in months)

the problem may arise if the loss of temporal accuracy is
related to process flows. At this time, we do not know the
acceptable level of temporal accuracy we should use to ensure
a representative level for any impact assessment method. This
means that a maximum level of temporal precision will be
more useful to guaranty the future applicability of a scenario
description in a database. Hence, we believe that it is impor-
tant to try and reach the highest precision for a process flow
description.

The result presented in Fig. 2 can be verified by integrating
the final distribution over the entire life cycle. The integration
results must give a value equivalent to the value that would be
obtained if we made a traditional LCI calculation with only
total amounts in the description of distributions columns of
Tables 1 and 2. In this case, for both calculation methods, the
full consolidated life cycle CO, emission for the scenario is
equivalent to 7,712.5 kg over the lifetime considered
(~200 months).

4 Discussion

We have discussed temporal differentiation in the steps of
system modeling and LCI calculation (phase 2 of ISO 14
040 structure). Using the ESPA method in the context of our
example brings different observations and requirements for
both steps.
Step 1 Scenario description

When looking at the size and quantity of informa-
tion already needed for traditional databases, it be-
comes clear that temporal differentiation of LCA
scenarios would impose an important workload.
One of our goals was to find a way of minimizing
this effort through “wise” temporal descriptions. We
believe that using process-relative temporal distribu-
tions to model elementary and process flows will
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scale down the required effort since our method of
describing process-based scenarios enables us to re-
use certain process definitions throughout a system.

On the other hand, if we want to use our descrip-
tion for temporal information of scenarios, it is im-
portant to understand that temporally differentiating
every process is not a prerequisite. However, missing
a temporal link within the system will prevent the
temporal differentiation of all related subprocesses.
Using Boolean flags to identify information with no
temporal differentiation would allow part of the cal-
culation to be made with the traditional LCI calcula-
tion. Any subprocess described by process-relative
temporal distribution would then be integrated over
time and defined by a single numerical value. This
means that before LCA databases are fully temporal-
ly differentiated, other techniques like that proposed
by Collet et al. (2011) can be quite useful to identify
part of the supply chain which should be prioritized
on a temporal level and start partial analyses.

The ESPA method will not systematically mini-
mize the efforts needed since the required invariabil-
ity by time translation of the process does not apply to
every case. The description of an infrastructure is a
clear example where the ESPA method does not
decrease the work needed for a temporal differentia-
tion. The difficulty when modeling infrastructure is
that life cycle impacts from this part of the system are
set at a specific time, regardless of the timing for the
study. The example of the LCA for electricity pro-
duction scenarios highlights this difficulty since most
impacts from electricity production are temporally
linked to the times when electricity is produced,
except for the impacts of the power plants them-
selves. In this subsection of the system, impacts from
power plants will always be set in relation to the time
of construction, regardless of the time when electric-
ity is produced. In such cases, a calendar-specific
definition of the system will be required to make
the temporal link with time zero for the infrastructure.

Looking at how we have described the temporal
characteristics of systems, it becomes clear that certain
rules will be required if the community wants to
exchange a temporally defined datasets. The setting
of time zero is a good example of how a different
definition would cause important problems in the re-
usability of different sources of information. More
case studies will be required to see if certain activity
datasets cannot use the “ready-to-be-used” rule, but
we have not found any so far. We, therefore, want to
stress the need for discussions between experts on this
subject to investigate any possible shortcomings of
this approach while conducting larger case studies.

Such work should be done rapidly since it is a prereq-

uisite to start temporal differentiation of databases, and

the more informed data we gather today, the more

temporally representative the future databases will be.
Step 2 LCI calculation and format

The calculation of a temporally differentiated LCI
with the ESPA method means that we will stop the
system modeling at a certain level. This could cause
problems mostly in terms of calculation time for
scenarios where most of the impacts are coming from
background data. It would, in that case, require lon-
ger series to consider an important proportion of the
impact over the life cycle. In practice, many tests will
be required on different systems to see if we can find
large differences in life cycle impact evaluation,
caused by a truncated system. Interesting work in
relation to systematic disaggregation has been pre-
sented by Bourgault et al. (2012). The findings of this
particular work could also be useful in minimizing
the size of the technosphere matrix at each level of
recursion and helping in the management of temporal
description. Further test will, however, be needed to
evaluate how this could be done.

The LCI format based on temporal distributions we
propose is in direct correspondence with our analysis
of required inputs for dynamic impact assessment
methods, such as the one created by Levasseur et al.
(2010). This means that we can calculate the life cycle
elementary flows at different times and with different
accuracies for different systems. We could also present
information in another format, if it were more useful to
evaluate certain impacts. For example, we could give
the accumulation of a substance over the life cycle if
we know its site and related environmental diffusion
mechanisms. This could be useful when looking at
threshold effects of certain substances. The different
possibilities for formats of LCI results highlight the
need for a discussion with designers of impact analysis
methods in order to identify where LCI calculation
should stop and where impact analysis should begin in
the LCA methodology.

5 Conclusions

In this paper, we propose the ESPA method to temporally
describe elementary and process flows and calculate relevant
temporally differentiated LCI. The main purpose of this meth-
od is to decrease the implementation workload linked with
DLCA studies.

The ESPA method decreases the workload for the description
of time in scenarios because we can reuse many temporally
defined processes in different systems and even within a single
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system. This is possible since the ESPA LCI calculation method
propagates process-relative temporal characteristics throughout
the different levels of the scenario’s system. However, develop-
ing databases is a joint effort of the LCA community, and a
discussion on the use of process-relative temporal distributions is
needed to reach an agreement on some aspects of the format. A
faster switch to a common format will increase our future ability
to take time into account and carry out more DLCAs.

The temporally differentiated LCI we can obtain with our
method could be used with previously proposed dynamic
impact assessment methods, (Levasseur et al. 2010) but results
could be presented in a different format to help with other
impact categories.

The evaluation of the importance of time characterization
on final LCA results will require further studies with time-
dependent impact assessments. To reach this goal will still
probably mean a considerable workload, for one main reason:
today, LCA databases (ecoinvent, ELCD, GaBi) offer little
temporal information. In fact, the only temporal information is
the time representativeness of a defined process. This means
that determining the various time lags between processes and
elementary flows will require an additional amount of work.
The temporal differentiation of process flows will probably
require more work than temporal differentiation of elementary
flows because more accurate information for the former will
ensure a broader use in the modeling of different systems.

Our next step is to work in collaboration with other re-
searchers on the application of the ESPA method to make
DLCA studies of complex systems and look at the effect of
time on results and analysis.
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