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An acoustic model for automatic control of a slide flute

Brigitte d’Andréa-Novel, Benoit Fabre, Jean-Michel Gor

Abstract— In this paper, we consider the problem of modeling  resulting dynamical model can be used for sound synthesis
and control of a slide flute : a kind of recorder without finger  purposes (as illustrated in section VII), our main goal is
holes but which is ended by a piston mechanism to modify the 5 geyelop control algorithms to automatically control lsuc

length of the resonator. A previous study has been done (see . b . . .
[3]), but with a very simple boundary condition for the mouth, physical instruments. An important musical application fo

corresponding to an ideal situation assuming that the acous ~ SUCh device is to produce musical dynamip&go e fort¢

pressure is zero at the entrance of the resonator. at constant pitch by adjusting both the blowing pressure and
In this work, we have taken into account a more realistic  the slide position.

model, describing the coupling effects between the jet anche The obtention of physical models for analysis and synthe-

pipe. The jet is obtained by blowing through a flue channel . . .

and formed by flow separation at the flue exit, and finally SIS for flue musical instruments such as organs or recorders

directed towards a sharp edge, called the labium. The resiig ~has been an important research subject for a few decades.

structure can then be seen as a nonlinear oscillator coupled We will not be exhaustive, but we can mention the paper by

with the pipe which is a linear acoustic resonator. The pressre  Cremer and Ising [7] giving a first quasi-stationary model

obtained through this model has been compared to the pressar of the jet drive, which has been later improved by many

measured on an actual instrument, a recorder closed at its &h .
A modal analysis is then performed using the linearized authors (see e.g. [6], [11]). The works of Howe [12] pointed

boundary conditions which can also be used to compute the OUt the importance of vortex shedding at the labium. In
suitable blowing pressure and the suitable pipe length to diain ~ fact, in steady blowing conditions, models not taking into
a desired fundamental frequency or equivalently a desired iich.  gccount this effect (e.g. in [11]) led to an overestimatién o
This will constitute the basis of our control algorithm. . the amplitude of the pressure oscillation in the pipe (see
A pqssmle mu5|c_al appl_lcatlt_)n of such a device is to t_)uﬂd f le 117]). Theref in 120 h k
a flue instrument with a pitch independent of the dynamical for example [17])- ‘herefore, as In [_ ], we have taken
level. into account these interactions jet/labium, but as already
PACS number : 43.75 mentioned, the system we are studying is different : the
resonator’'s length is time-varying, controlled througte th
piston mechanism and there is no finger hole (see Fig. 1).
Slide flutes are mostly used for jazz and popular musiGhe whole structure can then be described by two linear Par-
even if they sometimes appear in the classical orchestra tial Differential Equations coupled with nonlinear Ordiga
works like the opera by Maurice Ravel Enfant et les Differential Equations describing the boundary condigion
Sortileges We are interested in this paper to model and - for the mouth, taking into account the jet dynamics,
control this kind of instrument made of a cylindrical stodpe - and for the piston.
resonator similar to a stopped organ pipe and of a blowing In section Il we recall our pipe model. In section Ill, we
mouthpiece analogous to that of a recorder. Contrary igive the physical models of the jet channel and the mouth.
flutes, organ pipes and recorders, the variation of the fétch In section IV we compute the boundary condition at the end
obtained through a piston mechanism. From a physical poiof the resonator and at its entrance, taking into account the
of view, stopped pipes have not been studied so widely get dynamics. In section V we present the modal analysis we
open pipes. Moreover, moving boundary conditions intreduchave developed from the linearized boundary conditiond, an
interesting problems also from a mathematical point of viewwe compute the different frequencies which are functions of
In the case of open pipes, physical models for the exhe resonator’s length and of the steady blowing pressure.
citation mechanism have been developed to produce quitecan be noticed that the frequencies are odd multiples
realistic sound synthesis (see e.g. [8], [19]). In the preseof the fundamental one, as expected for open-closed pipes
work, we use the same model of the excitator and couple it iastruments like the pan flute or the clarinet. Conversely,
a pipe model with moving boundary conditions. Even if théf we want to obtain a reference fundamental frequency,
, __we can use the previous linearized boundary conditions,
This work was partly supported by the french ANR project . .
“CONSONNES” where we fix the desired frequency value, to compute the
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|. INTRODUCTION



of the jet and source models (see also [5, Sec. 3]) which ) )
overestimated the jet amplification and sound production o _62@ —0. (5)
at low jet velocities. To solve this problem, we propose ot dx?

to implement a numerical filter to obtain a more realistic Equations (1) and (4) allow one to write the s<vstem dyna-

dynamics_ of the jet pos_ition in Fhe mouth. The r_esultingmCS in the following state-space form with = u
pressure is compared with experimental data obtained from

an actual instrument and we conclude. oy oy . 0 S,/ o
— +A— =0, with A = 9 . (6)
flue channel labium ot ox poc’/ Sy 0
molmh / piston This representation can be diagonalized :
pr Pr = b I : Bi& + ADLE =0, with A = ( 8 _OC ) )
where the change of coordinates is given by :
u+ ip
e=(5)-| ®
_I U B Sp
hl [ S Ll U— ——p
Yol, poc
L—» and
w a+ 0
u 2
Fig. 1. The slide flute Y = = . 9
(5)=| meta-s ®
25,
Il. PHYSICAL MODEL OF THE PIPE The eigenvalues > 0 and —c < 0 being respectively the

If po denotes the air density at res§, the constant Vvelocity of the ingoing waven(z,?) and of the outgoing
section of the pipe which is supposed to be cylindrical, angave 5(z,t). a(z,t) and 5(z,t) satisfy two classical wave
assuming the flow rate(x,t) at timet and pointz in the —equations :

pipe and the relative pressufgz,t) = P — Pum (Patm 90 da
denoting the atmospheric pressure) are uniform on a section o + Cor = 0 and (10)
the Euler equation, giving the fluid dynamical properties ca v
be written :
%—6 — c% =0. (12)
Qu_ 5o (1) 0 at ; 0
ot po Oz The quantities—a +Ca_a and a—f — ca—ﬁ can be seen as the
xXr X
neglecting the viscous and thermal effects near the walls. . - o g .
. : . time derivatives— and — of « and 3 in («x,t) along the
The mass conservation law has the following form : : dt dt
solutions of :
p po Ou
—_— = (2) dr dr
ot Sp Ox i c and o = ¢ (12)

Finally, assuming that Fhe trar_lsformation is adiab:_:uic_, Wealled “characteristic curves”. Sinee(z,t) and 3(z,t) are
have the following equation; being the sound velocity in ¢onstant along these curvesand3 are called theRiemann
the fluid : invariants (see e.g. [16, Tome II, Chap. 12]).
) As it has been done in [2] in the case of an overhead
p=cp (3)  crane with avariable length flexible cable it is interesting

which allows to link the pressure fluctuatiopsand the to apply the following change of variable

density fluctuationgp.

Then, replacing from p in (2), we obtain the second state v =Lo (13)
equation which completes (1), i.e. : to transform the system into one having a fixed spatial
domain foro, i.e.o € [0,1].

2
Op _ _poc” Ou (4) According to (13), if we denote :

ot S, oz
Differentiating (4) with respect ta@, (1) with respect tar { q(a’ B =o(z,1) = a(L(t)o,1) (14)

and collecting the resulting equations lead to the d’Alerhbe Blo,t) = Bz, t) = B(L(t)o, 1)
equation : equations (10) and (11) become :




Neglecting friction, the jet at the flue exit is governed by

@(O_ 9 <c — La) @(U f=0 the Bernoulli equation :
ot L oo
du; 1
(15) pole=—* + 500U} =ps = pm (18)

ap c+ Lo\ 9p
E(O’,t)—( T >%(a,t)—0.

We still have two wave equations, but with time variabl
velocities depending ot and on the control variabld,
where L denotes the time derivative df. 1).
~ Remark 1: The term due to the piston velocity, should be "\ qricing that the flow continuity is assumed at the entrance
interpreted as acoustic source terms when placed at the rigf i, resonator, that is @i, (0) = u(z = 0,¢) = wuo(t),
hand side of equation (15). Nevertheless, the velocity ef thy, o pressure
waves equations remain time dependent throGgand the
explicit expression ofy and 3 become rather complicated

whereU; denotes the jet velocity in the flue channglthe
length of the channely; denotes the excitation pressure at
&he entrance of the channel, generated by the playepand
denotes the pressure in the mouth of the instrument (see Fig.

(x = 0,t) = po(t) can also be related to the
pressurep,,, through momentum conservation :

to derive through the associated characteristic equatiods Pm — Po = C1llg — Ap
the boundary conditions.
[1l. PHYSICAL MODELS OF THE JET CHANNEL AND THE €1 = S,
MOUTH

where Ap represents the pressure jump across the pipe of
length ¢,,,. This pressure jump, responsible for the sound

Om L production, can be mainly decomposed in two terms :
5out 5zn
— p =p(0,t) Ap = Apjq + Ap, (20)
w I _,pm_, o Ap,, denoting the pressure jump due to the jet drive mecha-
Qout | Qin u = u(0,1) nism andAp, the vortex shedding when the flow separates
at the edge of the labium which appears to be determinant in
Qj limiting the amplitude of the oscillation during steadwyis,

but also to be important to describe nonlinear behavior in

Fig. 2. The 1D model of the mouth X
the transient attack.

In [18], [20], [19], [9], the two-dimensional geometry The termAp,,
of the mouth is modeled in a low frequency plane wave
approximation by a one-dimensional representation, by 3
gqulvalent Pipe segme_nt_ of length, _(see Fig. 2) “?""”9 Jlow source corresponding to the portion of the jet flow
into account the constriction of the pipe at the blowing en kntering the pipe at the labium :

In this one-dimensional representation, the flue exit, when '
the jet is formed, is located at an acoustic distahge from p00q dQ1

the outside and,,, from the entrance of the resonator. Apja = S dt (21)

At the flue exit, because the region is compact, one canh 5. is th tic dist bet the dipol
apply the mass conservation law : whered, is the acoustic distance between the dipole sources

Q1 and @ generated at the labium, in the one-dimensional
g
‘ N representation of the instrument. Assuming the jet has a
@ + Qout = Qin (16) Bickley velocity profile (see e.g. [14]), denoting the jet
where Q;, Q..+ and Q;, are respectively the jet flow, the width, y, the labium position with respect to the flue exit
flow in the portiond,.; andd;, respectively, expressed in axis (y being positive towards the interior of the pipe) the

As explained for example in [20], [19], the pressure due
8 the jet-drive is determined by the time derivative of the

m3/s. following expression is obtained :

The pressure,, in the mouth at the flue exit can be related
to the flowQ,., by the radiation impedance, which leads in Q1 = bHT, {1 + tanh (77 - yo)} 22)
the time domain to the following linear differential equoati: b

whereb is a positive jet parameter characterizing the velocity
profile at the flue exity denotes the jet position which will be

por3, P00out 17) detailed in the next paragraph abg denotes the asymptotic
- 4¢S,, ande; = S value of the jet velocity depending on the excitation pressu
py (see equation (18)), i.e. :

Pm = CQQout - C3Qout

C2

whereSs,,, is the mouth cross section at the flue exit, apd
is the radius of a circle having the same mouth cross section, .
Uj =1/2ps/po.

i.e. such thatrr2, = S,,,. (23)



The termAp, Moreover, we need the value 0f; and its time-derivative
Using e.g. [10], [20], [19], one can express the vortef0 bring up to date the boundary condition (28). So we

shedding term induced at the labium by the transverdidve to solve at each time instant, the ordinary differéntia

acoustic flow of the pipe by the following expression ; ~ €guation describing the dynamical evolution &f. This
equation is obtained from (18) where we replage by its

expression (17) and using equation (16) which becomes at
z=0:

2
0 )
5 oS ) sign(ug) (24)

where «, is the vena-contracta factor of the flow. It can Qout = Qin — Q; = uo(t) — SeU; (29)

be seen that this term is dissipative, corresponding to the

kinetic energy dissipation by turbulence of the jet, formed. denoting the cross section of the channel at the flue exit.

by separation of the acoustic flow at the labium. Finally, the equation giving the value df;(¢) can be
written :

1
Ap, = —5po <

Physical model of the jet position

Let us now give an expression of the jet positipin the caSeU;—(poletc3Se)Uj+catig—caiig = lpon —py. (30)
mouth obtained from recent works e.g. [8], denotinghe 2

jet height : . , When taking realistic numerical values of the constants
n(t) = zueﬂw (25) involved in (30) it can be seen thatS. ~ 1079, whi'ch
TSmUj is negligible with respect to the multiplying factor @f;.

where i denotes the spatial amplification of the j&k; the Therefore, using singular perturbation arguments, one can

distance between the flue exit and the labium and the delagglect the terms irU/; in (30) and we can consider the
7; is given by : following equation which will be used to evaludig and its
time derivative :

%%
03U (26) . 1 9 . ..
J (pole + C3Se)U,7 =Df— E/JOUJ- + c3ug — caup- (31)
We can see that the delay is time varying since it
depends onU;. But, in the transient regime of the jet Finally, the boundary condition at the entrance of the
velocity, U; takes values near the origin, so that in numericalesonator consists in the two equations (28) and (31) at
simulations, we have to watt/; > ~ for a small positve x = 0.
value~ to consider equation (26). Before that, we take 0.

Tl

IV. BOUNDARY CONDITIONS B. Boundary condition at the end of the resonator

Let us now complete the pipe model (15) with the boun- Considering the piston mechanism which allows the trans-
dary conditions at = 0 (i.e.z = 0) ando = 1 (i.,e.z = L).  lation of the slide flute, the boundary condition at the end of
. the flute, can be written as a first approximation neglecting
A. Boundary condition at the entrance of the resonator  fiction terms
Let us first consider the boundary condition at the entrance
of the resonator. It can be obtained replacing from

equation (19) in equation (18), which leads to : Spp(L,t) + F =mL (32)

a1 F being the force exerted by the motor on the slide and
po(t) = py — polcd—tj - §pon — c1uo(t) + Ap. (27)  the piston mass.
. . . _ In a first step, one can consider that the control variable
Th|s boun_dary cond|t|pn can be [ewrl_tten n thgandﬁ is the piston velocityL, linked to the physical controF
var.|ab|e.s using ©) .and in th and 3 variables, using (14) homogeneous td., via the integrator (or cascade) system
which gives finally - given by (32). Then ifL is known, one can then compute
the physical controlF to apply, using e.g. “backstepping”

O;g(% t) = B(0, t)JU X L techniques (see [1]). One can therefore consider, witfusst |
pTz pr— polcd—t] - 5,JOUJ? - 51(@ +6)(0,t) + Ap of generality, the following boundary condition at= L :
(28)
Remark 2: In the previous paper [3], the boundary condi- u(L,t) = S,,L (33)

tion which was used was the very simple grie = 0,¢) =

0, i.e. a(0,¢) = B(0,¢), corresponding to an ideal case.yhich can be rewritten in thé and 3 variables, using (9)
Taking into account the physical models of the jet and ofng (14) :

the mouth leads to the more realistic above condition. It can

be also noticed that,(t) now depends onig(t) but using _ .

(20), (21), (22), (24) and (25) also any(t) and o (t — 7). a(l,t) + B(1,t) = 25, L. (34)
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V. MODAL ANALYSIS OF THE LINEARIZED BOUNDARY
CONDITIONS

To compute the natural modes of the system, we have -
keep only linear terms in the boundary conditions obtained i
the previous section. More precisely, we approximateh
by its argument in (22) for the expression &p;, and we
neglect the nonlinear termp, given by (24). WritingU;,

& and 3 on the following form, wherdJ; is the steady state Fig. 3. Re(det(A)) and Im(det(A)) with respect foande
value of the jet velocity (see equation (23)) :

Uj =U; + Uetm ) It can be noticed that :

d(:v,t) = geWte—wz/c (35)

Bz, t) = bewteiws/c ;i ~ 3.11, ;30 ~ 5.07 (43)
le le

replacing U;, & and 3 in (28) and (31) atz = 0 and je. the frequencies of the modes are close to odd multiples
(34) atz = L and keeping only linear terms, we have to

. . 8{ the first mode frequency, as expected for a closed-open
solve an homogeneous linear system of 3 equations wi . -
3 complex unknowngU, a, b) of the form, where denoting PIP€- For negative values ef the modes are oscillating cor-

k(W) = (c1 + Ke ™™)iw : responding to a time growth. Since they are solutions of the
linearized problem, the modes calculated here can prégict t
oscillating frequency during transient state, at low atogli.

a
Aw) 5 =0, with A(w) = After this initial period, the saturation mechanisms may be
= . 36 [ i ion i .
7.+ n(w) 2 7 n(wg 2p0(T; + i) (36) responsible for a bifurcation in the system
Calw + cow” s +eaw” ~2{polj +dweo) VI. AUTOMATIC CONTROL OF THE FLUTE
672&/.) c ezw c 0

To realize an automatic control law, we have to compute
py andL or equivalently, the paifU;, L) such that a desired
reference modev, = ). + ie, (or a desired reference
Z, = %, (37) frequencyf, = —;) is obtained. Therefore, the control

P algorithm can be summarized as follows :

where the constants, ¢, andcs are given by (19) and (17),
the characteristic impedancg. is given by :

and the constanf is obtained by linearizingAp,,, the
pressure jump due to the jet-drive (see equations (21), (22)- A, ande, being chosen, solve the two equations (40)
and (25)). In fact, after some computations, we obtain the  with respect to the unknown variabl&s, andL,, using
linearized expressiothp;q : for example a Newton algorithm.
c > - The resulting asymptotic jet velocity/;, will be rea-
Ap., = Kug(t — J .
Pid tio(t =) ched through the servo-\{alve, asking for a desired
steady-state pressupg, = = poU;,..
- The resulting length of the pip&, will be reached,
applying the following simple linear control law on the

38)
_ 2podahe'V H (
K = S (1 - /).

Therefore, to obtain a non trivial solution, the complex

. C e piston :
modesw = A must satisfy : .
e must satisfy L=—k(L-L), k> 0. (44)
det(4 =0 39 .
(Aw)) ’ (39) For example, to havev, = 2039, corresponding to
namely, the real numbers and e must be solutions of the fr = fiqeas = ¢/4L = 324 Hz, solving equations (40)
two real equations : with initial conditions close to the first mode frequency

leads to :(Uj, = 8.61m/s; L, = 0.242) (or equivalently

{ Re(det(A(X,€))) =0 40) (ps, = 44.5 Pa; L, = 0.242)).

Im(det(A(\€))) =0.

In Fig. 3, we can see the 2D-surfacBs(det(A(\,€))) =0
and I'm(det(A()\ €))) = 0 parameterized by ande.

For L = 0.265m and py = 300 Pa, the three first  The numerical model which will be used for simulation
frequenciesf;,, 1 = 1,2, 3, corresponding to the three first ang control is obtained by (15) together with the boundary
modes\;. = 27fi., i = 1,2,3 are approximately, itfz = . jitions (28), (34) and (31). Since the velocities are

f1. 22908, fo, >~ 903.7, f3. 1474. (41) respectively positive and negative f@rand 3, it was natural
to implement a first-order un-centered upper schemeifor
and down scheme fo. Numerical diffusion terms should
€10 ~36.9, ea, ~ —24.2, €3, >~ —T4.7. (42) be added to use centered schemes (see e.g. [15]).

VIlI. NUMERICAL SCHEME, SIMULATION RESULTS AND
CONCLUSION

The corresponding values ef,. are, ins~! :



To be more realistic and take into account viscous an Simuated pressue
thermal losses in the tube, we have also added a small fricti
term of the formvu in Euler equation (1)y being a small
friction coefficient. More accurate models exist for visco- @
thermal damping using non integer time derivative of th
flow rate (see e.g. [13]).

In Fig. 4 and 5, we can observe two spectrograms of tt
simulated pressure. For comparison, the set point blowir
pressure used in the simulation is the one measured
the experimental setup described below for pressures clc
respectively tob5 Pa and 245 Pa.

The spectrogram of the pressure at= 0 in Fig. 5 R S
when py ~ 245 Pa shows that the oscillation takes place
on the second acoustic mode of the pifig ~ 925Hz  Fig. 5. Spectrogram of the simulated pressure using a higkgerimental
which is very close to the computed valugs, given in blowing pressure of Fig. 7 (close @15 Pa) and L = 0.265m
(41). For lower values of the blowing pressure, for example
ps = 55 Pa in Fig. 4, simulations show an oscillation on _ _ .
the first pipe mode arourkl0 H - also close tof;, given in dominated by harmonics 1 and 3 whereas the even harmonics

(41). The slight difference is probably due to the fact that t 2PP€ar weakly. These even harmonics are generated by
computed frequencieg;, are obtained througlinearized nonlinear source terms (see equations (22)-(24)). They are

boundary conditions. Nevertheless, equations (40) doisti weak compared to odd harmonics because they do not benefit

a good approximation to compulg. as explained in section of pipe resonances. For all qute_-type mstrt_J_ments, INeNgas
vl the blowing pressure results in a transition to an upper

mode. In the case of a stopped pipe, the second mode is

approximately at frequency 3 times higher than the first
4000 i mode. Therefore, as expected in the case of overblowing
pressureps ~ 245 Pa, the oscillating regime is given by
the second mode, both in experimental and simulated cases.
The experimental pressure also shows noise modulated by
the passive resonances of the pipe. This noise is generated
by turbulence as discussed in [18]. This phenomenon has not
been taken into account in our simulation model.

During the steady-state part of the oscillation, the simula
tion and experimental pressure signals show some singlgrit
but also some differences. The oscillation regime is theesam
for simulated and measured systems : oscillation on the first

Tme pipe mode forpy ~ 55 Pa and oscillation on the second
pipe mode forp; ~ 245 Pa. The main differences are due
Fig. 4. Spectrogram of the simulated pressure using theriexpetal  to the fact that the experimental flute presents inharmtynici
blowing pressure of Fig. 6 (close & Pa) and L = 0.265m that the simulated one does not include. This is due to the
dispersion associated with viscous and thermal effectseat t
pipe walls, which have not been included in our model, and
also to the fact that the frequency dependence of the end

The resulting pressure is now compared with experimenté?rrecnons has not be modeled. The amplitude of the even
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data obtained from an actual instrument. This instrument [R2"MONIcs appears to be relatively higher in the experiatent

built on a18.4 mm diameter tube, associated with a recorder= ata tha_n in_t_he §imulation. This can be interpreted in_ terms
like mouth piece. The tube is closed at its passive end. Tlﬁ)é the simplification of the non-linear source te_rms in the
total length of the pipe i865 mm. The window shows lateral mpdel but also of the turbulent sound production already
walls of about4 mm which act as ears in an organ pipe’d|scussed.

increasing the end correction associated with radiatidre T
attack transient is generated by a pressure rise time oftabou
40ms and shows an overshoot. The acoustic pressureg
the instrument is measured &6 mm of the block of the
flute. From Fig. 6 and 7, one can observe that the oscillati
regimes forp; ~ 55 Pa and py ~ 245 Pa are the same
as in the simulated cases (see Fig. 4 and 5). In the caseThe oscillation starts more slowly in the simulated flute
ps =~ 55 Pa, the experimental spectrum during steady state ihan in the experimental one. Indeed the jet and source model

Moreover, we can observe on Fig. 8 that the amplitude of
e pressure oscillation predicted by the simulation iselw

the one observed in the experimental data. This indicats th
e dissipation model is quite efficient despite its simiplic



Experimental pressure

production at low jet velocities. To solve this problem, we
have implemented a numerical first order low pass filter on
the jet positionn leading ton; to obtain a more realistic
dynamics of the jet position in the mouth :

ng(k+1) = cang (k) + (1 —ca)n(k) , ca € [0;1[.  (45)

Finally, Fig. 9 displays the simulation results we obtain
when the player wants to produce scales by sliding the piston
It can be seen that the transient time response is dbbut
which is coherent with the attack transient time observed
when the slide is fixed. The spectrogram shows the frequency
shift resulting from the piston sliding.

Frequency (Hz)

Fig. 6. Spectrogram of the experimental pressure wifrclose to55 Pa
and L = 0.265m

Experimental pressure
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1000
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Fig. 7. Spectrogram of the experimental pressure witltlose 10245 Pa Fom T A R S A
and L = 0.265m Time [s]

we use are based on the analysis of steady-state osciflation
Some aspects of the starting transient are not yet well
described by such models, as discussed in [9]. Moreover,
these models have been elaborated for open recorder-like
instruments and should be adapted in the case of a stopped

. . . ig. 9. A down scale : on the left spectrogram of the acoustasgure ;
pipe, but this work is out of the scope of the present papej, ihe right evolution ofZ from 0.20 m to 0.23 m

‘Simulated acoustc pressure al x=0

To conclude, the model presented in this paper produces
satisfying simulation results and could be used for sound
synthesis. Concerning the control, it must be noticed that
the (py; L) solution to reach a target pitch is not unique.
Indeed, the slide flute can play the same pitch with a soft
blowing and a short slide position, or with an increased
blowing pressure and a longer slide position. The instrumen
therefore can produce musical dynamipgafo e fortg at
constant pitch by adjusting both the blowing pressure and
the slide position. Thép; L) solution presented at the end
of section VI corresponds to the closest solution to the

As we have already said in the introduction, the blowingalue for passive resonance.
pressure range obtained for example in [4] or [5, Sec. 3] An experimental prototype is under development at
was lower than in actual pipes. This is mainly due to théMines ParisTech” as shown in Fig. 10. The reference values
simplifications of the jet and source models (egs. (25), (2@ypy,; L) have been obtained from the modal analysis per-
and (21)) which overestimate the jet amplification and sounfdrmed on the linearized boundary conditions. For musical

- B B 8 &

.8 8 8 &

0 o0z 04 06 08 1 12 14 16 18

Fig. 8. Comparison between the model pressure and the meal
pressure with the same excitation blowing presgufe~ 245 Pa



applications, the target is defined as a pitch rather thgns]
a length. Consequently, it is more natural to regulate thg6]

L. SainsaulieuCalcul scientifique Masson, Paris, 1996.
D. Serre,Systemes de lois de conservati@iderot Editeur,

frequency error and this necessitates to implement aireal-t Arts et Science, Paris, 1996.

frequency detection to elaborate the closed-loop control.

servo valve

\ mouth

translator

/

—;cig, -

slide

/

~pipe

Fig. 10. The slide flute prototype
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