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An acoustic model for automatic control of a slide flute

Brigitte d’Andréa-Novel, Benoı̂t Fabre, Jean-Michel Coron

Abstract— In this paper, we consider the problem of modeling
and control of a slide flute : a kind of recorder without finger
holes but which is ended by a piston mechanism to modify the
length of the resonator. A previous study has been done (see
[3]), but with a very simple boundary condition for the mouth,
corresponding to an ideal situation assuming that the acoustic
pressure is zero at the entrance of the resonator.

In this work, we have taken into account a more realistic
model, describing the coupling effects between the jet and the
pipe. The jet is obtained by blowing through a flue channel
and formed by flow separation at the flue exit, and finally
directed towards a sharp edge, called the labium. The resulting
structure can then be seen as a nonlinear oscillator coupled
with the pipe which is a linear acoustic resonator. The pressure
obtained through this model has been compared to the pressure
measured on an actual instrument, a recorder closed at its end.

A modal analysis is then performed using the linearized
boundary conditions which can also be used to compute the
suitable blowing pressure and the suitable pipe length to obtain
a desired fundamental frequency or equivalently a desired pitch.
This will constitute the basis of our control algorithm.

A possible musical application of such a device is to build
a flue instrument with a pitch independent of the dynamical
level.
PACS number : 43.75

I. I NTRODUCTION

Slide flutes are mostly used for jazz and popular music,
even if they sometimes appear in the classical orchestra in
works like the opera by Maurice Ravel,L’Enfant et les
Sortilèges. We are interested in this paper to model and
control this kind of instrument made of a cylindrical stopped
resonator similar to a stopped organ pipe and of a blowing
mouthpiece analogous to that of a recorder. Contrary to
flutes, organ pipes and recorders, the variation of the pitchis
obtained through a piston mechanism. From a physical point
of view, stopped pipes have not been studied so widely as
open pipes. Moreover, moving boundary conditions introduce
interesting problems also from a mathematical point of view.

In the case of open pipes, physical models for the ex-
citation mechanism have been developed to produce quite
realistic sound synthesis (see e.g. [8], [19]). In the present
work, we use the same model of the excitator and couple it to
a pipe model with moving boundary conditions. Even if the
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resulting dynamical model can be used for sound synthesis
purposes (as illustrated in section VII), our main goal is
to develop control algorithms to automatically control such
physical instruments. An important musical application for
such device is to produce musical dynamics (piano e forte)
at constant pitch by adjusting both the blowing pressure and
the slide position.

The obtention of physical models for analysis and synthe-
sis for flue musical instruments such as organs or recorders
has been an important research subject for a few decades.
We will not be exhaustive, but we can mention the paper by
Cremer and Ising [7] giving a first quasi-stationary model
of the jet drive, which has been later improved by many
authors (see e.g. [6], [11]). The works of Howe [12] pointed
out the importance of vortex shedding at the labium. In
fact, in steady blowing conditions, models not taking into
account this effect (e.g. in [11]) led to an overestimation of
the amplitude of the pressure oscillation in the pipe (see
for example [17]). Therefore, as in [20], we have taken
into account these interactions jet/labium, but as already
mentioned, the system we are studying is different : the
resonator’s length is time-varying, controlled through the
piston mechanism and there is no finger hole (see Fig. 1).
The whole structure can then be described by two linear Par-
tial Differential Equations coupled with nonlinear Ordinary
Differential Equations describing the boundary conditions :

- for the mouth, taking into account the jet dynamics,
- and for the piston.
In section II we recall our pipe model. In section III, we

give the physical models of the jet channel and the mouth.
In section IV we compute the boundary condition at the end
of the resonator and at its entrance, taking into account the
jet dynamics. In section V we present the modal analysis we
have developed from the linearized boundary conditions, and
we compute the different frequencies which are functions of
the resonator’s length and of the steady blowing pressure.
It can be noticed that the frequencies are odd multiples
of the fundamental one, as expected for open-closed pipes
instruments like the pan flute or the clarinet. Conversely,
if we want to obtain a reference fundamental frequency,
we can use the previous linearized boundary conditions,
where we fix the desired frequency value, to compute the
suitable blowing pressure and the suitable length. This will
constitute our control algorithm described in section VI.
Finally in section VII we present our numerical scheme
together with some simulation results. Let us point out
that in our previous paper [4], simulation results showed
that the resulting blowing pressure range was lower than
in actual pipes. This was mainly due to the simplifications



of the jet and source models (see also [5, Sec. 3]) which
overestimated the jet amplification and sound production
at low jet velocities. To solve this problem, we propose
to implement a numerical filter to obtain a more realistic
dynamics of the jet position in the mouth. The resulting
pressure is compared with experimental data obtained from
an actual instrument and we conclude.
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Fig. 1. The slide flute

II. PHYSICAL MODEL OF THE PIPE

If ρ0 denotes the air density at rest,Sp the constant
section of the pipe which is supposed to be cylindrical, and
assuming the flow rateu(x, t) at time t and pointx in the
pipe and the relative pressurep(x, t) = P − Patm (Patm

denoting the atmospheric pressure) are uniform on a section,
the Euler equation, giving the fluid dynamical properties can
be written :

∂u

∂t
= −

Sp

ρ0

∂p

∂x
(1)

neglecting the viscous and thermal effects near the walls.
The mass conservation law has the following form :

∂ρ

∂t
= −

ρ0

Sp

∂u

∂x
. (2)

Finally, assuming that the transformation is adiabatic, we
have the following equation,c being the sound velocity in
the fluid :

p = c2ρ (3)

which allows to link the pressure fluctuationsp and the
density fluctuationsρ.

Then, replacingρ from p in (2), we obtain the second state
equation which completes (1), i.e. :

∂p

∂t
= −

ρ0c
2

Sp

∂u

∂x
. (4)

Differentiating (4) with respect tot, (1) with respect tox
and collecting the resulting equations lead to the d’Alembert
equation :

∂2p

∂t2
− c2

∂2p

∂x2
= 0. (5)

Equations (1) and (4) allow one to write the system dyna-

mics in the following state-space form withY =

(

u
p

)

:

∂Y

∂t
+ A

∂Y

∂x
= 0 , with A =

(

0 Sp/ρ0

ρ0c
2/Sp 0

)

. (6)

This representation can be diagonalized :

∂tξ + Λ∂xξ = 0 , with Λ =

(

c 0
0 −c

)

(7)

where the change of coordinates is given by :

ξ =

(

α
β

)

=









u +
Sp

ρ0c
p

u −
Sp

ρ0c
p









(8)

and

Y =

(

u
p

)

=









α + β

2

ρ0c(α − β)

2Sp









. (9)

The eigenvaluesc > 0 and−c < 0 being respectively the
velocity of the ingoing waveα(x, t) and of the outgoing
waveβ(x, t). α(x, t) andβ(x, t) satisfy two classical wave
equations :

∂α

∂t
+ c

∂α

∂x
= 0 and (10)

∂β

∂t
− c

∂β

∂x
= 0. (11)

The quantities
∂α

∂t
+ c

∂α

∂x
and

∂β

∂t
− c

∂β

∂x
can be seen as the

time derivatives
dα

dt
and

dβ

dt
of α andβ in (x, t) along the

solutions of :

dx

dt
= c and

dx

dt
= −c, (12)

called “characteristic curves”. Sinceα(x, t) and β(x, t) are
constant along these curves,α andβ are called theRiemann
invariants (see e.g. [16, Tome II, Chap. 12]).

As it has been done in [2] in the case of an overhead
crane with avariable length flexible cable, it is interesting
to apply the following change of variable

x = Lσ (13)

to transform the system into one having a fixed spatial
domain forσ, i.e. σ ∈ [0, 1].

According to (13), if we denote :
{

α̃(σ, t) = α(x, t) = α(L(t)σ, t)

β̃(σ, t) = β(x, t) = β(L(t)σ, t)
(14)

equations (10) and (11) become :

























∂α̃

∂t
(σ, t) +

(

c − L̇σ

L

)

∂α̃

∂σ
(σ, t) = 0

∂β̃

∂t
(σ, t) −

(

c + L̇σ

L

)

∂β̃

∂σ
(σ, t) = 0.

(15)

We still have two wave equations, but with time variable
velocities depending onL and on the control variablėL,
whereL̇ denotes the time derivative ofL.

Remark 1: The term due to the piston velocity, should be
interpreted as acoustic source terms when placed at the right
hand side of equation (15). Nevertheless, the velocity of the
waves equations remain time dependent throughL and the
explicit expression of̃α and β̃ become rather complicated
to derive through the associated characteristic equationsand
the boundary conditions.

III. PHYSICAL MODELS OF THE JET CHANNEL AND THE

MOUTH

Fig. 2. The 1D model of the mouth

In [18], [20], [19], [9], the two-dimensional geometry
of the mouth is modeled in a low frequency plane wave
approximation by a one-dimensional representation, by an
equivalent pipe segment of lengthδm (see Fig. 2) taking
into account the constriction of the pipe at the blowing end.

In this one-dimensional representation, the flue exit, when
the jet is formed, is located at an acoustic distanceδout from
the outside andδin from the entrance of the resonator.

At the flue exit, because the region is compact, one can
apply the mass conservation law :

Qj + Qout = Qin (16)

whereQj, Qout and Qin are respectively the jet flow, the
flow in the portionδout and δin respectively, expressed in
m3/s.

The pressurepm in the mouth at the flue exit can be related
to the flowQout by the radiation impedance, which leads in
the time domain to the following linear differential equation :











pm = c2Q̈out − c3Q̇out

c2 =
ρ0r

2

m

4cSm
andc3 =

ρ0δout

Sm

(17)

whereSm is the mouth cross section at the flue exit, andrm

is the radius of a circle having the same mouth cross section,
i.e. such thatπr2

m = Sm.

Neglecting friction, the jet at the flue exit is governed by
the Bernoulli equation :

ρ0lc
dUj

dt
+

1

2
ρ0U

2

j = pf − pm (18)

whereUj denotes the jet velocity in the flue channel,lc the
length of the channel,pf denotes the excitation pressure at
the entrance of the channel, generated by the player andpm

denotes the pressure in the mouth of the instrument (see Fig.
1).

Noticing that the flow continuity is assumed at the entrance
of the resonator, that is :Qin(0) = u(x = 0, t) = u0(t),
the pressurep(x = 0, t) = p0(t) can also be related to the
pressurepm through momentum conservation :











pm − p0 = c1u̇0 − ∆p

c1 =
ρδin

Sm

(19)

where∆p represents the pressure jump across the pipe of
length δin. This pressure jump, responsible for the sound
production, can be mainly decomposed in two terms :

∆p = ∆pjd + ∆pa (20)

∆pjd denoting the pressure jump due to the jet drive mecha-
nism and∆pa the vortex shedding when the flow separates
at the edge of the labium which appears to be determinant in
limiting the amplitude of the oscillation during steady-state,
but also to be important to describe nonlinear behavior in
the transient attack.

The term∆pjd

As explained for example in [20], [19], the pressure due
to the jet-drive is determined by the time derivative of the
flow sourceQ1 corresponding to the portion of the jet flow
entering the pipe at the labium :

∆pjd = −
ρ0δd

Sm

dQ1

dt
(21)

whereδd is the acoustic distance between the dipole sources
Q1 andQ2 generated at the labium, in the one-dimensional
representation of the instrument. Assuming the jet has a
Bickley velocity profile (see e.g. [14]), denotingH the jet
width, y0 the labium position with respect to the flue exit
axis (y being positive towards the interior of the pipe) the
following expression is obtained :

Q1 = bHŪj

[

1 + tanh

(

η − y0

b

)]

(22)

whereb is a positive jet parameter characterizing the velocity
profile at the flue exit,η denotes the jet position which will be
detailed in the next paragraph andŪj denotes the asymptotic
value of the jet velocity depending on the excitation pressure
pf (see equation (18)), i.e. :

Ūj =
√

2pf/ρ0. (23)



The term∆pa

Using e.g. [10], [20], [19], one can express the vortex
shedding term induced at the labium by the transverse
acoustic flow of the pipe by the following expression :

∆pa = −
1

2
ρ0

(

u0

αvSm

)2

sign(u0) (24)

where αv is the vena-contracta factor of the flow. It can
be seen that this term is dissipative, corresponding to the
kinetic energy dissipation by turbulence of the jet, formed
by separation of the acoustic flow at the labium.

Physical model of the jet position

Let us now give an expression of the jet positionη in the
mouth obtained from recent works e.g. [8], denotingh the
jet height :

η(t) = 2
u0(t − τl)h

πSmUj
eµW (25)

whereµ denotes the spatial amplification of the jet,W the
distance between the flue exit and the labium and the delay
τl is given by :

τl =
W

0.3Uj
. (26)

We can see that the delayτl is time varying since it
depends onUj . But, in the transient regime of the jet
velocity,Uj takes values near the origin, so that in numerical
simulations, we have to waitUj ≥ γ for a small positive
valueγ to consider equation (26). Before that, we takeη = 0.

IV. B OUNDARY CONDITIONS

Let us now complete the pipe model (15) with the boun-
dary conditions atσ = 0 (i.e. x = 0) andσ = 1 (i.e. x = L).

A. Boundary condition at the entrance of the resonator

Let us first consider the boundary condition at the entrance
of the resonator. It can be obtained replacingpm from
equation (19) in equation (18), which leads to :

p0(t) = pf − ρ0lc
dUj

dt
−

1

2
ρ0U

2

j − c1u̇0(t) + ∆p. (27)

This boundary condition can be rewritten in theα andβ
variables using (9) and in thẽα and β̃ variables, using (14)
which gives finally :

α̃(0, t) = β̃(0, t)+
2Sp

ρ0c

[

pf − ρ0lc
dUj

dt
−

1

2
ρ0U

2

j −

c1

2
( ˙̃α + ˙̃

β)(0, t) + ∆p

]

(28)
Remark 2: In the previous paper [3], the boundary condi-

tion which was used was the very simple onep(x = 0, t) =
0, i.e. α̃(0, t) = β̃(0, t), corresponding to an ideal case.
Taking into account the physical models of the jet and of
the mouth leads to the more realistic above condition. It can
be also noticed thatp0(t) now depends oṅu0(t) but using
(20), (21), (22), (24) and (25) also onu0(t) and u̇0(t − τl).

Moreover, we need the value ofUj and its time-derivative
to bring up to date the boundary condition (28). So we
have to solve at each time instant, the ordinary differential
equation describing the dynamical evolution ofUj . This
equation is obtained from (18) where we replacepm by its
expression (17) and using equation (16) which becomes at
x = 0 :

Qout = Qin − Qj = u0(t) − SeUj (29)

Se denoting the cross section of the channel at the flue exit.
Finally, the equation giving the value ofUj(t) can be

written :

c2SeÜj−(ρ0lc+c3Se)U̇j+c3u̇0−c2ü0 =
1

2
ρ0U

2

j −pf . (30)

When taking realistic numerical values of the constants
involved in (30) it can be seen thatc2Se ≃ 10−9, which
is negligible with respect to the multiplying factor oḟUj .
Therefore, using singular perturbation arguments, one can
neglect the terms in̈Uj in (30) and we can consider the
following equation which will be used to evaluateUj and its
time derivative :

(ρ0lc + c3Se)U̇j = pf −
1

2
ρ0U

2

j + c3u̇0 − c2ü0. (31)

Finally, the boundary condition at the entrance of the
resonator consists in the two equations (28) and (31) at
x = 0.

B. Boundary condition at the end of the resonator

Considering the piston mechanism which allows the trans-
lation of the slide flute, the boundary condition at the end of
the flute, can be written as a first approximation neglecting
friction terms :

Spp(L, t) + F = mL̈ (32)

F being the force exerted by the motor on the slide andm
the piston mass.

In a first step, one can consider that the control variable
is the piston velocityL̇, linked to the physical controlF
homogeneous töL, via the integrator (or cascade) system
given by (32). Then ifL̇ is known, one can then compute
the physical controlF to apply, using e.g. “backstepping”
techniques (see [1]). One can therefore consider, without loss
of generality, the following boundary condition atx = L :

u(L, t) = SpL̇ (33)

which can be rewritten in thẽα and β̃ variables, using (9)
and (14) :

α̃(1, t) + β̃(1, t) = 2SpL̇. (34)



V. M ODAL ANALYSIS OF THE LINEARIZED BOUNDARY

CONDITIONS

To compute the natural modes of the system, we have to
keep only linear terms in the boundary conditions obtained in
the previous section. More precisely, we approximatetanh
by its argument in (22) for the expression of∆pjd and we
neglect the nonlinear term∆pa given by (24). WritingUj ,
α̃ andβ̃ on the following form, wherēUj is the steady state
value of the jet velocity (see equation (23)) :







Uj = Ūj + Ueiωt

α̃(x, t) = aeiωte−iωx/c

β̃(x, t) = beiωteiωx/c

(35)

replacing Uj, α̃ and β̃ in (28) and (31) atx = 0 and
(34) at x = L and keeping only linear terms, we have to
solve an homogeneous linear system of 3 equations with
3 complex unknowns(U, a, b) of the form, where denoting
κ(ω) = (c1 + K̄e−iωτl)iω :

A(ω)





a
b
U



 = 0 , with A(ω) =





Zc + κ(ω) −Zc + κ(ω) 2ρ0(Ūj + iωlc)
c3iω + c2ω

2 c3iω + c2ω
2

−2(ρ0Ūj + iωc0)

e−iωL/c eiωL/c 0





(36)

where the constantsc1, c2 andc3 are given by (19) and (17),
the characteristic impedanceZc is given by :

Zc =
ρ0c

Sp
, (37)

and the constant̄K is obtained by linearizing∆pjd, the
pressure jump due to the jet-drive (see equations (21), (22)
and (25)). In fact, after some computations, we obtain the
linearized expression ¯∆pjd :















∆̄pjd = K̄u̇0(t − τl)

K̄ =
2ρ0δdheµW H

πS2
m

(1 − y2

0/b2).
(38)

Therefore, to obtain a non trivial solution, the complex
modesω = λ + iǫ must satisfy :

det(A(ω)) = 0, (39)

namely, the real numbersλ and ǫ must be solutions of the
two real equations :

{

Re(det(A(λ, ǫ))) = 0
Im(det(A(λ, ǫ))) = 0.

(40)

In Fig. 3, we can see the 2D-surfacesRe(det(A(λ, ǫ))) = 0
andIm(det(A(λ, ǫ))) = 0 parameterized byλ andǫ.

For L = 0.265 m and pf = 300 Pa, the three first
frequenciesfic, i = 1, 2, 3, corresponding to the three first
modesλic = 2πfic, i = 1, 2, 3 are approximately, inHz :

f1c ≃ 290.8 , f2c ≃ 903.7 , f3c ≃ 1474. (41)

The corresponding values ofǫic are, ins−1 :

ǫ1c ≃ 36.9 , ǫ2c ≃ −24.2 , ǫ3c ≃ −74.7. (42)
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Fig. 3. Re(det(A)) and Im(det(A)) with respect toλ and ǫ

It can be noticed that :

f2c

f1c

≃ 3.11,
f3c

f1c

≃ 5.07 (43)

i.e. the frequencies of the modes are close to odd multiples
of the first mode frequency, as expected for a closed-open
pipe. For negative values ofǫ, the modes are oscillating cor-
responding to a time growth. Since they are solutions of the
linearized problem, the modes calculated here can predict the
oscillating frequency during transient state, at low amplitude.
After this initial period, the saturation mechanisms may be
responsible for a bifurcation in the system.

VI. A UTOMATIC CONTROL OF THE FLUTE

To realize an automatic control law, we have to compute
pf andL or equivalently, the pair(Ūj , L) such that a desired
reference modeωr = λr + iǫr (or a desired reference

frequencyfr =
λr

2π
) is obtained. Therefore, the control

algorithm can be summarized as follows :

- λr and ǫr being chosen, solve the two equations (40)
with respect to the unknown variablesŪjr andLr, using
for example a Newton algorithm.

- The resulting asymptotic jet velocitȳUjr will be rea-
ched through the servo-valve, asking for a desired

steady-state pressurepf r =
1

2
ρ0Ū

2

jr .
- The resulting length of the pipeLr will be reached,

applying the following simple linear control law on the
piston :

L̇ = −k(L − Lr) , k > 0. (44)

For example, to haveωr = 2039, corresponding to
fr = f1ideal = c/4L = 324 Hz, solving equations (40)
with initial conditions close to the first mode frequency
leads to :(Ūjr = 8.61 m/s; Lr = 0.242) (or equivalently
(pf r = 44.5 Pa; Lr = 0.242)).

VII. N UMERICAL SCHEME, SIMULATION RESULTS AND

CONCLUSION

The numerical model which will be used for simulation
and control is obtained by (15) together with the boundary
conditions (28), (34) and (31). Since the velocities are
respectively positive and negative forα̃ andβ̃, it was natural
to implement a first-order un-centered upper scheme forα̃
and down scheme for̃β. Numerical diffusion terms should
be added to use centered schemes (see e.g. [15]).



To be more realistic and take into account viscous and
thermal losses in the tube, we have also added a small friction
term of the formνu in Euler equation (1),ν being a small
friction coefficient. More accurate models exist for visco-
thermal damping using non integer time derivative of the
flow rate (see e.g. [13]).

In Fig. 4 and 5, we can observe two spectrograms of the
simulated pressure. For comparison, the set point blowing
pressure used in the simulation is the one measured on
the experimental setup described below for pressures close
respectively to55 Pa and245 Pa.

The spectrogram of the pressure atx = 0 in Fig. 5
when pf ≃ 245 Pa shows that the oscillation takes place
on the second acoustic mode of the pipef2s ≃ 925Hz
which is very close to the computed valuesf2c given in
(41). For lower values of the blowing pressure, for example
pf = 55 Pa in Fig. 4, simulations show an oscillation on
the first pipe mode around310 Hz also close tof1c given in
(41). The slight difference is probably due to the fact that the
computed frequenciesfic are obtained throughlinearized
boundary conditions. Nevertheless, equations (40) constitute
a good approximation to computeLr as explained in section
VI.

Fig. 4. Spectrogram of the simulated pressure using the experimental
blowing pressure of Fig. 6 (close to55 Pa) andL = 0.265 m

The resulting pressure is now compared with experimental
data obtained from an actual instrument. This instrument is
built on a18.4 mm diameter tube, associated with a recorder-
like mouth piece. The tube is closed at its passive end. The
total length of the pipe is265 mm. The window shows lateral
walls of about4 mm which act as ears in an organ pipe,
increasing the end correction associated with radiation. The
attack transient is generated by a pressure rise time of about
40 ms and shows an overshoot. The acoustic pressure in
the instrument is measured at16 mm of the block of the
flute. From Fig. 6 and 7, one can observe that the oscillation
regimes forpf ≃ 55 Pa and pf ≃ 245 Pa are the same
as in the simulated cases (see Fig. 4 and 5). In the case
pf ≃ 55 Pa, the experimental spectrum during steady state is

Fig. 5. Spectrogram of the simulated pressure using a higherexperimental
blowing pressure of Fig. 7 (close to245 Pa) andL = 0.265 m

dominated by harmonics 1 and 3 whereas the even harmonics
appear weakly. These even harmonics are generated by
nonlinear source terms (see equations (22)-(24)). They are
weak compared to odd harmonics because they do not benefit
of pipe resonances. For all flute-type instruments, increasing
the blowing pressure results in a transition to an upper
mode. In the case of a stopped pipe, the second mode is
approximately at frequency 3 times higher than the first
mode. Therefore, as expected in the case of overblowing
pressurepf ≃ 245 Pa, the oscillating regime is given by
the second mode, both in experimental and simulated cases.
The experimental pressure also shows noise modulated by
the passive resonances of the pipe. This noise is generated
by turbulence as discussed in [18]. This phenomenon has not
been taken into account in our simulation model.

During the steady-state part of the oscillation, the simula-
tion and experimental pressure signals show some similarities
but also some differences. The oscillation regime is the same
for simulated and measured systems : oscillation on the first
pipe mode forpf ≃ 55 Pa and oscillation on the second
pipe mode forpf ≃ 245 Pa. The main differences are due
to the fact that the experimental flute presents inharmonicity
that the simulated one does not include. This is due to the
dispersion associated with viscous and thermal effects at the
pipe walls, which have not been included in our model, and
also to the fact that the frequency dependence of the end
corrections has not be modeled. The amplitude of the even
harmonics appears to be relatively higher in the experimental
data than in the simulation. This can be interpreted in terms
of the simplification of the non-linear source terms in the
model but also of the turbulent sound production already
discussed.

Moreover, we can observe on Fig. 8 that the amplitude of
the pressure oscillation predicted by the simulation is close to
the one observed in the experimental data. This indicates that
the dissipation model is quite efficient despite its simplicity.

The oscillation starts more slowly in the simulated flute
than in the experimental one. Indeed the jet and source model



Fig. 6. Spectrogram of the experimental pressure withpf close to55 Pa
andL = 0.265 m

Fig. 7. Spectrogram of the experimental pressure withpf close to245 Pa
andL = 0.265 m

we use are based on the analysis of steady-state oscillations.
Some aspects of the starting transient are not yet well
described by such models, as discussed in [9]. Moreover,
these models have been elaborated for open recorder-like
instruments and should be adapted in the case of a stopped
pipe, but this work is out of the scope of the present paper.
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Fig. 8. Comparison between the model pressure and the experimental
pressure with the same excitation blowing pressurepf ≃ 245 Pa

As we have already said in the introduction, the blowing
pressure range obtained for example in [4] or [5, Sec. 3]
was lower than in actual pipes. This is mainly due to the
simplifications of the jet and source models (eqs. (25), (26)
and (21)) which overestimate the jet amplification and sound

production at low jet velocities. To solve this problem, we
have implemented a numerical first order low pass filter on
the jet positionη leading toηf to obtain a more realistic
dynamics of the jet position in the mouth :

ηf (k + 1) = c4ηf (k) + (1 − c4)η(k) , c4 ∈ [0; 1[. (45)

Finally, Fig. 9 displays the simulation results we obtain
when the player wants to produce scales by sliding the piston.
It can be seen that the transient time response is about0.1 s
which is coherent with the attack transient time observed
when the slide is fixed. The spectrogram shows the frequency
shift resulting from the piston sliding.
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Fig. 9. A down scale : on the left spectrogram of the acoustic pressure ;
on the right evolution ofL from 0.20 m to 0.23 m

To conclude, the model presented in this paper produces
satisfying simulation results and could be used for sound
synthesis. Concerning the control, it must be noticed that
the (pf ; L) solution to reach a target pitch is not unique.
Indeed, the slide flute can play the same pitch with a soft
blowing and a short slide position, or with an increased
blowing pressure and a longer slide position. The instrument
therefore can produce musical dynamics (piano e forte) at
constant pitch by adjusting both the blowing pressure and
the slide position. The(pf ; L) solution presented at the end
of section VI corresponds to the closest solution to theL
value for passive resonance.

An experimental prototype is under development at
“Mines ParisTech” as shown in Fig. 10. The reference values
(pf r; Lr) have been obtained from the modal analysis per-
formed on the linearized boundary conditions. For musical



applications, the target is defined as a pitch rather than
a length. Consequently, it is more natural to regulate the
frequency error and this necessitates to implement a real-time
frequency detection to elaborate the closed-loop control.

mouth

pipe

slide translator

servo valve

Fig. 10. The slide flute prototype
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[3] B. d’Andréa-Novel, J.-M. Coron, G. Bastin,Sur le contrôle
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