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The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statis-
tical RVE size determination method is applied to a specific model of random microstructure: Poisson
fibers. The definition of RVE size is related to the concept of integral range. What happens in microstruc-
tures exhibiting an infinite integral range? Computational homogenization for thermal and elastic prop-
erties is performed through finite elements, over hundreds of realizations of the stochastic
microstructural model, using uniform and mixed boundary conditions. The generated data undergoes
statistical treatment, from which gigantic RVE sizes emerge. The method used for determining RVE sizes
was found to be operational, even for pathological media, i.e., with infinite integral range, interconnected
percolating porous phase and infinite contrast of properties.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Microstructural heterogeneities play a critical role on the macro-
scopic physical properties of materials. One common way to account
for this underlying complexity is resorting to homogenization tech-
niques. Many approaches, including analytical and computational
ones, are available for determining the homogenized properties of
random media. Most of them necessitate the existence of a represen-
tative volume element (RVE). Several definitions have been given for
the RVE over the past 50 years. A review of this topic can be found in
Gitman et al. (2007).

The classical definition of RVE is attributed to Hill (1963), who
stated that for a given material the RVE is a sample that is struc-
turally typical of the whole microstructure, i.e., containing a suf-
ficient number of heterogeneities for the macroscopic properties
to be independent of the boundary values of traction and dis-
placement. Later, Beran (1968) emphasized the role of statistical
homogeneity, especially in a volume-averaged sense. This also
means that the RVE size considered should be larger than a
certain microstructural length for which moduli fluctuate. Hashin
(1983) made a review on analysis of composite materials in
which he referred to statistical homogeneity as a practical neces-
sity. Sab (1992) considered that the classical RVE definition for a
heterogeneous medium holds only if the homogenized properties
tend towards those of a similar periodic medium. This entails that
the response over an RVE should be independent of boundary
conditions (BC). From numerical simulations on VEs of various
sizes, Terada et al. (2000) concluded that from a practical view-
point RVE should be as large as possible. Ostoja-Starzewski
(2002) considers the RVE to be only defined over a periodic
unit-cell or a non-periodic cell containing an infinite number of
heterogeneities. Drugan and Willis (1996) introduced explicitly
the idea of minimizing the RVE size, meaning that the RVE would
be the smallest material volume for which the apparent and
effective properties coincide. It is worth noticing that for a given
material the RVE size for thermal properties is a priori different
from the RVE size for elastic properties. Thus, one has to consider
an RVE that depends on the specific investigated property.

Taking into account these definitions, and assuming ergodicity
for the heterogeneous media considered, Kanit et al. (2003) pro-
posed a method based on a statistical analysis for computing the
minimal RVE size for a given physical property Z and precision in
the estimate of effective properties. The computed RVE size was
found to be proportional to the integral range (Matheron, 1971),
which corresponds to a volume of statistical correlation.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.10.011&domain=pdf
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This approach was implemented in many papers, such as Pelis-
sou et al. (2009) and Jean et al. (2011). In these papers, the authors
resorted to periodic boundary conditions (PBC) since Kanit et al.
(2003) showed from computational experiments that mean appar-
ent properties obtained with PBC converge faster towards the
effective properties than with the Dirichlet and Neumann-type
BC. Nevertheless, the Dirichlet and Neumann-type BC can be useful
for bounding the effective properties of heterogeneous media. If
the microstructure features a matrix phase, tighter bounds can
be obtained by choosing elementary volumes including only the
matrix at the boundary, as shown in Salmi et al. (2012). Further-
more, the rate of convergence of the mean value for apparent prop-
erties, with respect to the size of the system, is related to the size of
the statistical RVE. For example, a microstructure with slow rate of
convergence would yield large RVE sizes.

Computational techniques using finite elements (FE) are avail-
able for homogenizing percolating porous materials, given a proper
BC treatment in order to deal with voids at the boundary of the
RVE. Therefore, the statistical method of Kanit et al. (2003) for
determining RVE sizes could be used in this context.

Furthermore, some porous materials may exhibit an infinite
integral range for some geometrical or physical property, due to
very long range of correlations. The fact that RVE size is directly
related to the integral range suggests that such ’’pathological’’
microstructures can lead to gigantic RVE sizes, or even no RVE at
all, i.e., yield non-homogenizability in the sense of Auriault
(1991). For instance, it could be the case for a tridimensional sto-
chastic network made of infinitely long fibers. Although infinite fi-
bers do not exist in nature, they can be considered a limit case
representative of sintered long-fiber non-woven materials, such
as those studied by Mezeix et al. (2009).

Many studies are available regarding finite-length fibrous
media and strongly oriented infinite-fiber media. For instance,
Delisée et al. (2001) and Peyrega et al. (2009) dealt with the mor-
phology of 3D long fibers randomly oriented in-plane, Schladitz
et al. (2006) used a 3D random model of randomly oriented
long-fibers for the design of an acoustic absorber, and Barbier
et al. (2009b,a) generated virtual samples of long but finite fibers
for modeling the mechanics of entangled materials. None of these
studies accounted for the representativity of samples. Oumarou
et al. (2012) computed RVE sizes for 2D random arrays of fibers,
using the statistical method of Kanit et al. (2003). The works of
Soare and Picu (2007), Hatami-Marbini and Picu (2009), Picu
and Hatami-Marbini (2010), Picu (2011) on 2D fibrous fractal
networks also deal with the representativity and homogenization
of such, yet self-similar, fibrous media. Recently, Shahsavari and
Picu (2013) dealt with the size effect on mechanical behavior
for 2D random fiber networks, and showed that RVE size depends
on fiber properties and density.

To the knowledge of the authors, no one ever assessed the ques-
tion of RVE size for 3D infinite randomly oriented fibrous media, or
for porous random media with infinite integral range. This is the
main goal of this study, as well as testing the approach of Kanit
et al. (2003) for a pathological model of random structure: Poisson
fibers.

This model corresponds to a 3D stochastic network composed
by randomly oriented and distributed infinitely-long interpene-
trating rectilinear fibers. It exhibits an infinite integral range
(Jeulin, 1991), i.e., an infinite morphological correlation length; this
medium is non-periodizable without modifying its morphology,
thus falling beyond the spectrum of periodic homogenization and
the definition of RVE proposed by Sab (2005).

In this paper, a computational homogenization scheme is
implemented based on FE simulations. This requires virtual sam-
ples generated using a specific mathematical morphology model,
which is described in Jeulin (2012) along with a review on the
determination of effective properties for random sets, including
Poisson fibers.

First, the microstructural model is described in Section 2 along
with the virtual samples generation procedure and computational
strategy. The porous and stochastic nature of the microstructures
considered here requires a specific treatment of the thermal and
elastic boundary value problems, this is done in Section 3. Results
coming from the FE simulations are presented in Section 4. The dis-
cussion of these results and their consequences on the RVE size is
postponed to Section 5.

Throughout this work, the following notation is used: x for sca-
lars, x for vectors, x

�
for 2nd-order tensors, x

�
for 4th-order tensors, �

for dot product, : for doubly-contracted dot product, � for tensor
product, �

s
for symmetric tensor product, � for dilation by a com-

pact set, hxi for spatial average and x for ensemble average.

2. Microstructural model

Based on morphological arguments, a specific model of random
structures is defined: Poisson fibers. This microstructural model is
made of a Boolean model on a Poisson linear variety, and was exp-
licited in Jeulin (1991, 2011, 2012). The different notions used for
designing the model are recalled briefly hereafter.

2.1. Morphological description

The Poisson point process is a random point process on which
many stochastic models are based, see for instance (Serra, 1982);
it is the prototype for random processes without any order. It con-
sists in implanting points xi in Rn according to a Poisson law (Pois-
son, 1837) with intensity h, namely the average number of Poisson
points per unit volume. For instance, PðmÞ is the probability for m
Poisson points to be implanted with intensity h in a two-dimen-
sional domain with surface area S:

PðmÞ ¼ ðhSÞm

m!
expð�hSÞ ð1Þ

Let us now consider a Poisson point process fxiðxÞg, with inten-
sity hkðdxÞ on the variety of dimension ðn� kÞ containing the ori-
gin O, and with orientation x. For every point xiðxÞ there is a
variety of dimension k, called VkðxÞxi

, that is orthogonal to the
direction x. Let us consider the set Vk, which is the union over
fxiðxÞg of all varieties, such that:

Vk ¼ [xiðxÞVkðxÞxi
ð2Þ

Using this definition in R3, one can for instance generate a network
of Poisson hyperplanes (k ¼ 2) or Poisson lines (k ¼ 1).

The number of varieties of dimension k hit by a compact set K is
a Poisson variable with parameter hðKÞ, and as proved in Jeulin
(1991) for the stationary case:

hðKÞ ¼
Z

4pster
hkðdxÞln�kðKðxÞÞ ð3Þ

where ln�k is the Lebesgue measure on Rn�k and KðxÞ is the orthog-
onal projection of K on the space orthogonal to VkðxÞ;Vk?ðxÞ.

In the isotropic (hk being constant) stationary case of Poisson
lines in R3 (n ¼ 3; k ¼ 1), for a convex set K, it can be proved (Jeulin,
1991) that the number of varieties of dimension k hit by a compact
set K is a Poisson variable, with parameter hðKÞ:

hðKÞ ¼ p
4

hSðKÞ ð4Þ

where S is the measure of surface area in R3.
Boolean random sets can be built from Poisson varieties and a

primary grain A0, as described in Jeulin (1991, 2011). A Boolean



Fig. 1. Geometrical model for generating Poisson fibers.
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model built on Poisson lines generates a fibrous network, with a
possible overlap of fibers. According to Jeulin (1991), the Choquet
capacity, i.e., the probability for the intersection between the set
A and the compact set K not be empty, of a Boolean random model
built on a Poisson variety of dimension k reads as:

TðKÞ ¼ 1� exp �
Z

4pster
hkðdxÞln�kðA0ðxÞ � �KðxÞÞ

� �
ð5Þ

In the case of isotropic Poisson lines, for a convex set A0 � �K , the
Choquet capacity simplifies to:

TðKÞ ¼ 1� exp �h
p
4

�SðA0 � �KÞ
� �

ð6Þ

Thus, for Poisson fibers resulting from the dilation of isotropic
Poisson lines by a sphere of radius R:

Tð0Þ ¼ Pfx 2 Ag ¼ 1� expð�hp2R2Þ ð7Þ

For a given volume fraction Vf
V of Poisson fibers, h is obtained as

follows:

h ¼ � lnð1� Vf
V Þ

p2R2 ð8Þ

Based on Eq. (8), one can compute the average number of Pois-
son fibers �N for a given set of parameters in the model: the fiber
radius R, the volume fraction of fibers Vf

V and the considered cubic
volume V ¼ L3:

�N ¼ p
4

Sh ¼ p
4

6L2
� ln 1� Vf

V

� �
p2R2 ¼

�3 ln 1� Vf
V

� �
2p

L2

R2 ð9Þ

with L2

R2 ratio of characteristic lengths, and S ¼ 6L2 the surface area of
the cube in R3.

2.2. Generation of Poisson fibers virtual models

Based on the aforementioned definition of Poisson fibers, virtual
models or realizations can be generated. In this work we relied on
vtkSim

1 (Faessel and Jeulin, 2011). This software is able to generate
tridimensional random structures based on a morphological descrip-
tion. It is programmed in C++ and based on the vtk2 graphics library
(Schroeder et al., 2006). This software operates on a vectorial frame-
work making the computation time for generating random struc-
tures almost size-independent until discretization. This allows one
to generate very large random structures with a good spatial preci-
sion, in comparison with voxel-based software.

The algorithm developed for generating Poisson fibers is given
hereafter and illustrated in Fig. 1.

1. Input: volume fraction of isotropic fibers Vf
V , fiber radius R, sam-

ple size L (V ¼ L3).
2. Compute the theoretical average number of germs for implant-

ing fibers ntheo ¼
�3L2 lnð1�Vf

V Þ
2pR2 .

3. Monte-Carlo simulation for determining the number of germs
nsimul according to a Poisson law.

4. Generate and implant the nth Poisson line.
� Randomize angles q and / accounting for the fiber

orientation.
� Rotate the equatorial plan P! P0 ! C after angles q and /.
1 http://cmm.ensmp.fr/�faessel/vtkSim/demo/.
2 http://vtk.org.
� Randomize coordinates fx; yg of the germ on the disc C and
trace the normal of C in fx; yg.

5. Repeat Step 4 while n 	 nsimul.
6. Dilate the ensemble of Poisson lines by the sphere of radius R.
7. Write geometric data file.

2.3. Discretization and parameters for simulation

The generated realizations are then discretized for further use
with FE. vtkSim uses the meshing tools of the vtk library, which
provides 3D regular triangular meshes attached to a Cartesian grid.
The spacing of the grid is inversely proportional to the mesh den-
sity. These meshes cannot be used directly for FE computations for
two reasons: they are only 3D surface meshes; they are not opti-
mized. In order to obtain a 3D volume mesh based on a 3D closed
surface mesh, the latter is filled with tetrahedra. This was done
using the Z-Set FE package3 interfaced with the meshing tools
developed at INRIA4. This procedure first consists in a shape optimi-
zation of the 3D surface mesh using YAMS software (Frey, 0252). The
resulting closed surface mesh is then filled with TetMesh–GHS3D

software (SIMULOG, 2003) using a Voronoi–Delaunay algorithm.
The volumic meshes obtained are suitable for computational homog-
enization through FE. The shape of the generated samples is chosen
cubic for simplicity of computational implementation; an alternative
could have been spherically-shaped samples as developed in Glüge
et al. (2012), in which the authors have found that spherical volume
elements lead to a faster convergence of the effective properties in
contrast to cubic volumes. However, no difference is expected at
convergence for the RVE size, i.e., the value of the scaling-law expo-
nent c for the ensemble variance of a given physical property, which
is asymptotically obtained for any shape of the volume elements.

There are several parameters to be set for the simulation,
summarized in Table 1. Volume fraction VV of fibers was chosen
to be 16%. This arbitrary value is large enough to obtain an inter-
connected percolating medium, and small enough to compute
large volumes. Fibre radius R is kept constant and equal to 1 as a
convention, hence setting the unit-length for the computation of
elementary volumes. Different simulation sizes L are considered.
It corresponds to the edge length of the simulation cube of volume
V ¼ L3. This length ranges from 10 to 100. Examples of virtual sam-
3 http://www.zset-software.com/.
4 http://www.inria.fr/.

http://cmm.ensmp.fr/~faessel/vtkSim/demo/
http://cmm.ensmp.fr/~faessel/vtkSim/demo/
http://vtk.org
http://www.zset-software.com/
http://www.inria.fr/


Table 1
Simulation parameters for estimating effective properties.

Simulation size (L) Fiber radius Volume fraction

½10; 100
 1 0.16
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ple realizations are shown for different sizes on Fig. 2. The effect of
mesh density was investigated for 4 different values of geometrical
discretization. The smallest mesh density yielding converged re-
sults, in terms of morphology and elastic properties, was chosen
and kept constant for further computations; this corresponds to
Fig. 3(b), which gives a statisfactory geometrical description of
the model for a relatively low number of elements, allowing us
to consider more fibers in the simulation.

2.4. Validation of the numerical model

In order to check that the numerically generated models corre-
spond to the theoretical morphological model, morphological isot-
ropy was investigated on a sample of volume 603, with
approximately N ¼ 285 fibers, as shown on Fig. 4.

This virtual sample was sliced and voxelized. Its covariance was
estimated on different slices. The morphological covariance
C x; xþ hð Þ of a random set A is given by:

C x; xþ hð Þ ¼ Pfx 2 A; xþ h 2 Ag ð10Þ

Results were averaged over all the slices, and are plotted on Fig. 5.
For 4 different orientations x of the vector h, the covariance reaches
its sill for a separation close to 2 pixels, which corresponds to the
(a) L = 20 (b) L = 30 (c) L = 4

(e) L =

Fig. 2. 3D rendering of Poisson fibers models (a) L ¼ 20
diameter of one fiber. One would expect the covariance to converge
for longer correlation lengths in the case of Poisson fibers. This is
true for an infinite medium. In the case of a limited sample like this
one, the probability for fibers to be aligned with h is very small.
Anyway, the value of convergence does not depend on the orienta-
tion x. From a morphological viewpoint, this thus verifies isotropy
of the generated models. A second verification is performed in Sec-
tion 5.1 regarding homogenized properties.
2.5. Computational strategy

Since a vectorial framework was used for generating samples,
binarization was avoided in order to keep the number of degrees
of freedom (DOFs) low for a given morphological description. Vox-
el-based computational homogenization methods were put aside,
such as Fast-Fourier Transform-based (FFT) (Moulinec et al.,
1994) and FE with multi-phase elements (Barbe et al., 2001). We
opted for volumic FE with free meshes using linear tetrahedra for
efficiency. Sequential computations were considered for the sake
of simplicity. The FE package Z-Set 8.5 was used for the computa-
tion as it is developed in-house and has previously been used with
success for computing properties of heterogeneous microstruc-
tures as in Cailletaud et al. (2003), Madi et al. (2005), Jean et al.
(2011), Dirrenberger et al. (2012), Dirrenberger et al. (2013).

The many simulations considered in this work were performed
on the computing cluster of the Centre des Matériaux, allowing us
to run many sequential computations in a parallel manner. The
largest computation considered in this paper corresponds to a
0 (d) L = 60

100

, (b) L ¼ 30, (c) L ¼ 40, (d) L ¼ 60 and (e) L ¼ 100.



(a) (b)

(c) (d)
Fig. 3. Mesh descretization: (a) coarse, (b) standard, (c) fine and (d) finer.

Fig. 4. Elementary volume of fibers on which the covariance is computed (L ¼ 60).

Fig. 5. Covariance of the Poisson fibers determined on 2D slices for several
orientations x.
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volume V ¼ 106 including ca. 800 Poisson fibers. The associated
mesh includes 11 million linear tetrahedral elements, i.e., 7.6 mil-
lion DOFs. The MUMPS linear solver (Amestoy et al., 2000) was used
as it was the most efficient available. For comparison, about 128 GB
of RAM were necessary for the whole resolution of a linear elastic
problem with the largest mesh using the default DSCPACK linear
solver (Raghavan, 2002), whereas MUMPS only needed 54 GB.
Timewise, the computation itself takes about 2.5 h for an elastic
problem on a AMD Opteron 6134 single-core @ 2.3 GHz, while
the post-processing takes another half hour. All the data consid-
ered in this paper was generated over a duration of 4 months
computation time; this does not include meshing.

3. Boundary value problems and averaging relations

Using the microstructural model defined in Section 2, the
apparent thermal and elastic properties are computed through FE
simulations. After discussing and adapting the averaging relations
for the thermal and mechanical fields to the case of Poisson fibers,
the boundary value problems considered in the simulations will be
explicited.

As shown on Fig. 6, the elementary volume considered in the
computation is the volume V that is composed of two complemen-
tary phases Vf and Vp, respectively accounting for the Poisson
fibers and the porous phase, such that:



Fig. 6. Example of an elementary volume of Poisson fibers used in the simulation.
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V ¼ Vf [ Vp ð11Þ

Let us consider the boundary of each phase:

@Vf ¼ @V in
f [ @Vout

f ð12Þ

@Vp ¼ @V in
p [ @Vout

p ð13Þ

with exponent in and out, respectively accounting for the internal
and external boundaries of the phases. For instance, @Vout

f corre-
sponds to the set of red surfaces in Fig. 6. Moreover, for the normal
vector n:

nin
f ¼ �nin

p 8x 2 @V in
f ;p ð14Þ

with x being the material point vector.
Finally, the boundary @V of the elementary volume considered

is made of the 6 faces of the cube Fþ1 ; F
�
1 ; F

þ
2 ; F

�
2 ; F

þ
3 and F�3 . @V can

also be defined as the union of the external boundaries of each
phase:

@V ¼ @Vout
f [ @Vout

p ð15Þ

For the linear steady-state thermal conduction case, the follow-
ing field equation must be satisfied:

Div q ¼ 0 8x 2 Vf ð16Þ

in the absence of heat source.
The temperature T and heat flux q fields are defined on the ele-

mentary volume V: they are computed on Vf only; on Vp, fields T
and q may be considered as extensions of T and q on Vf using suit-
able interpolations assuming continuity for T and q � n on @V in

f ;p. We
adopt the following extension of the q field on Vp:

qðxÞ ¼ 0 8x 2 Vp ð17Þ

This choice is compatible with the condition,

qðxÞ � n ¼ 0 8x 2 @V in
f ð18Þ

For the linear elastic static case, the following field equation
must be satisfied:

Div r
�
¼ 0 8x 2 Vf ð19Þ

in the absence of body forces.
The displacement u and stress r
�

fields are defined on the ele-
mentary volume V as well: they are computed on Vf only. Over
Vp, the fields u and r

�
may be considered as extensions of u and

r
�

on Vf using suitable interpolations assuming continuity for u
and r

�
�n on @V in

f ;p. We adopt the following extension of the r
�

field
on Vp:

r
�
ðxÞ ¼ 0

�
8x 2 Vp ð20Þ

This choice is compatible with the condition of free internal sur-
faces of the fibers:

r
�
ðxÞ � n ¼ 0 8x 2 @V in

f ð21Þ

For both thermal and mechanical problems, the choices of interpo-
lation made are compatible with the condition of fibers free bound-
aries used in the computation.

For determining the apparent thermal and elastic properties of
Poisson fibers, we consider first the classical Dirichlet- and Neu-
mann-type boundary conditions, also known respectively as kine-
matic uniform boundary conditions (KUBC) and static uniform
boundary conditions (SUBC) in mechanics, and uniform tempera-
ture gradient boundary conditions (UTG) and uniform heat flux
boundary conditions (UHF) in the thermal case. We consider also
new mixed boundary conditions, that will be presented hereafter
for the elastic and thermal problems.

3.1. Averaging relations for thermal fields

The averaging equations for rT and q are recalled and
adapted hereafter for the homogenization of porous media. If
one considers the spatial average over V of the gradient of tem-
perature rT:

hrTi ¼ 1
V

Z
V
rTdV ¼ 1

V

Z
Vf

rTdV þ 1
V

Z
Vp

rTdV

¼ 1
V

Z
@Vf

TndSþ 1
V

Z
@Vp

TndS

¼ 1
V

Z
@Vout

f

TndSþ 1
V

Z
@Vout

p

TndS ð22Þ

The value of hrTi therefore depends on the interpolation chosen for
T on @Vout

p .
If one considers now the spatial average over V of a steady-state

heat flux vector q�, i.e., Divq� ¼ 0 in V, it yields:

hq�i ¼ 1
V

Z
Vf

q�dV þ 1
V

Z
Vp

q�dV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0 cf : Eq: ð17Þ

¼ 1
V

Z
@Vout

f

q� � n
� �

xdSþ 1
V

Z
@V in

f

q� � n
� �

xdS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 cf : Eq: ð18Þ

¼ 1
V

Z
@Vout

f

q� � n
� �

xdS ð23Þ

From a practical viewpoint, hqi is computed on the fibers in this
way:

hqi ¼ 1
V

Z
Vf

qdV ¼ Vf

V
1
Vf

Z
Vf

qdV ¼ Vf
V hqif ð24Þ

Finally, let us consider the thermal dissipation rate density Dth
that arises from the fields q� and rT in the porous linear case for a
reference temperature T0 (linearized theory):
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T0Dth ¼ h�q� � rTi ¼ 1
V

Z
Vf

�q� � rTdV

¼ 1
V

Z
@Vout

f

�Tq� � ndSþ 1
V

Z
@V in

f

�Tq� � ndS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 cf : Eq: ð18Þ

¼ 1
V

Z
@Vout

f

�Tq� � ndS ð25Þ

In practice, T0Dth is computed this way:

T0Dth ¼ h�q � rTi ¼ 1
V

Z
Vf

�q � rTdV ð26Þ
3.2. Averaging relations for mechanical fields

The averaging relations for the strain e
�

and stress r
�

fields are re-
called and adapted for the homogenization of porous media. Let us
consider the spatial average over V of the kinematically compatible
strain field e

�
0, which is defined as the symmetric part of the gradi-

ent of the displacement field u0:

he
�
0i ¼ 1

V

Z
V
e
�
0dV ¼ 1

V

Z
Vf

e
�
0dV þ 1

V

Z
Vp

e
�
0dV

¼ 1
V

Z
@Vf

u0�
s

ndSþ 1
V

Z
@Vp

u0�
s

ndS

¼ 1
V

Z
@Vout

f

u0�
s

ndSþ 1
V

Z
@Vout

p

u0�
s

ndS ð27Þ

The value of he
�
0i depends on the interpolation chosen for u0 on @Vout

p .
If one considers now the spatial average over V of a statically admis-
sible stress field r

�
�, i.e., Divr

�
� ¼ 0 in V, it yields:

hr
�
�i ¼ 1

V

Z
V
r
�
�dV ¼ 1

V

Z
Vf

r
�
�dV þ 1

V

Z
Vp

r
�
�dV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼0 cf : Eq: ð20Þ

¼ 1
V

Z
@Vout

f

r
�
� � n

� �
�
s

xdSþ 1
V

Z
@V in

f

r
�
� � n

� �
�
s

xdS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 cf : Eq: ð21Þ

¼ 1
V

Z
@Vout

f

r
�
� � n

� �
�
s

xdS ð28Þ

From a practical viewpoint, hr
�
i is computed from the fibers in this

way:

hr
�
i ¼ 1

V

Z
Vf

r
�

dV ¼ Vf

V
1
Vf

Z
Vf

r
�

dV ¼ Vf
V hr� if ð29Þ

Finally, let us consider the elastic strain energy density Eel that
arises from the fields r

�
� and e

�
0 in the porous case:

2Eel ¼ hr
�
� : e
�
0i ¼ 1

V

Z
Vf

r
�
� : e
�
0dV

¼ 1
V

Z
@Vout

f

r
�
� � n

� �
� u0 dSþ 1

V

Z
@V in

f

r
�
� � n

� �
� u0 dS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 cf: Eq: ð21Þ

¼ 1
V

Z
@Vout

f

r
�
� � n

� �
� u0 dS ð30Þ

Practically, Eel is computed as:

2Eel ¼ hr
�

: e
�
i ¼ 1

V

Z
Vf

r
�

: e
�

dV ¼ Vf
V hr� : e

�
if ð31Þ
3.3. Boundary conditions for thermal variables

3.3.1. Uniform temperature gradient boundary conditions – UTG
The macroscopic gradient of temperature G is prescribed at the

boundary of the simulation domain, such that:

T ¼ G � x 8x 2 @V ¼ @Vout
f [ @Vout

p ð32Þ

which yields from Eq. (22),

hrTi ¼ 1
V

Z
@V

G � xð ÞndS ¼ G ð33Þ

The macroscopic heat flux field Q is computed in this way:

Q ¼ hqi ¼ Vf
V hqif ð34Þ
3.3.2. Uniform heat flux boundary conditions – UHF
Let us now consider the case of a macroscopic heat flux Q � n

prescribed at the boundary @V of the simulation domain, such that:

q � n ¼ Q � n 8x 2 @V ð35Þ

In the case of Poisson fibers, this condition is incompatible with the
extension of the heat flux field:

q ¼ 0 8x 2 Vp ð36Þ

so that,

q � n ¼ 0 8x 2 @Vp ð37Þ

We can only prescribe:

q � n ¼ Q � n 8x 2 @Vout
f ð38Þ

but in the case of a random microstructure, the BC do not ensure the
following balance equation:Z
@V

q � ndS ¼ 0 ð39Þ

since
R
@Vout

f
q � ndS does not necessarily vanish.

That is why the following alternative BC are proposed.

3.3.3. Mixed thermal boundary conditions – MTBC
Temperature is prescribed on a pair of opposite faces

F1 ¼ Fþ1 [ F�1 (normal to direction 1) of the boundary @V of the sim-
ulation domain, such that for a given uniform vector G:

T ¼ G � x 8x 2 F1 \ @Vout
f ð40Þ

The temperature field T is extended theoretically on F1 \ @Vout
p fol-

lowing the same expression T ¼ G � x.
On the other pairs of faces F2 and F3, the heat flux is prescribed

such that:

q � n ¼ 0 8x 2 F2 \ @Vout
f

� �
[ F3 \ @Vout

f

� �
ð41Þ

From Eq. (22), it follows:

hT ;1i ¼ G1 ð42Þ

with T ;1 ¼ @T
@x1

.
The macroscopic heat flux field is computed using Eq. (24). De-

tails of the calculation can be found in Appendix B.
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3.4. Boundary conditions for mechanical variables

3.4.1. Kinematic uniform boundary conditions – KUBC
The macroscopic strain tensor E

�
is prescribed at the boundary

@V of the simulation domain, such that:

u ¼ E
�
�x 8x 2 @V ¼ @Vout

f [ @Vout
p ð43Þ

which yields,

he
�
i ¼ 1

V

Z
@V
ðE
�
�xÞndS ¼ E

�
ð44Þ

The macroscopic stress field R
�

is computed in this way:

R
�
¼ hr

�
i ¼ Vf

V hr� if ð45Þ
3.4.2. Static uniform boundary conditions – SUBC
Let us now consider the case of a macroscopic traction vector

prescribed at the boundary @V of the simulation domain, such that
for a given uniform tensor R

�
:

r
�
�n ¼ R

�
�n 8x 2 @V ð46Þ

In the case of Poisson fibers, this condition is in conflict with the
extension of the stress field:

r
�
¼ 0 8x 2 Vp ð47Þ

so that,

r
�
�n ¼ 0 8x 2 @Vp ð48Þ

We can only prescribe:

r
�
�n ¼ R

�
�n 8x 2 @Vout

f ð49Þ

but in the case of a random microstructure, these BC do not ensure
static equilibrium:Z
@V

r
�
�ndS ¼ 0 ð50Þ

since
R
@Vout

f
R
�
�ndS does not necessarily vanish.

That is why the following alternative BC are proposed.

3.4.3. Mixed mechanical boundary conditions – MBC
A mixed type of BC is proposed here, instead of SUBC, in order to

compute values that we can compare with those obtained using
KUBC. Since only a minimal number of DOFs are prescribed on
the boundary @V , mixed mechanical boundary conditions (MBC)
are less constraining, or ’’softer’’, than KUBC. They differ from the
mixed uniform boundary conditions (MUBC) proposed in Hazanov
and Huet (1994) and Hazanov (1998) which are restricted, in gen-
eral, to tensile loading of a volume element. They also differ from
the normal mixed BC (NMBC) proposed by Gélébart et al. (2009),
since those are applied on the whole boundary @V , similarly to
MUBC. The periodicity compatible mixed uniform boundary condi-
tions (PMUBC) were proposed by Pahr et al. (2008) as a generaliza-
tion of MUBC, and implemented by Chateau et al. (2010). The BC
proposed here are similar to PMUBC, but simpler because only 2
loading configurations are considered. MBC are considered with a
view to estimating the overall bulk and shear moduli of isotropic
random porous media, thus being less general than PMUBC; the
2 loading cases are presented hereafter.

Mixed triaxial loading. Displacement u is prescribed along nor-
mals on @V , such that:

u1 ¼ E11x1 8x 2 F1

u2 ¼ E22x2 8x 2 F2

u3 ¼ E33x3 8x 2 F3 ð51Þ
The traction vector r
�
�n is prescribed in this way:

r21n1 ¼ r31n1 ¼ 0 8x 2 F1

r12n2 ¼ r32n2 ¼ 0 8x 2 F2

r13n3 ¼ r23n3 ¼ 0 8x 2 F3 ð52Þ

From Eq. (27), it yields:

he11i ¼ E11; he22i ¼ E22; he33i ¼ E33 ð53Þ

The macroscopic stress is computed using Eq. (29).
Mixed shear loading. Displacement u is prescribed along direc-

tion 1 on F2 and direction 2 on F1, such that:

u2 ¼ E12x1 8x 2 F1

u1 ¼ E12x2 8x 2 F2 ð54Þ

Two components of the traction vector r
�
�n are prescribed in this

way:

r11n1 ¼ r31n1 ¼ 0 8x 2 F1

r22n2 ¼ r32n2 ¼ 0 8x 2 F2 ð55Þ

The traction vector is fully prescribed on F3:

r33n3 ¼ r13n3 ¼ r23n3 ¼ 0 8x 2 F3 ð56Þ

Eq. (27) gives:

he12i ¼ E12 ð57Þ

Details of the calculation can be found in Appendix C. Again, the
macroscopic stress is computed using Eq. (29). The boundary value
problems for estimating the overall bulk and shear moduli are exp-
licited hereafter for both KUBC and MBC.

3.5. Overall properties

Heat transfer is assumed to take place within the fibers and be
defined locally according to Fourier’s law:

q ¼ �krT 8x 2 Vf ð58Þ

with k, thermal conductivity of the thermally isotropic fibers.
Regarding mechanical behavior, the fibers are considered linear

elastic following the generalized Hooke law:

r
�
¼ c
�

: e
�
8x 2 Vf ð59Þ

with c
�

, fourth-order positive definite tensor of elastic moduli of the
isotropic elastic fibers.

3.5.1. Overall thermal conductivity
The homogeneous equivalent medium (overall material) con-

sidered in this work is isotropic; for the case of linear thermal heat
conduction, �hq � rTi is used as an estimate of keff G � G, where keff

is the effective thermal conductivity of the homogenized medium.
The following macroscopic gradient of temperature is considered:

G ¼
�1
0
0

2
64

3
75 ð60Þ

so that,

T0Dth ¼ h�q � rTi ¼ �Q � G ¼ keff G � G ¼ keff ð61Þ

When computed on a given volume element that is not necessarily
representative, kapp ¼ h�q � rTi is an estimate of keff .
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3.5.2. Overall bulk modulus
For the case of linear elasticity, hr

�
: e
�
i is used as an estimate of

C
�

eff : E
�

� �
: E
�

, with C
�

eff , the tensor of effective elastic moduli of the

homogenized medium, that can be rewritten in this way:

C
�

eff ¼ 3keff J
�
þ2leff K

�
ð62Þ

with K
�

and J
�

respectively deviatoric and spherical projector on 2nd-
order tensors.

Hence, for a hydrostatic macroscopic strain tensor,

E
�
¼

1 0 0
0 1 0
0 0 1

2
64

3
75 ð63Þ

it yields:

2Eel ¼ hr
�

: e
�
i ¼ R

�
: E
�
¼ C

�
eff : E

�

� �
: E
�
¼ 3keff E

�
: J
�

: E
�
¼ 9keff ð64Þ

When computed on a given volume element, kapp ¼ 1
9 hr� : e

�
i is an

estimate of keff .

3.5.3. Overall shear modulus
For a deviatoric macroscopic strain tensor,

E
�
¼

0 1
2 0

1
2 0 0
0 0 0

2
64

3
75 ð65Þ

it yields:

2Eel ¼ hr
�

: e
�
i ¼ R

�
: E
�
¼ C

�
eff : E

�

� �
: E
�
¼ 2leff E

�
: K
�

: E
�
¼ leff ð66Þ

When computed on a given volume element, lapp ¼ hr
�

: e
�
i is an

estimate of leff .
4. Results

The estimation of thermal and elastic properties is now per-
formed on hundreds of realizations. Fibers were attributed the con-
stitutive material properties listed in Table 2. The variability of
each realization gives rise to different results for morphological
and apparent thermal and elastic properties. Mean values over n
realizations of the same size are considered in this section. The
number of realizations n fluctuates, depending on the size and
BC. Ideally, n should be different for each volume size in order to
achieve a similar measurement error for all sizes considered. The
fluctuation observed here is due to errors during the meshing step;
the larger the virtual sample, the more defects in the geometry are
likely to happen. Nevertheless, the values gathered in Table 3 are
large enough for achieving statistical representativity.

4.1. Morphological properties

The mean volume fraction of fibers Vf
V over n realizations for a

given volume size V is computed using FE as follows:
Table 2
Constitutive material parameters for Poisson fibers.

Young’s modulus (GPa) 210
Poisson’s ratio 0.3
Shear modulus (GPa) 81
Bulk modulus (GPa) 175
Thermal conductivity (W.[L]�1.K�1) 100
Volume fraction 0.16
Vf
V ¼

1
n

Xn

i¼1

ðVf
V Þi ¼

1
n

Xn

i¼1

1
V

Z
V

1Vf
dV

� �
i

ð67Þ

with 1Vf
being the indicator function of the fiber phase.

The numbers of realizations considered for estimating the vol-
ume fraction correspond to the first line in Table 3. These mean
values Vf

V are then plotted as a function of the volume of simula-
tion in Fig. 7. The mean value obtained for V ¼ 106 is
Vf

V ¼ 16:2%� 1:3%. Fluctuations are inherent to the morphological
stochastic modeling. As expected, no bias of the volume fraction
occurs, whatever the size of the realizations.

4.2. Thermal properties

Results for the thermal properties are obtained over a large
number of realizations (between 19 and 64, depending on their
size). The ensemble averaged apparent thermal conductivity kapp

is computed in this way:

kapp ¼ 1
n

Xn

i¼1

kappð Þi ¼
1
n

Xn

i¼1

h�qif � G
� �

i
ð68Þ

The discrepancy error DðZÞ between minimal and maximal esti-
mates computed for different boundary conditions, for a given vol-
ume size, is obtained as follows:

DðZÞ ¼ Zmax � Zmin

Zmin
ð69Þ

Results for the mean apparent thermal conductivity kapp are
shown on Fig. 8 as a function of the volume and corresponding
number of fibers considered. The mean values obtained for the
largest system size considered (N ’ 800) are shown with the corre-
sponding intervals of confidence ½Z � 2DZ 
 in Table 4 and compared
to analytical bounds. Mean values obtained with UTG are slightly
decreasing with increasing volume size, while mean values ob-
tained with MTBC are increasing. The discrepancy error on the
mean value between UTG and MTBC for the largest sample consid-
ered is D kapp

� �
¼ 16%. The mean value has converged towards an

effective value for a volume V ¼ 503 containing at least 180 fibers.
Hence, the effective thermal conductivity is determined from the
mean apparent values for the largest sample considered:
keff ¼ 6:57� 1:45 W.[L]�1.K�1. The standard deviation DZ is also
decreasing with increasing volume size, the analysis of this trend
is postponed to Section 5.3.

4.3. Elastic properties

As for the thermal properties of fibers, results for the elastic
properties are obtained over a large number of realizations (be-
tween 12 and 63, depending on their size). For the hydrostatic
loading defined in Section 3.5.2, the ensemble averaged apparent
bulk modulus kapp is computed in this way:

kapp ¼ 1
n

Xn

i¼1

kapp� �
i ¼

1
n

Xn

i¼1

1
9
hTr r

�
if

� �
i

ð70Þ

On the other hand, the ensemble averaged apparent shear modulus
lapp is obtained as follows for the shear loading defined in
Section 3.5.3:

lapp ¼ 1
n

Xn

i¼1

lappð Þi ¼
1
n

Xn

i¼1

hr12if
� �

i
ð71Þ

Results for the bulk modulus kapp and shear modulus lapp are
shown respectively on Figs. 9 and 10 for the different volumes of



Table 3
Number of realizations n considered depending on boundary conditions and simulation size.

BC Volume

103 203 303 403 503 603 703 803 903 1003

n – UTG – kapp 64 64 62 60 56 56 53 58 39 21

n – MTBC – kapp 51 63 60 56 50 46 48 46 30 19

n – KUBC – kapp 63 63 61 60 56 54 44 51 32 13

n – KUBC – lapp 63 63 61 60 54 54 47 50 27 14

n – MBC – kapp 40 60 53 55 45 48 37 46 28 13

n – MBC – lapp 41 62 58 59 48 49 45 41 11 12

Fig. 7. Mean values for the volume fraction depending on the volume size V.

Fig. 8. Mean values for the thermal conductivity depending on the number of
fibers.

Table 4
Bounds and mean values for apparent thermal and elastic properties.

kapp (MPa) lapp (MPa) kapp

(W.[L]�1.K�1)

FE-Uniform 4763� 624 3270� 394 7:07� 0:93
FE-Mixed 2527� 413 1097� 272 6:07� 0:97
Hashin–Shtrikman upper

bound
11839 7328 11.27

Voigt bound/ Wiener upper
bound

28000 12923 16.00

Fig. 9. Mean values for the bulk modulus depending on the number of fibers.
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simulation and corresponding number of fibers (N) considered. The
mean values obtained for the largest system size considered
(N ’ 800) are given with the corresponding intervals of confidence
½Z � 2DZ 
 in Table 4 and compared with analytical bounds. Bound-
ary layer effects are significant for small elementary volume sizes,
for both types of BC. Similarly to the results observed for the ther-
mal properties, mean apparent values for Dirichlet-type BC (KUBC)
are decreasing with increasing volume size, whereas mean esti-
mates obtained with MBC are slightly increasing with V. There
are very strong discrepancies for mean values obtained with KUBC
and MBC for both bulk and shear moduli, even for the largest vol-
ume considered: D kapp

� �
¼ 88% and D lapp

� �
¼ 198%. Apparent

properties obtained for KUBC are constantly above those computed
with MBC; this is in accordance with the bounds stated in Hazanov
and Huet (1994) for mixed boundary conditions, as well as the
hierarchies of estimates given by Huet (1997). Standard deviation
is decreasing with increasing volume size, but its analysis is post-
poned to Section 5.3.
5. Discussion

The effective medium considered in this work is morphologi-
cally isotropic. Statistical isotropy of the thermal and elastic appar-
ent properties will be discussed first, followed by an analysis of the
local thermal and mechanical fields from the simulations. Finally
the variance of properties is studied and consequences regarding
the statistical representativity of simulations are drawn.

5.1. Statistical isotropy

5.1.1. Thermal conductivity
Firstly, the data computed for determining the mean apparent

thermal conductivity kapp is used to check for isotropy. This is done
by checking that for the loading case defined in Section 3.5.1, the
orthogonal components of the macroscopic heat flux vanish, i.e.,
hq2i ! 0 and hq3i ! 0 for an infinite medium, or an infinite number
of realizations of a finite volume element. A non-dimensional dis-
criminating criterion dk is defined as follows:

dk ¼
hq2i
			 			þ hq3i

			 			
Q 1j j

ð72Þ



Fig. 10. Mean values for the shear modulus depending on the number of fibers.
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The values for dk are shown in Table 5 for the different volume sizes.
Statistical isotropy of the thermal behavior can be assumed if
dk 
 1. dk fluctuates between 10�3 and 2:7� 10�2 for UTG and
2� 10�3 and 8:4� 10�2 for MTBC, yielding a very low degree of
anisotropy.

5.1.2. Bulk modulus
The data computed for determining the mean apparent bulk

modulus kapp is used. Considering the loading case defined in Sec-

tion 3.5.2, isotropy is reached if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
�

devi : hr
�

devi
r

! 0, with r
�

dev the

deviatoric stress tensor, for an infinite medium, or an infinite num-
ber of realizations of a finite volume element. A non-dimensional
discriminating criterion dk is defined as follows:

dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
�
i : K

�
: hr
�
i

hr
�
i : J
�

: hr
�
i

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
�

devi : hr
�

devi

hTrr
�
i2

vuuut ð73Þ

The values for dk are shown in Table 6 for the considered volume sizes.
Statistical isotropy can be assumed if dk 
 1. dk fluctuates between
< 10�3 and 3:1� 10�2 for KUBC and 2� 10�3 and 1:6� 10�2 for MBC,
thus yielding, like for thermal conductivity, a low degree of anisotropy.

5.1.3. Shear modulus
We will now use the data computed for determining the mean

apparent shear modulus lapp. Considering the loading case defined

in Section 3.5.3, isotropy is reached if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hTr r

�
i2

r
! 0 for an infinite

medium, or an infinite number of realizations of a finite volume ele-
ment. A non-dimensional discriminating criterion dl is defined as
follows:

dl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
�
i : J
�

: hr
�
i

hr
�
i : K

�
: hr
�
i

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hTr r

�
i2

hr
�

devi : hr
�

devi

vuuut ð74Þ

The values for dl are gathered on Table 7 as a function of the con-
sidered volume of the samples. Statistical isotropy can assumed if
dl 
 1. It appears that dl is fluctuating between < 10�3 and
2:9� 10�2 for KUBC, and 2� 10�3 and 2� 10�1 for MBC. These
results show that for MBC, there is a higher degree of anisotropy
Table 5
Statistical isotropy of the apparent thermal conductivity for Poisson fibers.

BC Volume

103 203 303 403 50

UTG – dk 0.027 0.021 0.004 0.007 0.0

MTBC – dk 0.084 0.008 0.008 0.007 0.0
when considering the shear modulus than for the bulk modulus.
Interestingly, this statement is reversed for KUBC. Discrepancies
are observed on the elastic response for very small volumes with
inherent fluctuations due to boundary layer effects, and very large
volumes for which not enough realizations are available. They seem
to be more pronounced for MBC, likely due to a slightly smaller
number of realizations.

5.1.4. Tensor of apparent elastic moduli
Finally, using KUBC, the full elastic moduli tensor C

�
app
E was

determined for 50 realizations of Poisson fibers with a simulation
volume V ¼ 503 which corresponds to N ’ 180 fibers for each sam-
ple. Details regarding the boundary value problems for determin-
ing the components of the elastic moduli tensor are given in
Appendix A. The apparent elastic moduli tensor averaged over
n ¼ 50 realizations is presented in Eq. (75) with the corresponding
intervals of confidence ½CIJ � 2DCIJ 
. The averaged tensor compo-
nents obtained for n ¼ 50 are characteristic of isotropic elasticity
since C11 � C22 � C33 with a maximal error of
12%;C12 � C13 � C23 with �rel ¼ 20%;C44 � C55 � C66 with

�rel ¼ 17% and are approximately equal to C11�C12
2 with a relative er-

ror of 14% in the worst case. The remaining components vanish in
the isotropic case; here, they represent not more than 1% of C11.

½C
�


50
¼

9627�2820 3002�740 3028�709 14�342 �64�714 85�890

� 8715�2401 2530�639 14�664 24�307 44�934

� � 8630�2445 48�697 �24�841 15�298

� � � 2910�763 13�310 21�314

� � � � 3408�836 13�344

� � � � � 3389�872

2
66666666666664

3
77777777777775

MPa

ð75Þ
5.2. Thermal and mechanical fields

In order to explain the discrepancies observed on the mean
apparent properties, let us analyze the thermal and mechanical
fields coming out of the simulation done on a realization with
V ¼ 503. In the case of thermal conduction, the normalized heat
flux q1

Q1
, mainly percolating in-between Fþ1 and F�1 , is very similar

for UTG and MTBC as shown in Fig. 11, presented using a split-
view for the normalized heat flux showed for two computations
on the same sample using UTG (top) and MTBC (bottom). This
representation allows to distinguish the local discrepancies on
the resulting field concentration between the two sets of bound-
ary conditions. Differences come from the thermal conduction
taking place in the fibers intersecting F2 and F3 when considering
UTG. This has a limited impact on the homogenized value kapp. In
contrast, in the case of elasticity, discrepancies in the macro-
scopic results can be explained from the local mechanical fields.
For the triaxial loading, mapping of the normalized elastic energy

density
r
�

:e
�

Vf hr�:e
�
if

is presented on Fig. 12 for KUBC and MBC. From

this figure, it can be seen that KUBC induce a higher elastic en-
ergy density level than with MBC. Also, the strain localization is
affecting every fiber for KUBC, while only the favorably oriented
fibers are deforming with MBC, resulting in a more homogeneous
elastic strain energy density field with KUBC than with MBC. On
3 603 703 803 903 1003

01 0.011 0.003 0.004 0.003 0.003
02 0.001 0.003 0.004 0.003 0.002



Table 6
Statistical isotropy of the apparent bulk modulus for Poisson fibers.

BC Volume

103 203 303 403 503 603 703 803 903 1003

KUBC – dk 0.031 0.018 0.011 0.003 0.004 0.017 0.002 <0.001 0.006 0.005

MBC – dk 0.014 0.016 0.011 0.002 0.012 0.008 0.002 0.008 0.003 0.007

Table 7
Statistical isotropy of the apparent shear modulus for Poisson fibers.

BC Volume

103 203 303 403 503 603 703 803 903 1003

KUBC – dl 0.010 0.029 0.002 <0.001 0.015 0.024 0.008 0.004 0.014 0.005
MBC – dl 0.199 0.045 0.031 0.022 0.016 0.006 0.015 0.002 0.015 0.009

Fig. 11. q1
Q1

mapping for a V ¼ 503 realization using UTG (top) and MTBC (bottom).

Fig. 12.
r
�

:e
�

Vf hr�:e
�
if

mapping for a V ¼ 503 realization under hydrostatic load using KUBC (top) and MBC (bottom).
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Fig. 13. e22
E22

mapping for a V ¼ 503 realization under hydrostatic load using KUBC (top) and MBC (bottom).

Fig. 14. rVM

hrVMi mapping for a V ¼ 503 realization under hydrostatic load using MBC.
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Fig. 13, mapping only e22
E22

, for MBC the localization is clearly

confined to both ends of preferentially oriented fibers, here along
the vertical direction. On the other hand, for KUBC most of the
deformation takes place all over the boundary @V , including
fibers that are not preferentially oriented. Bending of the fibers
Table 8
Relative error for the samples considered �rel depending on boundary conditions and simu

BC Volume

103 (%) 203 (%) 303 (%) 403 (%) 5

�rel – UTG – kapp 12.2 5.6 4.2 3.1 2

�rel – MTBC – kapp 17.0 8.0 5.8 4.1 3

�rel – KUBC – kapp 9.9 4.9 3.7 2.9 2

�rel – KUBC – lapp 11.9 6.2 4.7 3.7 3

�rel – MBC – kapp 25.6 11.7 8.8 6.0 5

�rel – MBC – lapp 51.6 21.8 14.7 9.8 8
can be observed through the local stress field, as depicted on
Fig. 14 which was clipped to show the normalized von Mises
equivalent stress rVM

hrVMi within the fibers, here for the triaxial load-

ing using MBC; rVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 r
�

dev : r
�

dev
q

.

lation size.

03 (%) 603 (%) 703 (%) 803 (%) 903 (%) 1003 (%)

.7 2.3 2.0 1.7 1.9 2.3

.6 3.0 2.5 2.3 2.5 2.8

.5 2.1 2.0 1.7 1.9 2.6

.3 2.7 2.6 2.2 2.7 3.3

.3 4.1 3.9 3.0 3.3 4.2

.8 6.8 5.6 5.4 8.9 7.1



Fig. 15. Variance for the volume fraction of fibers depending on the volume of
simulation V.

Fig. 16. Variance for the thermal conductivity depending on the volume of
simulation V.

Fig. 17. Variance for the bulk modulus depending on the volume of simulation V.

Fig. 18. Variance for the shear modulus depending on the volume of simulation V.

Table 9
Values for c exponent estimated
from the simulation.

c

kapp-UTG 0.68

kapp-MTBC 0.64

kapp-KUBC 0.51

kapp-MBC 0.77

lapp-KUBC 0.64

lapp-MBC 0.66

Vf
V

0.67

Table 10
RVE sizes estimated from computations with c ¼ 2

3 ; �rel ¼ 5% and n ¼ 1.

Z BC K VRVE N

VV - 4:4� 10�1 1643 2:1� 103

kapp UTG 1:3� 103 2043 3:3� 103

kapp MTBC 1:3� 103 2383 4:5� 103

kapp KUBC 5:0� 108 1883 2:8� 103

kapp MBC 3:5� 108 2963 6:9� 103

lapp KUBC 4:0� 108 2453 4:8� 103

lapp MBC 1:8� 108 4893 1:9� 104
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5.3. Integral range, variance and RVE size

The physical interpretation of the integral range is such that for
a given volume V, one can define n ¼ V

A3
volume elements for which

the i averaged values ZiðV 0Þ over the n sub-volumes V 0 ¼ V
n are

uncorrelated random variables. For a large specimen, i.e., V � A3,
the ensemble variance D2

ZðVÞ can then be expressed introducing
the point variance of Z;D2

Z as follows (Matheron, 1971, 1989):

D2
ZðVÞ ¼ D2

Z
A3

V
ð76Þ

with A3, the integral range defined as:

A3 ¼
1

D2
Z

Z
R3

W2ðhÞdh ð77Þ
W2ðhÞ is the centered 2nd-order correlation function such that, for
properties Zf and Zp respectively within the fibrous and porous
phase, and probability p for x 2 Vf :

W2ðhÞ ¼ ðZðxþ hÞ � ZÞðZðxÞ � ZÞ ¼ ðZf � ZpÞ2ðCðhÞ � p2Þ ð78Þ

Following the method proposed by Matheron (1989) and imple-
mented in Kanit et al. (2003), considering a large number n of real-
izations (or sub-volumes), the following absolute sampling error in
the estimation of the effective properties arises:

�abs ¼
2DZðVÞffiffiffi

n
p ð79Þ

From which the relative error �rel can be defined:

�rel ¼
�abs

Z
¼ 2DZðVÞ

Z
ffiffiffi
n
p ) �2

rel ¼
4D2

ZA3

Z2nV
ð80Þ

Hence the following volume size can be considered as statistically
representative for a prescribed property Z, number of realizations
n and relative error (e.g., 5%):
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VRVE ¼
4D2

ZA3

�2
relZ

2n
ð81Þ

This RVE size then depends on the point variance D2
Z , integral range

A3 and mean value Z. These three parameters are estimated from
the simulations, except when considering the volume fraction, for
which D2

Z is known explicitely:

D2
Vf

V
¼ Vf

V ð1� Vf
V Þ ð82Þ

The method presented just above has to be adapted to the case
of Poisson fibers. Since the integral range of linear Poisson varieties
is not finite (Jeulin, 1991), Eq. (76) does not apply anymore. It was
proposed by Lantuéjoul (1991) to use a modified scaling law with
exponent c < 1. The variance can thus be rewritten as follows (Jeu-
lin, 2011):

D2
ZðVÞ ¼ D2

Z
A�3
V

� �c

ð83Þ

A�3 is not the integral of the centered second-order correlation
function W2ðhÞ anymore. Nonetheless, it is homogeneous to a vol-
ume of material and can readily be used to determine RVE sizes
which can then be obtained by updating the previous definition
for relative error:

�rel ¼
�abs

Z
¼ 2DZðVÞ

Z
ffiffiffi
n
p ) �2

rel ¼
4D2

ZA�3
c

Z2nVc ð84Þ

Hence yielding an updated definition of the RVE size:

VRVE ¼ A�3
4D2

Z

�2
relZ

2n

 !1
c

ð85Þ

Using Eq. (84), the relative error associated with the number of
realizations considered (cf. Table 3) is computed and presented in
Table 8. As stated in Section 4, ideally, the error should be the same
for all sample series by adapting the number of realizations.
Although the relative error fluctuates, most values are very low, ex-
cept for the smallest sample sizes.

The generalized integral range A�3 and scaling-law exponent c
can be estimated from simulations as it was done in Kanit et al.
(2003) and Altendorf (2011). When considering statistical RVE
sizes of microstructures with non-finite integral range for other
properties than morphological ones, for which there is no informa-
tion about the theoretical value of the point variance D2

Z , it may be
useful to reformulate Eq. (83) as follows:

D2
ZðVÞ ¼ KV�c ð86Þ

with K ¼ D2
ZA�3

c, leaving only 2 parameters to identify from the sta-
tistical data obtained by simulation. We use this last formulation for
studying the thermal and elastic properties. Eq. (85) now reads as
follows:

VRVE ¼
4K

�2
relZ

2n

 !1
c

ð87Þ

Results regarding the volume fraction are presented on Fig. 15.
Variance for the apparent thermal conductivity, bulk and shear
moduli as functions of the volume are shown on Figs. 16–18.

The c exponents of the scaling-law for each physical prop-
erty were estimated from the results of simulations, by fitting
the slope of the variance curves. For the apparent thermal
and elastic properties, only the data points for volumes
V � 403 have been considered, in order to mitigate any bias
due to boundary layer effects with small volumes. The values
obtained in this way are gathered in Table 9. For the case of
Poisson fibers, Jeulin (2011) gave the theoretical value of 2

3 for
c in Eq. (83) and (86). This value holds only for the indicator
function of the Poisson fibers and its mean value, the volume
fraction. The value estimated here (c ¼ 0:67) verifies the theo-
retical result of Jeulin (2011). Results from Altendorf (2011),
for 3D randomly distributed long-fibers, show a convergence
of the variance on the volume fraction of fibers following a
scaling law with exponent c ¼ 0:87; this value is in-between
the values for infinite fibers (c ¼ 2

3) and short-fibers (c ¼ 1),
which could be compared to a random distribution of spheres
in the extreme case of a shape factor equal to 1, similarly to
the simulations in Jean et al. (2011). For both apparent thermal
conductivity and shear modulus, c fluctuates between 0:64 and
0:68. Hence, as a 1st-order approximation, these physical prop-
erties may depend on the indicator function of the fibers. The
same conclusion can be drawn for the apparent bulk modulus,
but with further variation since c varies between 0:51 and
0:77 depending on the BC. These fluctuations are most likely
due to inaccuracies in fitting and approximations in the virtual
samples geometry.

For the sake of comparing the representativity of samples for
different properties, and since the values estimated from the sim-
ulations are close to the theoretical value c ¼ 2

3, this value will be
used for all the results from now on. From Eq. (86), c being pre-
scribed, K is the only parameter left for fitting the data.

Using Eq. (85), it is now possible to determine statistical RVE
sizes from computational simulations. K is estimated numerically
from Eq. (86) and estimates for RVE sizes are presented in Table 10
for a relative error of 5% in the case a single realization (n ¼ 1). RVE
sizes presented in this table are always larger than the volume ele-
ment sizes achieved throughout this work: V ¼ 1003 for the larg-
est. This concurs with the discrepancies observed on the
apparent elastic moduli; as a matter of fact, the response over an
elementary volume should be independent of the BC once RVE size
is reached as stated by Sab (1992), but the proof given in this ref-
erence does not hold in the case of an elementary volume including
a porous phase intersecting the boundary @V; this remains an open
question. Even if the MBC used in this work differ from the MUBC
proposed by Hazanov and Huet (1994), one could consider the
MBC estimates to be closer to the effective values than the KUBC
estimates; this was shown for MBC theoretically in Hazanov and
Huet (1994), Huet (1997) and experimentally in Hazanov and Ami-
eur (1995).

Nevertheless, the precision for a given volume can be obtained
from multiple realizations of smaller volumes. As an example, for
kapp with KUBC, if V ¼ 503, and �rel ¼ 5%, one must compute 18
realizations to attain the same statistical convergence as for 1 real-
ization of V ¼ 1883. Precaution should be taken regarding the bias
induced by boundary layer effects on mean values when choosing
smaller elementary volumes: virtual samples that are too small
should be excluded.

Finally, values for RVE size and relative error in Table 10 can be
compared to the volume considered and associated relative error
in Table 8: for instance, if one considers the experimental error
associated with the estimate of kapp using KUBC for V ¼ 1003, with
n ¼ 13 realizations, �rel ¼ 2:6%. For the same relative error and
number of realizations, the asymptotic model, on which values in
Table 10 are based, yields an RVE size of V ¼ 100:13, which corre-
sponds to an error of 0:1%. The model is thus appropriate for every
data point considered, except in the case of volumes for which
boundary layer effects are not negligible.
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6. Conclusions

Poisson fibers are undoubtedly one of the worst case scenario
one could think of in terms of homogenizing random media: this
microstructure cannot be periodized, presents an infinite contrast
of properties, includes an interconnected porous phase that is
intersecting the outer boundary of the samples considered, and
has an infinite integral range. These features make this type of ran-
dom media interesting for testing the robustness of the statistical
approach that was introduced in Kanit et al. (2003) for determin-
ing RVE sizes. This study questions the applicability of the concept
of RVE for pathological cases such as Poisson fibers. The micro-
structural model was developed and implemented numerically.
Hundreds of realizations were computed using FE, generating a
large amount of data to be analyzed statistically. The main results
arising from the study of Poisson fibers can be summarized as
follows:

� Neumann-type boundary conditions (SUBC and UHF) are
incompatible with the considered microstructure. Two alterna-
tive sets of boundary conditions were proposed.
� Thermal and elastic effective properties were estimated by the

apparent values obtained for uniform and mixed boundary con-
ditions. Convergence of mean values was reached for thermal
properties; the effective thermal conductivity was subsequently
determined.
� Discrepancies on mean values were observed for mean appar-

ent elastic properties between KUBC and MBC. This could be
symptomatic of either non-homogenizability, i.e., BC-depen-
dent response of the medium, or gigantic RVE sizes. Because
of the results for thermal conductivity, the latter seems more
likely.
� Values for apparent properties obtained with Dirichlet-type

boundary conditions (KUBC and UTG) are larger than those
computed with mixed boundary conditions, this is in accor-
dance with theoretical results given by Huet (1997).
� The study of the ensemble variance for apparent properties gave

rise to scaling power-laws of exponent c. This exponent was
obtained from computational experiments, and folllowed
approximately the theoretical value c ¼ 2

3 given by Jeulin
(2011). This entails that the thermal dissipation rate and elastic
energy densities depend on the indicator function of the fibers
as a 1st-order approximation.
� Very large RVE sizes were determined for a given relative error

with a single realization only. A similar precision can be
obtained with full-field approaches on smaller samples if multi-
ple realizations are considered.

Further work should include more simulations in order to get
better statistics; larger samples should also be investigated, espe-
cially for the mechanical case. To do so, domain-decomposition ap-
proaches for parallel computing, which could not be applied in the
present work, should be considered. From a materials science
viewpoint, samples could be manufactured using 3D printing and
mechanically characterized, as done in Dirrenberger et al. (2013).
In non-woven random fibrous materials, bonding and friction be-
tween fibers are significant in terms of mechanical behavior, thus
Poisson fibers generated using a hard-core repulsion model should
be considered instead of a continuous medium of interpenetrating
fibers.

Overall, the method proposed in Kanit et al. (2003) for deter-
mining RVE sizes was found to be operational, even for pathologi-
cal microstructures. A prerequisite for the use of this statistical
approach is that convergence of effective properties is achieved.
However, the application of the method in spite of the absence of
convergence provides an estimation of the RVE size which might
be strongly biased. The merit of the approach is at least to provide
an estimate which can then guide future effort based on more
powerful computing methods able to process larger volume sizes.

In order to go one step further, one could apply the same statis-
tical approach to Poisson planes, which are another Poisson linear
variety, but with a scaling power-law of exponent c ¼ 1

3 (Jeulin,
2011), leading to even stronger constraints for the convergence
of volume averaged properties, as required in the estimation of
effective properties.
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Appendix A. Determination of elastic moduli components using
KUBC

Using the generalized Hooke law, 6 different computations have
to be performed to determine the full elastic moduli tensor. For in-
stance, in order to compute the components Capp

2I , the following
macroscopic strain tensor E

�
is considered:

E
�
¼

0 0 0
0 1 0
0 0 0

2
64

3
75 ðA:1Þ

Using Hooke’s law, the apparent elastic moduli C
app

�
are defined:

R
�
¼ C
�

app : E
�

ðA:2Þ

The following linear relationships arise for Capp
2I :

R11 ¼ Capp
12 E22

R22 ¼ Capp
22 E22

R33 ¼ Capp
23 E22

R23 ¼ Capp
24 E22

R31 ¼ Capp
25 E22

R12 ¼ Capp
26 E22 ðA:3Þ

The other components of Capp
IJ are computed in a similar way.

Appendix B. Detailed calculation for mixed thermal boundary
conditions

Let us consider the spatial average of the temperature gradient:

hrTi ¼ 1
V

Z
V
rTdV ¼ 1

V

Z
@V

TndS

¼ 1
V

Z
F1

TndSþ 1
V

Z
F2[F3

TndS ðB:1Þ

For a coordinates system with its origin at the center of the simula-
tion cube, each component of the temperature gradient is consid-
ered. It yields:

hT ;1i¼
1
V

Z
F1

Tn1 dS¼ 1
V

Z
Fþ1

Tn1 dS�1
V

Z
F�1

Tn1 dS¼ 1
V

Z
F1

G �xn1 dS

¼ 1
V

G
Z

F1

xn1 dS¼ 1
V

G1

Z
F1

x1n1 dSþG2

Z
F1

x2n1 dS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

þG3

Z
F1

x3n1 dS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

0
BBB@

1
CCCA¼G1

ðB:2Þ
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Now for the other components, for instance:

hT ;2i ¼
1
V

Z
F2

Tn2 dS ¼ 1
V

Z
Fþ2

Tn2 dS� 1
V

Z
F�2

Tn2 dS ¼ 1
V

Z
Fþ2 \@Vout

f

Tn2 dS

þ
Z

Fþ2 \@Vout
p

Tn2 dS�
Z

F�2 \@Vout
f

Tn2 dS�
Z

F�2 \@Vout
p

Tn2 dS ðB:3Þ

In our computations the surface integral over @Vout
f \ F2 can be eval-

uated. However, a suitable extrapolation of T on @Vout
p \ F2 is needed

for the full evaluation of hT ;2i. The same argument holds for hT ;3i.
Let us now consider the macroscopic heat flux, using Eq. (23):

Q ¼ Vf
V hqif ¼

1
V

Z
@Vout

f

q � n
� �

xdS ðB:4Þ

So, for each component:

Q i ¼
1
V

Z
@Vout

f

q � n
� �

xi dS ¼ 1
V

Z
F1\@Vout

f

q � n
� �

xi dS

¼ 1
V

Z
Fþ1

q1xi dS� 1
V

Z
F�1

q1xi dS ðB:5Þ

which yields,

Q 1 ¼
1
V

L
Z

Fþ1

q1 dS ðB:6Þ

In our computation, Q1 is actually post-processed by means of the
following spatial average:

Q 1 ¼ Vf
V hq1if ðB:7Þ

Components Q2 and Q3 are estimated in the same fashion. They do
not vanish in general.

Appendix C. Detailed calculation for mixed mechanical
boundary conditions

C.1. Triaxial loading

Let us consider the spatial average of the strain:

he
�
i ¼ 1

V

Z
V

e
�

dV ¼ 1
V

Z
@V

u�
s

ndS ¼ 1
V

Z
@V

uinj dS ei � ej ðC:1Þ

If we now consider each component of the strain field for the case of
a coordinates system with its origin at the center of the cube, it
yields:

he11i ¼
1
V

Z
V
e11dV ¼ 1

V

Z
V

u1;1dV ¼ 1
V

Z
@V

u1n1 dS

¼ 1
V

Z
F1

u1n1 dSþ
Z

F2

u1n1 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ
Z

F3

u1n1 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

0
BBB@

1
CCCA ¼ 1

V

Z
F1

E11x1n1 d

¼ 1
V

Z
Fþ1

E11x1 dS� 1
V

Z
F�1

E11x1 dS ¼ E11 ðC:2Þ

The spatial averages he22i ¼ E22 and he33i ¼ E33 are determined sim-
ilarly. Let us now consider other components, for instance:

he12i¼
1
V

Z
V
e12dV ¼ 1

V

Z
V

u1;2dV ¼ 1
V

Z
@V

u1n2 dS

¼ 1
V

Z
F1

u1n2 dS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

þ
Z

F2

u1n2 dSþ
Z

F3

u1n2 dS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

0
BBB@

1
CCCA¼ 1

V

Z
Fþ2

u1 dS�
Z

F�2

u1 dS

 !

¼ 1
V

Z
Fþ2 \@Vout

f

u1 dSþ
Z

Fþ2 \@Vout
p

u1 dS�
Z

F�2 \@Vout
f

u1 dS�
Z

F�2 \@Vout
p

u1 dS

 !
ðC:3Þ
In our computations the surface integral over @Vout
f \ F2 can be eval-

uated. However, a suitable extrapolation of u on @Vout
p \ F2 is needed

for the full evaluation of he12i. This holds for every component
heiji 8i – j.

Let us now consider the macroscopic stress field. From Eq. (28),
it yields:

Rij ¼ Vf
V hrijif ¼

1
V

Z
@Vout

f

rðiknkxjÞ dS ðC:4Þ

Each component of the stress field is considered:

R11 ¼ Vf
V hr11if ðC:5Þ

In our computations, R11 is computed as a spatial average. Other
components Rij are computed in the same way:

R12 ¼
1

2V

Z
@Vout

f

r1knkx2 þ r2knkx1 dS

¼ 1
2V

Z
F1

r11n1x2 þ r21n1x1|fflfflfflffl{zfflfflfflffl}
¼0

0
@

1
AdS

0
@

þ
Z

F2

r12n2x2|fflfflfflffl{zfflfflfflffl}
¼0

þ r22n2x1

0
@

1
AdSþ

Z
F3

r13n3x2|fflfflfflffl{zfflfflfflffl}
¼0

þ r23n3x1|fflfflfflffl{zfflfflfflffl}
¼0

0
@

1
AdS

1
A

¼ 1
2V

Z
F1

r11n1x2 dSþ
Z

F2

r22n2x1 dS
� �

ðC:6Þ

which does not vanish in general.

C.2. Shear loading

Let us consider the spatial average of the strain using Eq. (C.1). If
we now consider each component of the strain field, it yields:

he12i ¼
1
V

Z
V
e12dV ¼ 1

V

Z
V

u1;2dV ¼ 1
V

Z
@V

u1n2 dS

¼ 1
V

Z
F1

u1n2 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ
Z

F2

u1n2 dSþ
Z

F3

u1n2 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

0
BBB@

1
CCCA

¼ 1
V

Z
F2

E12x1n2 dS

¼ 1
V

Z
Fþ1

E12
L
2

dS� 1
V

Z
F�1

�E12
L
2

� �
dS ¼ E12

V
L3 ¼ E12 ðC:7Þ

Other components are now considered, for instance:

he11i ¼
1
V

Z
V
e11dV ¼ 1

V

Z
V

u1;1dV ¼ 1
V

Z
@V

u1n1 dS

¼ 1
V

Z
F1

u1n1 dSþ
Z

F2

u1n1 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ
Z

F3

u1n1 dS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

0
BBB@

1
CCCA

¼ 1
V

Z
Fþ1

u1 dS�
Z

F�1

u1 dS

 !

¼ 1
V

Z
F1\@Vout

f

u1 dSþ
Z

F1\@Vout
p

u1 dS

 !
ðC:8Þ

In our computations the surface integrals over @Vout
f \ F1 can be

evaluated. However, a suitable extrapolation of u on @Vout
p \ F1 is

needed for the full evaluation of he11i. This holds for every compo-
nent heiji.
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From Eq. (C.4), the components Rij are computed as spatial
averages:

R12 ¼ Vf
V hr12if ðC:9Þ

For other components, it yields:

R11 ¼
1
V

Z
@Vout

f

r1knkx1 dS

¼ 1
V

Z
F1

r11n1x1 dS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ
Z

F2

r12n2x1 dSþ
Z

F3

r13n3x1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

dS

0
BBB@

1
CCCA

¼ 1
V

Z
F2

r12n2x1 dS ðC:10Þ

which does not vanish in general.
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