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Abstract. This paper presents a novel method for building unstructured meshes for time-
dependent problems. We start by introducing the classical anisotropic mesh adaptation
technique proposed in [1, 2]. The latter is developed based on the length distribution
tensor approach and the associated a posteriori edge based error analysis. Then we
extend the mesh adaptation technique to contain adaptive time advancing. A newly
developed time error estimator is constructed and intends to homogenize the global error
over space and time. The main purpose of this work is the development of a novel meshing
algorithm, the paradoxical meshing, that provides optimal space and time meshes suitable
for several simulation time subintervals. The advantage of the proposed method relies in
its conceptual and computational simplicity as it only requires from the user a number of
nodes and a frequency of adaptation according to which the mesh and the time-steps are
automatically adapted. Numerical solutions on time-dependent problems demonstrate
the accuracy and efficiency of the proposed space-time error estimator.

1 INTRODUCTION

Despite the increasing computer performances and the progress of computational fluid
dynamics in modelling and simulating time dependent PDEs, numerical restrictions are
still present and caused by the complexity of the numerical simulations.

Anisotropic mesh adaptation has proved to be a powerful strategy to improve the ac-
curacy and efficiency of finite element methods. It enables the capture of multi-scaled
physical or mechanical phenomena. The method, as developed in [1], allows the creation
of highly stretched and highly directional elements leading to very good capture of the
gradients of the solution and the internal and boundary layers. Moreover, it provides a
good level of accuracy within a reasonable degree of freedom. Another extension was pro-
posed in [2], and accounts for time-step adaptation. Based on the derived error estimator
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in space and the solutions at the previous times, the proposed algorithm automatically
computes an appropriate time-step for the following computations.

The above described mesh adaptation is optimal for steady problems. It is theoret-
ically valid for transient CFD applications only when applied, together with the time
adaptation method, at every solver iteration. Nevertheless this would excessively increase
the computational cost and lead to an accumulation of interpolation errors. Fixing a low
frequency of adaptation can help solving these issues but this might lead to a time lag
between the mesh and the solution. To overcome these problems, a new fully adaptive
method is proposed in this paper: the paradoxical meshing. It intends to predict the
solution’s evolution over a period of time and to automatically generate corresponding
mesh and set of time-step sizes.

This paper is structured as follows: we start section 2 with a brief description of
the classical anisotropic mesh adaptation. Section 3 is dedicated to the time adaptive
technique. The good performance of these methods is evaluated on a 3D example with
complex geometry. The extension of these two methods into the paradoxical meshing
algorithm is described in Section 4. Finally, in section 5, we test the efficiency and
accuracy of the space-time adaptive algorithm on time-dependent problems.

2 Construction of an anisotropic mesh for stationary problems

In [1], we have developed an a posteriori edge based spatial error estimator relying on
the length distribution tensor approach. Working on a nodal based metric, an anisotropic
mesh adaptation procedure is obtained under the constraint of a fixed number of nodes.

2.1 Edge based error estimation

We consider u ∈ C2(Ω) = V and Vh a simple P 1 finite element approximation space:

Vh =
{
wh ∈ C0(Ω), wh|K ∈ P 1(K), K ∈ K

}

where Ω =
⋃

K∈K

K and K is a simplex (segment, triangle, tetrahedron, ... ).

We define X =
{
Xi ∈ Rd, i = 1, · · · , N

}
as the set of nodes of the mesh and we denote

by U i the nodal value of u at Xi and we let Πh be the Lagrange interpolation operator
from V to Vh such that:

Πhu(X
i) = u(Xi) = U i , ∀i = 1, · · · , N

As shown in figure 1, we define the set of nodes connected to node i by

Γ(i) =
{
j , ∃iK ∈ K , Xi,Xj are nodes of K

}

By introducing the following notation: Xij = Xj −Xi and using the analysis carried in
[1], we can set the following results:

∇uh ·X
ij = U ij , (1)
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Figure 1: length Xij of the edge joining nodes i and j (left). Varying the edge in its own direction (right).

|| ∇uh ·X
ij

︸ ︷︷ ︸
U ij

−∇u(X i) ·Xij|| ≤ max
Y ∈[Xi,Xj ]

|H(u)(Y )Xij ·Xij| , (2)

where H(u) = ∇(2)u is the associated Hessian of u. A definition of the projected second
derivative of u is obtained using (1) and the interpolation operator on ∇u :

∇ghX
ij ·Xij = gij ·Xij (3)

where ∇gh = Πh∇u, gi = ∇u(Xi) and gij = gj − gi.
Using a mean value argument, we set that:

∃y ∈ [xi, xj]|gij ·Xij = H(u)(Y )Xij ·Xij .

This projection is considered as an expression of the error along the edge:

eij = gij ·Xij (4)

However a gradient recovery procedure is needed as the gradient of u is not known and is
not necessarily continuous at the nodes of the mesh.

2.2 Gradient Recovery

Based on an optimization analysis, the author in [1, 2] proposes a recovery gradient
operator defined by:

Gi = (Xi)−1
∑

j∈Γ(i)

U ijXij (5)

where Xi = d
|Γ(i)|

∑
j∈Γ(i)

Xij ⊗Xij is the length distribution tensor at node Xi. Note that

this construction preserves the second order:
∣∣(Gi − gi

)
·Xij

∣∣ ∼
(
H(u)Xij ·Xij

)

where Gi is the recovery gradient at node i (given by (5)) and gi being the exact value of
the gradient at node i. The error is evaluated by substituting g by G in (4):

eij = Gij ·Xij
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2.3 Metric construction from the edge distribution tensor

Taking into account this error analysis, we construct the metric for the unit mesh as
follows:

Mi =


 d

|Γ(i)|

∑

j∈Γ(i)

Xij ⊗Xij




−1

For a complete justification of this result, the reader is referred to [1, 2].

2.4 Error behavior due to varying the edge length

We examine now how the error behaves when we change the length of the edges by
stretching coefficients

S =
{
sij ∈ R+ , i = 1, · · · , N , j = 1, · · · , N , Γ(i) ∩ Γ(j) 6= φ

}

Stretching factors s ∈ R are employed to link the error variations to the changes in edge
lengths: {

X̃ij = sXij

||ẽij|| = s2||eij|| = s2||Gij ·Xij||
(6)

where ẽij and X̃ij are the target error at edge ij and its associated edge length.
The metric associated with S can be redefined as:

M̃i =
|Γ(i)|

d

(
X̃i

)−1

with X̃i =
d

|Γ(i)|

∑

j∈Γ(i)

s2ijX
ij ⊗Xij (7)

being is the length distribution tensor. Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges by a factor
sij, the error changes quadratically so that the number of created nodes along the edge
ij is given by:

nij =

(
ẽij
eij

)− 1
2

= s−1
ij

Recall that ẽij denotes the induced error for edge X̃ ij. As per node i, the number of
created nodes along the different edges’ directions is given by the following tensor:

N i =
(
Xi

)−1


 d

|Γ(i)|

∑

j∈Γ(i)

nij
2Xij ⊗Xij




So that the total number of created nodes per node i is:

ni =

√√√√√det


(Xi)−1


 d

|Γ(i)|

∑

j∈Γ(i)

nij
2Xij ⊗Xij
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Assuming a uniform totally balanced error along the edge ẽij = e = cst, we get a direct
relation between N and e as follows:

nij(e) = s−1
ij (e) =

(
e

eij

)− 1
2

Hence for a node i we have

ni(e) =

√√√√√det


(Xi)−1


 d

|Γ(i)|

∑

j∈Γ(i)

nij(e)
2
Xij ⊗Xij






Replacing nij(e) by its expression,

ni(e) = e−
d
2

√√√√√det


(Xi)−1


 d

|Γ(i)|

∑

j∈Γ(i)

eijX
ij ⊗Xij






and this is equivalent to:

ni(e) = e−
d
2ni(1)

so that the total number of nodes in the adapted mesh is: N = e−
d
2

∑
i

ni(1).

Hence, the global induced error for N nodes can be determined by:

e(N) =


 N∑

i

ni(1)




− 2
d

Therefore the corresponding stretching factors under the constraint of a fixed number of
nodes N are given by:

sij =

(
e

e(N)

)− 1
2

=




∑
i

ni(1)

N




2
d

e
−1/2
ij

Note that the mesh does not change during time advancing but at a certain time level tn.
Hence, an optimal mesh at a time level tn need not be an optimal one at tn+1 which is
the case when propagating a discontinuity. This raises the question about the frequency
of remeshing.

As time-dependent problems exhibit arbitrary progression with time, the duration of
applicability of a mesh cannot be known apriori. When the time-step size is greater
than the length of the mesh’s time interval, the solution may propagate into a non pre-
adapted region of the domain resulting in a mesh/solution lag. Adapting the mesh at
every solver iteration guarantees that the spatial error remains bounded. Nevertheless,
this approach increases significantly the computational cost and leads to the accumulation
of interpolation errors polluting the solution.
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3 Time adaptation procedure

The focus now can be waived to the choice of the time-step size computed at each
solver iteration. The main objective is to produce a time-step that preserves the accuracy
of the mesh adapted solution and avoids unnecessarily small time-step sizes. This method
was first introduced and validated in [2]. In this work, we revisit the developed method
with the intention of extending it to a fully space-time adaptivity.

We apply the above described analysis in 1D where the only variable is time. Denote
by T = {t0, · · · , tn−1, tn, tn+1, · · · } and let tnk = |tn− tk| , n, k ∈ T be the temporal nodes
and ∆tn = tnn+1 the time increments as shown in figure 2. Assume that the solution is
already computed on the whole domain up to time tn. The aim is to choose an appropriate
time-step ∆tn.

Without loss of generality, the analysis will be carried on an arbitrary spatial node
i. Note that at a spatial node i, we only have one time edge to be determined (tntn+1).

Figure 2: Temporal discretization at the spatial node i.

Define {τnn+1} to be the temporal edge scaling (stretching) factor such that:

ẽn+1,n = τ 2n+1,nen+1,n∣∣∣̃tn+1,n
∣∣∣ = τn+1,n |t

n+1,n|
(8)

where en+1,n is an approximation of the interpolation error from tn to tn+1, ẽ and
∣∣̃t
∣∣ are

the target error at the temporal edge tntn+1 and its associated edge length.
Let ui

n−1, ui
n and ui

n+1 be the solutions at node i and times n − 1, n, and n + 1,
respectively. Using a forward difference approximation, we have that un+1 − un = u̇n∆tn
and un−1 − un = −u̇n−1∆tn−1. Then applying the recovery gradient in 1D, we get:

u̇n =
ui
n,n+1∆tn + ui

n,n−1∆tn−1

∆t2n +∆t2n−1
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and the quadratic interpolation error:

ein,n−1 = u̇i
n,n−1∆tn−1

and
ẽin,n−1 = τ in−1

2
u̇i
n,n−1∆tn−1

where u̇i
n,n−1 = u̇i

n − u̇i
n−1. Now using the equidistribution error argument, we write

ẽin,n−1 = en(N)

with en(N) being the maximal error in space for a total number of nodes N . Hence the
stretching factor of the time-step size is given by:

τ in−1 =

(
e(N, tn)

ein,n−1

) 1
2

and the optimal time-step is determined by:

∆̃tn = min
i

τ in−1∆tn (9)

Looking closely at this formula, we notice that it requires the solution at time tn+1 which is
not yet computed. Therefore instead of computing the optimal time-step ∆̃tn we calculate

∆̃tn−1 and we let ∆tn = ∆̃tn−1.

3.1 Application to 3D heat transfer and turbulent flow inside an industrial

furnace

In this section, we will apply the classical space and time-adaptive methods to simulate
the heat transfer and fluid flows inside an industrial furnace with complex geometry. The
objective of this test case is to show the applicability and the potential of the developed
algorithm in simulating long time heating inside large scale furnaces.

The furnace is modelled as a hexagonal section duct of 2.7× 8.1× 5.3m3 forming one
heat transfer zone. All computations have been conducted by starting with a gas at rest
with a constant temperature of 1463◦C. Adiabatic temperature is considered at all other
boundaries for sake of simplicity. The heated air is pumped into the furnace at a velocity
14.3m/s by a circular burner with 6m diameter and located at the left vertical wall. The
air is vented out of the furnace through two outlets positioned at the bottom of the left
vertical wall. The 3D computations aim at simulating an hour of heating and have been
conducted in parallel on 16, 2.4Ghz Opteron cores.

Figure 3 (top) shows the isothermal distribution at different time-steps. When the hot
fluid spreads along the volume of the furnace, it induces a turbulent motion within the
geometry. This forced convection is caused by the interaction of the moving stream and the
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Figure 3: Isotherms (Top) and corresponding adapted meshes (bottom) at three different time-steps.

CPU Time (s)
Non-Adaptive ∆t = 0.005s 8,640,000

Adaptive ∆t 172,800
Ratio 50

Table 1: CPU time for computing the solution with non-adaptive and a space/time adaptive methods

stationary fluid inside the furnace. The numerically obtained temperature distribution
(fig. 3) clearly reflects the expected flow pattern. A number of small vortices inside
different buffer zones can be observed. The latter are due to the turbulence dissipation
and mixing of the hot and cold air. The numerical results obtained with our space and
time adaptive algorithm reflect well the efficiency and potential of the methods. Figure
3 (bottom) highlights how well the mesh is adapted to sharply capture, with highly
stretched elements, the gradients of the solution, the boundary layers and the emerging
vortices. The algorithm builds up the mesh in a way to maximize the accuracy of the
numerical solution with a fixed number of nodes ( 100, 000). Note that the mesh is adapted
according to the velocity components and its norm as in this test case it is the motor of
the induced airflow and spread of the temperature. The results describing only one hour
of the heating process required 100 days of computations with a fixed time-step equal to
0.005s. Significant CPU time and computational cost were saved by applying our time
adaptive procedure as it required only 2 days of calculations (see table 1). Figure 4 shows
the evolution of the time-step sizes allowing at the same time a certain level of accuracy
and an acceleration of the computations.
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Figure 4: Time-step evolution for the simulation of an hour of heating inside an industrial furnace.

4 paradoxical meshing: Full adaptivity algorithm

When dealing with steady state problems, the classical mesh adaptation technique,
presented in section 2, performs pretty well for converging the mesh-solution couple.
Nevertheless, this method is no more optimal when applied to unsteady problems as the
physical solution evolves in time. Together with the time-adaptive method introduced
in section 3, the classical mesh adaptation can be efficiently adapted to time dependent
problems.

In this paper we are interested in developing a space and time fully adaptive algorithm.
The latter aims at anticipating the solution progress over a period of time and generating
the optimal mesh that is adequately adapted, for a fixed number of nodes, to the evolving
solution along that time interval. The analysis is carried out on a (3D+1D) mesh, i.e.
the computations are performed synchronously on a 3D spatial mesh and a 1D temporal
mesh. We aim at generating a mesh that holds for several solver iterations together with
the corresponding optimal set of time-step sizes. Note that the user can assign a frequency
of adaptation and the algorithm will accordingly adapt the meshes.

The principle consists of dividing the simulation time [0, T ] into nSI subintervals:

[0, T ] = [0, T 1] ∪ [T 1, T 2] ∪ · · · [T k−1, T k] ∪ [T k, T k+1] ∪ · · · ∪ [T nSI−2, T nSI−1]

that will in turn be divided into nfreq − 1 subintervals where nfreq is the frequency of
adaptation assigned by the user. We call the adaptation method a paradoxical meshing
as the resulting mesh is being adapted to nfreq time-steps while adapting every nfreq steps.

The mesh and the set of time-step sizes are computed through an iterative process
along which we try to converge both meshes (the spatial and the temporal one) to the
optimal configurations that give the most accurate solution for the corresponding interval
of time. At every iteration, we consider each of the nSI intervals at a time and divide it
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into subintervals

[T k, T k+1] = [T k = tk0, t
k
1] ∪ [tk1, t

k
2] ∪ · · · ∪ [tkl , t

k
l+1] ∪ · · · ∪ [tknfreq−2, t

k
nfreq−1 = T k+1]

such that tkl+1 = tkl +∆k,l = T k + l ×∆k,l and ∆k,l =
δk

nfreq
.

Figure 5: Temporal subintervals [T k−1, T k].

The solution is predicted at each of the {tkl } temporal nodes using the numerical scheme.
From these solutions we construct a vector field

V = {Uk,0, Uk,1, · · · , Uk,l, Uk,nfreq−1}

and we estimate the edge based spatial errors:

eij = max
0≤k≤nSI

Gk
ij ·Xij

We compute a global error e(N, Tk), as in the classical approach, for equidistributing the
error on the edges of the discrete domain. An optimal metric is deduced controlling the
spatial error over [T k, T k+1]. We also compute the temporal error at the nodes tkl as in
section 3. Once this is done we optimize the time-step sizes ∆tk,l by equidistributing the
error in space and time:

∆tk,l =


e(N, Tk)

max
i

ek,li




1
2

×∆tk,l

An optimal size ˜δtk of the time interval [T k, T k+1] is recomputed as follows:

δ̃tk =
∑

l

∆tk,l

These δ̃tk are given to the 1D mesher that will generate a new discretization of the
interval [0, T ] as well as its corresponding temporal nodes T k. Notice that the number
of subintervals nSI will be automatically changed due to this remeshing. The above
described algorithm is repeated iteratively until convergence of the metrics and the set of
time-step sizes. Therefore, for each interval [T k, T k+1] a metric is computed accounting for
the solution’s transient evolution. At convergence, a mesh is generated from this metric
field. Computations are then resumed on the predicted optimal set of meshes with the
corresponding set of time-step sizes.

The novel method that we presented herein is perceived not only as a fully adaptive
technique but also as a space and time accurate way of solving time-dependent problems
within reasonable computational costs.
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Figure 6: Paradoxical meshing algorithm applied to a rotating circle for the interval [tn, tn+1].

Figure 7: Time-steps generated by the classical (left) and the paradoxical (right) meshing algorithm.

5 Numerical example: Rotating Circle

In this section, we assess the performance of the newly developed fully-adaptive algo-
rithm on a numerical test case and compare the result with the classical space and time
adaptive techniques. We consider a 2D circle of radius 0.3 located at (0.5, 0.5) in the
computational domain [−1.5, 1.5] × [−1.5, 1.5]. The simulation consists of rotating the
circle in the counterclockwise direction at the rate θ = 1rad/s. The objective is to test
the capability of the anisotropic paradoxical meshing technique to accurately capture the
dynamically evolving interface. Figure 6 shows the adapted mesh, made up of 10, 000
nodes, for the time interval [tn, tn+1] made up of 10 sub-intervals of time. We can clearly
see how refined the mesh is at the location of high gradients of the solution and how
accurate is the capture of the interface as it rotates from tn(left) to time tn+1(right). The
elements all along the interface are isotropic yielding a well respected curvature. The
time intervals’ lengths [tn, tn+1] = [tn0 , t

n
1 , · · · , t

n
i , · · · t

n+1
10 ] are automatically generated to

guarantee the validity of the mesh for 10 consecutive time-steps. Figure 7 presents the
time-step sizes for the first few iterations of the algorithm. The periodic variation of the
time-steps is in good agreement with the nature of the problem, as the circle rotates at a
constant rate and maintains the same behavior all over computations.

Using the classical mesh adaptation with the time adaptive technique and adapting the
mesh every 10 iterations, the generated time-step sizes will be too small, as seen in figure
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7(left), in order to reduce the temporal error, preventing the progress of the solution in
time so that it remains in phase with the adapted mesh. Recall that the method aims
at giving a better efficiency than the classical algorithm. This is exactly what we notice
when comparing figures 7(left) and 7(right); the paradoxical meshing technique produces
time-step sizes that are almost 200 times larger than those generated by the classical
algorithm. Hence, the resulting computations will be about 200 times faster reflecting the
high efficiency of the novel method. Note that the inner loop of the algorithm is repeated
only two times to get the optimal meshes and time-step size for which the solution remains
bounded.

6 CONCLUSIONS

In this paper, we have presented a classical anisotropic mesh adaptation that showed
very good performance when applied together with the new time adaptive technique for
resolving time dependent problems. An extension of these algorithms lead to a novel and
very powerful method for full adaptation known as the paradoxical meshing. This method
demonstrated its efficiency in generating meshes and time-step sizes that guarantee the
convergence of the solution all over computations for a limited number of nodes and a
fixed frequency of adaptation.
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