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DISSIPATIVE BOUNDARY CONDITIONS FOR ONE-DIMENSIONAL

NONLINEAR HYPERBOLIC SYSTEMS∗

JEAN-MICHEL CORON† , GEORGES BASTIN‡ , AND BRIGITTE D’ANDRÉA-NOVEL§

Abstract. We give a new sufficient condition on the boundary conditions for the exponential
stability of one-dimensional nonlinear hyperbolic systems on a bounded interval. Our proof relies on
the construction of an explicit strict Lyapunov function. We compare our sufficient condition with
other known sufficient conditions for nonlinear and linear one-dimensional hyperbolic systems.
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1. Introduction. We are concerned with the following one-dimensional n × n
nonlinear hyperbolic system:

(1.1) ut + F (u)ux = 0, x ∈ [0, 1], t ∈ [0,+∞),

where u : [0,∞) × [0, 1] → R
n and F : R

n → Mn,n(R), Mn,n(R) denoting, as
usual, the set of n × n real matrices. We consider the case where, possibly after an
appropriate state transformation, F (0) is a diagonal matrix with distinct and nonzero
eigenvalues:

F (0) := diag (Λ1,Λ2, . . . ,Λn),(1.2)

Λi > 0 ∀i ∈ {1, . . . ,m},
Λi < 0 ∀i ∈ {m + 1, . . . , n},

Λi �= Λj ∀(i, j) ∈ {1, . . . , n}2 such that i �= j.(1.3)

In (1) and in what follows, diag (Λ1,Λ2, . . . ,Λn) denotes the diagonal matrix whose
ith element on the diagonal is Λi.

Our concern is to analyze the asymptotic behavior of the classical solutions of the
system under the following boundary condition:

(1.4)

(

u+(t, 0)

u−(t, 1)

)

= G

(

u+(t, 1)

u−(t, 0)

)

, t ∈ [0,+∞),

where the map G : R
n → R

n vanishes at 0, while u+ ∈ R
m, u− ∈ R

n−m are defined
by requiring that u := (utr

+, u
tr
−)tr. The problem is to find the map G such that
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the boundary condition (1.4) is dissipative, i.e., implies that the equilibrium solution
u ≡ 0 of system (1.1) with the boundary condition (1.4) is exponentially stable.

This problem has been considered in the literature for more than 20 years. To
our knowledge, the first results were published by Slemrod in [21] and Greenberg and
Li in [9] for the special case of 2× 2 (i.e., u ∈ R

2) systems. A generalization to n× n
systems was given by the Li school. Let us mention in particular [17] by Qin, [25] by
Zhao, and [14, Theorem 1.3, page 173] by Li. All these results rely on a systematic
use of direct estimates of the solutions and their derivatives along the characteristic
curves. They give rise to sufficient dissipative boundary conditions which are kinds of
“small gain conditions.” The weakest sufficient condition [14, Theorem 1.3, page 173]
is formulated as follows: ρ(|G′(0)|) < 1, where ρ(A) denotes the spectral radius of
A ∈ Mn,n(R) and |A| denotes the matrix whose elements are the absolute values of
the elements of A ∈ Mn,n(R).

In this paper we follow a different approach, which is based on a Lyapunov sta-
bility analysis. The special case of 2 × 2 systems and F (u) diagonal has recently
been treated in our previous paper [6]. In the present paper, by using a more general
strict Lyapunov function (see section 4), we get a new weaker dissipative boundary
condition, stated as follows:

Inf {‖ΔG′(0)Δ−1‖; Δ ∈ Dn,+} < 1,

where ‖ ‖ denotes the usual 2-norm of matrices in Mn,n(R) and Dn,+ denotes the
set of diagonal matrices whose elements on the diagonal are strictly positive.

Moreover, our proof is rather elementary, and the existence of a strict Lyapunov
function may be useful for studying robustness issues.

Our paper is organized as follows. In section 2, after some mathematical pre-
liminaries, a precise technical definition of our new dissipative boundary condition is
followed by the statement of our exponential stability theorem. Section 3 is then de-
voted to a discussion of the optimality properties of our dissipative boundary condition
and to a comparison of this condition with other stability criteria from the literature,
namely the criterion [14, Theorem 1.3, p, 173] mentioned above and a stability cri-
terion for linear hyperbolic systems due to Silkowski. The proof of our exponential
stability theorem, including the Lyapunov stability analysis, is thoroughly given in
section 4. The paper ends with two appendices, where some technical properties of
our dissipative boundary condition are given.

2. A sufficient condition for exponential stability. For

x := (x1, . . . , xn)tr ∈ C
n,

|x| denotes the usual Hermitian norm of x:

|x| :=

√

√

√

√

n
∑

i=1

|xi|2.

For n ∈ N \ {0} and m ∈ N \ {0}, we denote by Mn,m(R) the set of n × m real
matrices. We define, for K ∈ Mn,m(R),

‖K‖ := max{|Kx|;x ∈ R
n, |x| = 1} = max{|Kx|;x ∈ C

n, |x| = 1},
and, if n = m,

ρ1(K) := Inf {‖ΔKΔ−1‖; Δ ∈ Dn,+},(2.1)
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where Dn,+ denotes the set of n × n real diagonal matrices with strictly positive
diagonal elements.

For ε, let Bε be the open ball of R
n of radius ε. We assume that, for some ε0 > 0,

F : Bε0 → Mn,n(R) is of class C2 and that there exists m ∈ {0, . . . , n} and n real
numbers Λ1, . . . ,Λn such that

Λi > 0 ∀i ∈ {1, . . . ,m} and Λi < 0 ∀i ∈ {m + 1, . . . , n},(2.2)

F (0) = diag (Λ1, . . . ,Λn),(2.3)

Λi �= Λj ∀(i, j) ∈ {1, . . . , n}2 such that i �= j.(2.4)

For u ∈ R
n, u+ ∈ R

m and u− ∈ R
n−m are defined by requiring

u =

(

u+

u−

)

.

As mentioned in the introduction, we are mainly interested in analyzing the
asymptotic convergence of the classical solutions of the following Cauchy problem:

ut + F (u)ux = 0, x ∈ [0, 1], t ∈ [0,+∞),(2.5)

(

u+(t, 0)

u−(t, 1)

)

= G

(

u+(t, 1)

u−(t, 0)

)

, t ∈ [0,+∞),(2.6)

u(0, x) = u0(x), x ∈ [0, 1].(2.7)

Concerning G, we assume that G : Bε0 → R
n is of class C2 and satisfies G(0) = 0. We

define F+(u) ∈ Mm,n(R), F−(u) ∈ M(n−m),n(R), G+(u) ∈ R
m, and G−(u) ∈ R

n−m

by requiring

F (u) =

(

F+(u)

F−(u)

)

, G(u) =

(

G+(u)

G−(u)

)

.

Regarding the existence of the solutions to the Cauchy problem (2.5)–(2.7), we
have the following proposition.

Proposition 2.1. There exists δ0 > 0 such that, for every u0 ∈ H2((0, 1),Rn)
satisfying

|u0|H2((0,1),Rn) � δ0

and the compatibility conditions
(

u0
+(0)

u0
−(1)

)

= G

(

u0
+(1)

u0
−(0)

)

,(2.8)

(2.9) F+(u0(0))u0
x(0) =

[

G′
+u+

(

u0
+(1)

u0
−(0)

)]

F+(u0(1))u0
x(1)

+

[

G′
+u−

(

u0
+(1)

u0
−(0)

)]

F−(u0(0))u0
x(0),
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(2.10) F−(u0(1))u0
x(1) =

[

G′
−u+

(

u0
+(1)

u0
−(0)

)]

F+(u0(1))u0
x(1)

+

[

G′
−u−

(

u0
+(1)

u0
−(0)

)]

F−(u0(0))u0
x(0),

the Cauchy problem (2.5)–(2.7) has a unique maximal classical solution

u ∈ C0([0, T ), H2((0, 1),Rn))

with T ∈ [0,+∞]. Moreover, if

|u(t, ·)|H2((0,1),Rn) � δ0 ∀t ∈ [0, T ),

then T = +∞.
For a proof of this proposition, see, for instance, [12] by Kato, [13, pp. 2–3] by

Lax, [16, pp. 35–43] by Majda, or [20, pp. 106–114] by Serre. Actually [12, 13, 16, 20]
deal with R instead of [0, 1], but the proofs given there can be adapted to treat this
new case. See also [15, pp. 96–107] by Li and Yu for the well-posedness of the Cauchy
problem (2.5)–(2.7) in the framework of functions u of class C1. Let us briefly explain
how to adapt these proofs in order to get, for example, the existence of a solution
u ∈ C0([0, T ], H2((0, 1),Rn)) to the Cauchy problem (2.5)–(2.7) if m = n (just to
simplify the notation), for T ∈ (0,+∞) given, and for every u0 ∈ H2((0, 1),Rn)
satisfying the compatibility conditions (2.8)–(2.9) (when m = n, condition (2.10)
disappears) and such that |u0|H2((0,1),Rn) is small enough (the smallness depending
on T in general). We first deal with the case where

T ∈ (0,min{Λ−1
1 , . . . ,Λ−1

n }).

The basic ingredient is the following fixed point method, which is related to the one
given in [15, page 97] (see also the pioneering works [12] and [13, pp. 2–3], where the
authors deal with R instead of [0, 1]). For R > 0 and for u0 ∈ H2((0, 1),Rn) satisfying
the compatibility conditions (2.8)–(2.9), let CR(u0) be the set of

u ∈ L∞((0, T ), H2((0, 1),Rn)) ∩W 1,∞((0, T ), H1((0, 1),Rn))

∩W 2,∞((0, T ), L2((0, 1),Rn))

such that

|u|L∞((0,T ),H2((0,1),Rn)) � R,

|u|W 1,∞((0,T ),H1((0,1),Rn)) � R,

|u|W 2,∞((0,T ),L2((0,1),Rn)) � R,

u(·, 1) ∈ H2((0, T ),Rn) and |u(·, 1)|H2((0,T ),Rn) � R2,

u(0, ·) = u0,

ut(0, ·) = −F (u0)u0
x.
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The set CR(u0) is a closed subset of L∞((0, T ), L2((0, 1),Rn)) (at least if |u0|H2((0,1),Rn)

is small enough so that |u0|C0([0,1],Rn) < ε0). Given R > 0, the set CR(u0) is not empty
if |u0|H2((0,1),Rn) is small enough. Let F : CR(u0) → L∞((0, T ), H2((0, 1),Rn)) ∩
W 1,∞((0, T ), H1((0, 1),Rn)) ∩ W 2,∞((0, T ), L2((0, 1),Rn)) be defined by F(ũ) = u,
where u is the solution of the linear hyperbolic Cauchy problem

ut + F (ũ)ux = 0, u(t, 0) = G(ũ(t, 1)), t ∈ [0, T ],(2.11)

u(0, x) = u0(x), x ∈ [0, 1].

The set CR(u0) is a closed subset of L∞((0, T ), L2((0, 1),Rn)) (at least if |u0|H2((0,1),Rn)

is small enough so that |u0|L∞((0,1),Rn) � ε0/2). Moreover, given R > 0, CR(u0) is
not empty if |u0|H2((0,1),Rn) is small enough. Using standard energy estimates and
the finite speed of propagation inherent in (2.11), one gets the existence of M > 0
and R0 > 0 such that, for every R ∈ (0, R0], there exists δ > 0 such that, for every
u0 ∈ H2((0, 1),Rn) such that |u0|H2((0,1),Rn) � δ and satisfying the compatibility
conditions (2.8)–(2.9),

F(CR(u0)) ⊂ CR(u0)(2.12)

and

|F(ũ2) −F(ũ1)|L∞((0,T ),L2((0,1),Rn)) + M |F(ũ2)(·, 1) −F(ũ1)(·, 1)|L2((0,1),Rn)

�
1

2
|ũ2−ũ1|L∞((0,T ),L2((0,1),Rn))+

M

2
|ũ2(·, 1)−ũ1(·, 1)|L2((0,1),Rn) ∀(ũ1, ũ2) ∈ CR(u0).

This allows us to prove that F has a fixed point u ∈ CR(u0); i.e., there exists a solution
u ∈ CR(u0) to the Cauchy problem (2.5)–(2.7). In order to get the extra regularity
property u ∈ C0([0, T ], H2((0, 1),Rn)), one can adapt [16, pp. 44–46] by noticing that,
when one uses usual energy estimates to get (2.12), one also gets, for u := F(ũ) with
ũ ∈ CR(u0), the “hidden regularity” uxx(·, 1) ∈ L2((0, T ),Rn) together with estimates
on |uxx(·, 1)|L2((0,T ),Rn) which are sufficient to take care of the boundary terms which
now appear when one does integrations by parts. The case of general T ∈ (0 + ∞)
follows by applying the above result to [0, T1], [T1, 2T1], [2T1, 3T1], . . . , with T1 given
in (0,min{Λ−1

1 , . . . ,Λ−1
n }). This concludes our sketch of the proof of Proposition 2.1.

We adopt the following definition of the exponential stability of the equilibrium
solution u ≡ 0.

Definition 2.2. The equilibrium solution u ≡ 0 of the nonlinear hyperbolic
system (2.5)–(2.6) is exponentially stable (for the H2-norm) if there exist ε > 0, ν > 0,
and C > 0 such that, for every u0 ∈ H2((0, 1),Rn) satisfying |u0|H2((0,1),Rn) � ε
and the compatibility conditions (2.8)–(2.10), the classical solution u to the Cauchy
problem (2.5)–(2.7) is defined on [0,+∞) and satisfies

|u(t, ·)|H2((0,1),Rn) � Ce−νt|u0|H2((0,1),Rn) ∀t ∈ [0,+∞).(2.13)

Our main result is the following theorem.
Theorem 2.3. If ρ1

(

G′(0)
)

< 1, then the equilibrium u ≡ 0 of the quasi-linear
hyperbolic system (2.5)–(2.6) is exponentially stable.

The proof of this theorem is given in section 4.
As mentioned in the introduction, the next section is devoted to a comparison of

our dissipative boundary condition (i.e., ρ1(G
′(0)) < 1) with other stability criteria

from the literature, namely the criterion given in [14, Theorem 1.3, page 173] and a
stability criterion for linear hyperbolic systems.
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3. Comparison with other stability conditions. In this section, we first
compare our condition ρ1(G

′(0)) < 1 for exponential stability (Theorem 2.3) with
a prior condition found by Li [14, Theorem 1.3, page 173]. In the second part of
this section we shall compare our condition to conditions for the stability of linear
hyperbolic systems.

3.1. Comparison with the Li condition. Let us first introduce some notation
and definitions. For K ∈ Mn,m(R), we denote by Kij the term on the ith line and
jth column of the matrix K and denote by |K| the matrix in Mn,m(R) defined by

|K|ij := |Kij | ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}.
We define, for K ∈ Mn,n(R),

R2(K) := Max

⎧

⎨

⎩

n
∑

j=1

|Kij |; i ∈ {1, . . . , n}

⎫

⎬

⎭

,

ρ2(K) := Inf {R2(ΔKΔ−1); Δ ∈ Dn,+}.
Note that, by [14, Lemma 2.4, page 146],

ρ2(K) = ρ(|K|),(3.1)

where, for A ∈ Mn,n(R), ρ(A) is the spectral radius of A. In the following theorem,
we recall the sufficient condition for exponential stability introduced by Li.

Theorem 3.1 (see [14, Theorem 1.3, page 173]). Assume that ρ2(G
′(0)) <

1; then 0 ∈ C1([0, 1],Rn) is locally exponentially stable in the C1([0, 1])-norm for
the hyperbolic system (2.5)–(2.6); i.e., there exist ε > 0, ν > 0, and C > 0 such
that, for every u0 ∈ C1([0, 1],Rn) satisfying |u0|C1([0,1],Rn) � ε and the compatibility
conditions (2.8)–(2.10), the Cauchy problem (2.5)–(2.7) has a unique solution u in
C1([0,+∞) × [0, 1],Rn), and this solution satisfies

|u(t, ·)|C1([0,1],Rn) � Ce−νt|u0|C1([0,1],Rn) ∀t ∈ [0,+∞).

The following proposition and (3.3) show that our new sufficient condition, namely
ρ1(G

′(0)) < 1, is weaker than the previous one.
Proposition 3.2. For every K ∈ Mn,n(R),

ρ1(K) � ρ2(K).(3.2)

Let us point out that there are matrices K such that inequality (3.2) is strict.
For example, for a > 0, let

Ka :=

(

a a

−a a

)

∈ M2,2(R).

Then

ρ1(Ka) =
√

2a < 2a = ρ2(Ka).(3.3)

Remark 3.3. In fact, in [14, Theorem 1.3, page 173], it is assumed that G+

depends only on u− and that G− depends only on u+. However, if one takes

K :=

(

0 Ka

Ka 0

)

∈ M4,4(R),
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n = 4, m = 2, and G(u) := Ku, which are allowed by the type of boundary conditions
considered in [14, Theorem 1.3, page 173], one again gets ρ1(K) =

√
2a < 2a =

ρ2(K).
Proof of Proposition 3.2. Let us first prove the following lemma.
Lemma 3.4. For every K ∈ Mn,n(R), for every D ∈ Dn,+, for every Δ ∈ Dn,+,

for every X ∈ R
n, and for every Y ∈ R

n,

Y trΔKΔ−1X �
1

2
R2(DΔ−1KtrΔD−1)|X|2 +

1

2
R2(DΔKΔ−1D−1)|Y |2.(3.4)

Proof of Lemma 3.4. Replacing, if necessary, K by ΔKΔ−1, we may assume with-
out loss of generality that Δ is the identity map of R

n. We write X := (X1, . . . , Xn)tr ∈
R

n, Y := (Y1, . . . , Yn)tr ∈ R
n, D := diag (D1, . . . , Dn). One has

Y trKX =

n
∑

i=1

Yi

⎛

⎝

n
∑

j=1

KijXj

⎞

⎠ =

n
∑

i=1

n
∑

j=1

Kij

DiDj
DiYiDjXj

�
1

2
Q1 +

1

2
Q2,(3.5)

with

Q1 :=

n
∑

i=1

n
∑

j=1

|Kij |
DiDj

D2
jX

2
j and Q2 :=

n
∑

i=1

n
∑

j=1

|Kij |
DiDj

D2
i Y

2
i .

Note that

Q1 =

n
∑

j=1

(

n
∑

i=1

|Kij |D−1
i Dj

)

X2
j =

n
∑

j=1

(

n
∑

i=1

|(D−1KD)tr)ji|
)

X2
j

�

n
∑

j=1

R2((D
−1KD)tr)X2

j = R2(DKtrD−1)|X|2.(3.6)

Similarly,

Q2 =

n
∑

i=1

⎛

⎝

n
∑

j=1

Di|Kij |D−1
j

⎞

⎠Y 2
i =

n
∑

i=1

⎛

⎝

n
∑

j=1

|(DKD−1)ij |

⎞

⎠Y 2
i

�

n
∑

i=1

R2(DKD−1)Y 2
i = R2(DKD−1)|Y |2.(3.7)

Inequality (3.4) follows from (3.5), (3.6), and (3.7). This concludes the proof of
Lemma 3.4.

Let us go back to the proof of Proposition 3.2. One easily sees that

{(DΔ−1, DΔ); D ∈ Dn,+, Δ ∈ Dn,+} = Dn,+ ×Dn,+.(3.8)

Equality (3.8) implies that

(3.9) ρ2(K
tr) + ρ2(K)

= Inf {R2(DΔ−1KtrΔD−1) + R2(DΔKΔ−1D−1); D ∈ Dn,+, Δ ∈ Dn,+}.
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Using (3.1), we have

ρ2(K
tr) = ρ(|Ktr|) = ρ(|K|tr) = ρ(|K|) = ρ2(K),(3.10)

which, together with (3.9), gives

(3.11) Inf {R2(DΔ−1|K|trΔD−1) + R2(DΔ|K|Δ−1D−1); D ∈ Dn,+, Δ ∈ Dn,+}

= 2ρ2(K).

Finally, let us note that, for every Δ in Dn,+,

Sup {Y trΔKΔ−1X; X ∈ R
n, Y ∈ R

n, |X| = |Y | = 1} = ‖ΔKΔ−1‖ � ρ1(K).

(3.12)

Proposition 3.2 follows from (3.4), (3.11), and (3.12).

3.2. Comparison with stability conditions for linear hyperbolic sys-

tems. Replacing, if necessary, y(t, x) by

(

y+(t, x)

y−(t, 1 − x)

)

,

it may be assumed, without loss of generality, that the speeds of propagation Λi are
all positive. More precisely we consider the special case of linear hyperbolic systems

yt + Λyx = 0, y(t, 0) = Ky(t, 1),(3.13)

where

Λ := diag (Λ1, . . . ,Λn), with Λi > 0 ∀i ∈ {1, . . . , n}.(3.14)

In order to avoid compatibility conditions, one can deal with the case where y(t, ·) ∈
L2((0, 1),Rn) (instead of y(t, ·) ∈ H2((0, 1),Rn), as we consider above for the nonlin-
ear hyperbolic system (2.5)–(2.6)). It is well known that the Cauchy problem associ-
ated with (3.13) is well posed in L2((0, 1),Rn); that is, for every y0 ∈ L2((0, 1),Rn),
there exists a unique

y ∈ C0([0,+∞), L2((0, 1),Rn))

solution of (3.13) satisfying the initial condition

y(0, ·) = y0.(3.15)

Of course, (3.13) has to be understood in the classical weak sense; i.e., for every
ϕ ∈ C1([0,+∞) × [0, 1]; Rn) with compact support and satisfying

ϕtr(t, 1)Λ − ϕtr
+(t, 0)ΛK = 0 ∀t ∈ [0,+∞),

we have

∫ +∞

0

∫ 1

0

(ϕtr
t + ϕtr

x Λ)ydxdt +

∫ 1

0

ϕtr(0, x)y0(x)dx = 0.
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See, for example, [5, section 2.1].
As usual, we say that 0 ∈ L2((0, 1),Rn) is exponentially stable for (3.13) (for

the norm of L2((0, 1),Rn)) if there exist ν > 0 and C > 0 such that, for every
y0 ∈ L2((0, 1),Rn), the solution of the Cauchy problem (3.13), (3.15) satisfies

|y(t, ·)|L2((0,1),Rn) � Ce−νt|y0|L2((0,1),Rn) ∀t ∈ [0,+∞).

One easily checks that (3.13) is equivalent to

φi(t) =

n
∑

j=1

Kijφj(t− rj) ∀i ∈ {1, . . . , n},(3.16)

with

φj(t) := yj(t, 0), rj :=
1

Λj
, j ∈ {1, . . . , n}.

Hence (3.13) can be considered as a linear time-delay system. By a classical result on
linear time-delay systems (see, e.g., [10, Theorem 3.5 page 275] by Hale and Verduyn
Lunel), 0 ∈ L2((0, 1),Rn) is exponentially stable for the system (3.13) if and only if
there exists δ > 0 such that

(

det (Idn − (diag (e−r1z, . . . , e−rnz))K) = 0, z ∈ C

)

⇒ (ℜ(z) � −δ),(3.17)

where Idn is the identity map of R
n and ℜ(z) denotes the real part of the complex

number z. Note that ρ1(K) < 1 implies the existence of δ > 0 such that (3.17) holds.
Indeed, let us assume that ρ1(K) < 1. Then, by (2.1), there exist µ ∈ (0, 1) and
D ∈ Dn,+ such that

‖DKD−1‖ � µ.(3.18)

Let us assume that z ∈ C is such that

det
(

Idn − (diag (e−r1z, . . . , e−rnz))K
)

= 0.

Then

det
(

Idn − (diag (e−r1z, . . . , e−rnz))DKD−1
)

= det
(

D(Idn − (diag (e−r1z, . . . , e−rnz))K)D−1
)

= det
(

Idn − (diag (e−r1z, . . . , e−rnz))K
)

= 0,

which implies that

‖(diag (e−r1z, . . . , e−rnz))DKD−1)‖ � 1.(3.19)

Since

‖(diag (e−r1z, . . . , e−rnz))DKD−1)‖ � ‖diag (e−r1z, . . . , e−rnz)‖‖DKD−1‖

� e−min{r1ℜ(z),...,rnℜ(z)}‖DKD−1‖,
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one has, also using (3.18) and (3.19),

e−min{r1ℜ(z),...,rnℜ(z)}µ � 1.(3.20)

Inequality (3.20) implies that (3.17) holds with δ := ln(µ)/(max{r1, . . . , rn}) < 0.
The converse is false: the existence of δ > 0 such that (3.17) holds does not imply

that ρ1(K) < 1. For example, let us choose r1 := 1, r2 := 2, and

K :=

(

a a

a a

)

, a ∈ R.

(This example is borrowed from [10, page 285].) It is easily seen that ρ1(K) = 2|a|.
Hence ρ1(K) < 1 is equivalent to a ∈ (−1/2, 1/2). However, the existence of δ > 0
such that (3.17) holds is equivalent to a ∈ (−1, 1/2).

If we want to try to apply results on the stability of the linear hyperbolic system
(3.13) in order to get the stability of our nonlinear hyperbolic system (2.5)–(2.6), since
F (u) depends on u, it is natural to ask for the robustness of the stability of the linear
hyperbolic system (3.13) with respect to small changes on the Λi’s, i.e., on the speeds
of propagation. (One can easily sees that the stability is robust with respect to small
changes on K.) Let us adopt the following definition.

Definition 3.5. The linear system (3.13) is robustly exponentially stable with
respect to the speeds of propagation if there exists ε > 0 such that, for every Λ̃ :=
diag (Λ̃1, . . . , Λ̃n) ∈ Dn,+ such that

|Λ̃i − Λi| � ε ∀i ∈ {1, . . . , n},
0 ∈ L2((0, 1),Rn) is exponentially stable for the perturbed linear hyperbolic system

yt + Λ̃yx = 0, y(t, 0) = Ky(t, 1).

One has, then, the following theorem, which is due to Silkowski (see [10, Theo-
rem 6.1, page 286]; see also [26, 11]).

Theorem 3.6. Let

ρ0(K) := max{ρ(diag (eιθ1 , . . . , eιθn)K); (θ1, . . . , θn)tr ∈ R
n},(3.21)

with ι :=
√
−1. If the (r1, . . . , rn) are rationally independent, the linear system (3.13)

is exponentially stable if and only if ρ0(K) < 1. In particular (note that ρ0(K) depends
continuously on K), whatever (r1, . . . , rn) ∈ (0,+∞)n is, the linear system (3.13) is
robustly exponentially stable with respect to the speeds of propagation if and only if
ρ0(K) < 1.

From this theorem the interest of comparing ρ0(K) and ρ1(K) is clear. This is
done in the following proposition.

Proposition 3.7. For every n ∈ N and for every K ∈ Mn,n(R),

ρ0(K) � ρ1(K).(3.22)

For every n ∈ {1, 2, 3, 4, 5} and for every K ∈ Mn,n(R),

ρ0(K) = ρ1(K).(3.23)

For every n ∈ N \ {1, 2, 3, 4, 5}, there exists K ∈ Mn,n(R) such that

ρ0(K) < ρ1(K).(3.24)

The proof of Proposition 3.7 is given in Appendix B.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1470 J.-M. CORON, G. BASTIN, AND B. D’ANDRÉA-NOVEL

4. Proof of Theorem 2.3. For the clarity of the analysis, we first deal in detail
with the case where m = n and then give only the main modifications to deal with
the case m < n. When m = n the boundary condition (2.6) reads

u(t, 0) = G(u(t, 1)), t ∈ [0,+∞),(4.1)

and the compatibility conditions (2.8)–(2.10) become

u0(0) = G(u0(1)),(4.2)

F (u0(0))u0
x(0) = G′(u0(1))F (u0(1))u0

x(1).(4.3)

Let us introduce some simplifying notation,

(4.4) Λ := F (0) ∈ Dn,+, K := G′(0), v := ux, w := vx = uxx,

and let us denote by Sn the set of n× n real symmetric matrices and by Sn,+ the set
of n× n real symmetric positive definite matrices.

We shall repeatedly use the following lemma.
Lemma 4.1. Let Λ := diag (Λ1, . . . ,Λn) ∈ Dn be such that (2.4) holds. Let Δ ∈

Dn. Then there exist a positive real number η and a map N : {M ∈ Mn,n(R); ‖M −
Λ‖ < η} → Sn of class C∞ such that

N(Λ) = Δ,

N(M)M −M trN(M) = 0 ∀M ∈ Mn,n(R) such that ‖M − Λ‖ < η.

Proof of Lemma 4.1. Let An be the set of matrices A ∈ Mn,n(R) such that
Atr = −A. For M ∈ Mn,n(R), let us consider the following linear map:

LM : Sn → An ×Dn,

S �→ (SM −M trS,Diag (S)),

where Diag (S) := diag (S11, . . . , Snn). Noticing that

SΛ − ΛtrS = (Λj − Λi)Sij ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n},∀S ∈ Sn

and using (2.4), it is easily checked that LΛ : Sn → An × Dn is an isomorphism.
Hence there exists η > 0 such that, for every M ∈ Mn,n(R) such that ‖M − Λ‖ < η,
LM is an isomorphism. It then suffices to define N by

N(M) = L−1
M (0,Δ).

This concludes the proof of Lemma 4.1.
For the stability analysis, we now introduce the Lyapunov function candidate

(4.5) V (u, v, w) = V1(u) + V2(u, v) + V3(u, v, w),

with

V1(u) =

∫ 1

0

utrQ(u)u e−µxdx,(4.6)

V2(u, v) =

∫ 1

0

vtrR(u)v e−µxdx,(4.7)

V3(u, v, w) =

∫ 1

0

wtrS(u)w e−µxdx,(4.8)
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where µ > 0, Q(u), R(u), and S(u) are symmetric positive definite matrices which
will be defined later.

Remark 4.2. The weight e−µx is essential to get a strict Lyapunov function. It is
similar to the one introduced in [4] to stabilize the Euler equation of incompressible
fluids (see the definition of V given on page 1886 of [4]). It has also been used by
Xu and Sallet in [24] for quite general linear hyperbolic systems (see also [22] by
Tchousso, Besson, and Xu).

Let us compute the time derivative V̇1 of V1 along the classical C1-solutions of
system (2.5) with boundary conditions (4.1). One has

V̇1 =

∫ 1

0

{

2utrQ(u)ut + utr
(

Q(u)
)

t
u
}

e−µxdx

=

∫ 1

0

{

−2utrQ(u)F (u)ux + utr[Q′(u)ut]u
}

e−µxdx,

where Q′(u) is the linear map from R
n to Sn which stands for the derivative of Q at

the point u. Hence

V̇1 =

∫ 1

0

{

−
(

utrQ(u)F (u)u
)

x
+ utr

(

Q(u)F (u)
)

x
u− utr

[

Q′(u)F (u)v
]

u
}

e−µxdx.

(4.9)

For f ∈ C0([0, 1],Rn), we denote by |f |0 its C0-norm: |f |0 := max{|f(x)|; x ∈ [0, 1]}.
From now on, V1 and V̇1 are considered as functionals defined, respectively, by (4.6)
and (4.9) on the set V1 of u ∈ C1([0, 1],Rn) satisfying |u|0 < ε0 and the compatibility
condition

u0 = G(u1),(4.10)

with u0 := u(0) and u1 := u(1).
Since ρ1(K) < 1 by assumption, there exists D ∈ Dn,+ such that ‖DKD−1‖ < 1.

The matrix Q(u) is selected as the matrix N(F (u)) of Lemma 4.1 with Δ := D2Λ−1.
Our estimates on V1 and V̇1 are in the following lemma.
Lemma 4.3. There exists µ1 > 0 such that, for every µ ∈ (0, µ1), there exist

positive real constants α1, β1, δ1 such that, for every u ∈ V1 such that |u|0 � δ1,

1

β1

∫ 1

0

|u|2dx � V1(u) � β1

∫ 1

0

|u|2dx,(4.11)

V̇1(u) � −α1V1(u) + β1

∫ 1

0

|u|2|ux|dx.(4.12)

Proof of Lemma 4.3. Throughout this proof, u is assumed to be in V1. From the
construction of Q,

Q(0)F (0) = Q(0)Λ = D2 ∈ Dn,+,(4.13)

and there exists δ11 ∈ (0, ε0/2) such that

Q(a) ∈ Sn,+ and Q(a)F (a) ∈ Sn,+ ∀a ∈ R
n such that |a| � δ11.(4.14)
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Clearly, from (4.14), we obtain that, for every µ > 0, there exists β1 > 0 such that
(4.11) holds if |u|0 � δ11.

Let us now deal with the estimate (4.12) on V̇1(= V̇1(u)). Let us decompose V̇1

in the following way:

(4.15) V̇1 = T11 + T12 + T13,

with

T11 := −µ

∫ 1

0

(

utrQ(u)F (u)u
)

e−µxdx,(4.16)

T12 := −
∫ 1

0

(

utrQ(u)F (u)ue−µx
)

x
dx,(4.17)

T13 :=

∫ 1

0

{

utr
(

[Q′(u)v]F (u) + Q(u)[F ′(u)v] − [Q′(u)F (u)v]
)

u
}

e−µxdx.(4.18)

Analysis of the first term T11. By (4.11) and (4.14), for every µ > 0, there exists
a positive real constant α1 > 0 such that, if |u|0 � δ11,

(4.19) T11 � −α1V1.

Analysis of the second term T12. One has

T12 = −
[

utrQ(u)F (u)ue−µx
]1

0

= −
(

utr
1 Q(u1)F (u1)u1e

−µ − utr
0 Q(u0)F (u0)u0

)

.

Let us introduce a notation in order to deal with estimates on “higher order terms.”
We denote by O(X,Y ), with X � 0 and Y � 0, quantities such that there exist C > 0
and ε > 0, independent of u, v and w, satisfying

(Y � ε) ⇒ (|O(X,Y )| � CX).

Using the compatibility condition (4.10), we have

T12 = −
(

utr
1 Q(u1)F (u1)u1e

−µ − (G(u1))
trQ
(

G(u1)
)

F
(

G(u1)
)

G(u1)
)

= −utr
1

(

Q(0)Λe−µ −KtrQ(0)ΛK
)

u1 + O(|u1|3; |u1|).(4.20)

For u1 ∈ R
n, we define ζ := Du1. Then, using (4.13), we have, for every u1 ∈ R

n,

utr
1 K

trQ(0)ΛKu1 = utr
1 K

trDDKu1 =
(

ζtrD−1KtrD
) (

DKD−1ζ
)

= |DKD−1ζ|2.

Hence, using (4.13) once again, we have, for every u1 ∈ R
n,

(4.21) utr
1 K

trQ(0)ΛKu1 � ‖DKD−1‖2ζtrζ = ‖DKD−1‖2utr
1 Q(0)Λu1.

From this inequality and the fact that ‖DKD−1‖ < 1, it follows that, taking µ > 0
small enough (which is always implicitly assumed), Q(0)Λe−µ − KtrQ(0)ΛK is a
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positive definite matrix. Then, using (4.20), there exists δ12 > 0 such that, if |u1| �

δ12,

(4.22) T12 � 0.

Analysis of the third term T13. The integrand of T13 is linear with respect to v
and, at least, quadratic with respect to u. It follows that, increasing the value of β1

if necessary, there exists a real positive constant δ13 such that, for |u|0 � δ13,

(4.23) T13 � β1

∫ 1

0

|u|2|v|dx.

Then, collecting inequalities (4.19), (4.22), and (4.23) together, if

|u|0 � δ1 := min{δ11, δ12, δ13},

we conclude that

(4.24) V̇1 = T11 + T12 + T13 � −α1V1 + β1

∫ 1

0

|u|2|v|dx.

This completes the proof of Lemma 4.3.
From Lemma 4.3 it appears that it is clearly necessary to examine the dynamics

of v = ux in order to carry out the Lyapunov stability analysis. This is the reason
why the Lyapunov function (4.5) is extended with terms involving v. By time differ-
entiation of the system equations (2.5) and (4.1), it may be shown that v satisfies the
dynamics

vt + F (u)vx + [F ′(u)v]v = 0, x ∈ [0, 1], t ∈ [0,+∞),(4.25)

F (u(t, 0))v(t, 0) = G′
(

u(t, 1)
)

F
(

u(t, 1)
)

v(t, 1), t ∈ [0,+∞).(4.26)

Let us compute the time derivative of V2 along the classical C1-solutions of system
(4.25) with boundary conditions (4.26). One has

V̇2 =

∫ 1

0

{

2vtrR(u)vt + vtr
(

R(u)
)

t
v
}

e−µxdx

=

∫ 1

0

{

−2vtrR(u)F (u)vx − 2vtrR(u)[F ′(u)v]v − vtr[R′(u)F (u)v]v
}

e−µxdx.(4.27)

From now on, V2 and V̇2 are considered as functionals defined, respectively, by
(4.7) and (4.27) on the set V2 of (u, v) ∈ C2([0, 1],Rn) × C1([0, 1],Rn) such that

|u|0 < ε0,(4.28)

ux = v,(4.29)

u0 = G(u1),(4.30)

F (u0)v0 = G′
(

u1

)

F
(

u1

)

v1,(4.31)

where u0 := u(0), u1 := u(1) as above, and v0 := v(0), v1 := v(1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1474 J.-M. CORON, G. BASTIN, AND B. D’ANDRÉA-NOVEL

The matrix R(u) is selected as the matrix N(F (u)) of Lemma 4.1 now with
Δ := ΛD2. Our estimates on V2 and V̇2 are in the following lemma.

Lemma 4.4. There exists µ2 > 0 such that, for every µ ∈ (0, µ2), there exist
positive real constants α2, β2, δ2 such that, for every (u, v) ∈ V2 such that |u|0 � δ2,

1

β2

∫ 1

0

|v|2dx � V2(u, v) � β2

∫ 1

0

|v|2dx,(4.32)

V̇2(u, v) � −α2(V2(u, v) + |v1|2) + β2

∫ 1

0

|v|3dx.(4.33)

Proof of Lemma 4.4. Throughout this proof, (u, v) is assumed to be in V2. By
the construction of R, we have

F (0)−1R(0) = Λ−1R(0) = D2 ∈ Dn,+(4.34)

and the existence of δ21 ∈ (0, ε0/2) such that

R(a) ∈ Sn,+ and R(a)F (a) ∈ Sn,+ ∀a ∈ R
n such that |a| � δ21.(4.35)

Clearly, from (4.35), for every µ > 0, there exists β2 > 0 such that (4.32) holds if
|u|0 � δ21.

Let us now deal with the estimate (4.33) on V̇2(= V̇2(u, v)). Let us decompose V̇2

in the following way:

(4.36) V̇2 = T21 + T22 + T23,

with

T21 := −µ

∫ 1

0

(

vtrR(u)F (u)v
)

e−µxdx,

T22 := −
∫ 1

0

(

vtrR(u)F (u)ve−µx
)

x
dx,

T23 :=

∫ 1

0

{

vtr
(

[(R(u)F (u))xv] − 2R(u)[F ′(u)v] − [R′(u)F (u)v]
)

v
}

e−µxdx.

Analysis of the first term T21. By (4.32) and (4.35), for every µ > 0, there exists
a positive real constant α21 > 0 such that, if |u|0 � δ21,

(4.37) T21 � −α21V2.

Analysis of the second term T22. One has

T22 = −
[

vtrR(u)F (u)ve−µx
]1

0

= −
(

vtr
1 R(u1)F (u1)v1e

−µ − vtr
0 R(u0)F (u0)v0

)

.

Under the boundary condition (4.31), we have

T22 = −vtr
1

(

R(u1)F (u1)e
−µ − F (u1)

tr
(

G′(u1)
)tr

(F (G(u1))
−1)trR(G(u1))G

′
(

u1

)

F (u1)
)

v1,
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which implies that

T22 = −vtr
1

(

R(0)Λe−µ − ΛKtrΛ−1R(0)KΛ
)

v1 + O(|v1|2|u1|; |u1|).(4.38)

We define ζ := Dv1. Then, using (4.34), we have, for every v1 ∈ R
n,

(4.39)

vtr
1 KtrΛ−1R(0)Kv1 = vtr

1 KtrDDKv1 =
(

ζtrD−1KtrD
) (

DKD−1ζ
)

= |DKD−1ζ|2.

Therefore, using (4.34) once again, we get that, for every v1 ∈ R
n,

(4.40) vtr
1 KtrΛ−1R(0)Kv1 � ‖DKD−1‖2ζtrζ = ‖DKD−1‖2vtr

1 Λ−1R(0)v1.

From (4.40) and the fact that ‖DKD−1‖ < 1, it follows that, choosing µ > 0 small
enough, Λ−1R(0)e−µ − KtrΛ−1R(0)K is a positive definite matrix, which, in turn,
implies that the matrix R(0)Λe−µ−ΛKtrΛ−1R(0)KΛ is also positive definite. Hence
there exist α22 > 0 and δ22 > 0 such that, if |u1| � δ22, we have

(4.41) T22 � −α22|v1|2.

Analysis of the third term T23. The integrand of T23 is, at least, cubic with respect
to v. It follows that, increasing the value of β2 if necessary, there exists δ23 ∈ (0, ε0/2)
such that, for |u|0 � δ23,

(4.42) T23 � β2

∫ 1

0

|v|3dx.

Then, collecting inequalities (4.37), (4.41), and (4.42) together, we conclude that if
|u|0 � δ2 := min{δ21, δ22, δ23} and if α2 := min{α21, α22}, then

(4.43) V̇2 = T21 + T22 + T23 � −α2(V2 + |v1|2) + β2

∫ 1

0

|v|3dx.

This completes the proof of Lemma 4.4.

Note that V2 is not sufficient to get an upper bound on
∫ 1

0
|v|3dx. For that

reason, we also need to consider the dynamics of w to complete the Lyapunov stability
analysis. By a further time differentiation of the system equations (4.25)–(4.26), we
obtain

(4.44)

wt + F (u)wx + [F ′(u)w]v + 2[F ′(u)v]w + [F ′′(u)(v, v)]v = 0,

x ∈ [0, 1], t ∈ [0,+∞),

under the boundary condition

(4.45)

F (u0)w0 + [F ′(u0)v0]v0 = [H ′(u1)F (u1)v1]v1 + H(u1)F (u1)w1 + H(u1)[F
′(u1)v1]v1,

with the notation w0 := w(0), w1 := w(1), and H(u) := F (G(u))−1G′(u)F (u). Using
the previous boundary conditions (4.30) and (4.31), this boundary condition (4.45)
may be written in compact form as

(4.46) w0 = F (G(u1))
−1H(u1)F (u1)w1 + Z(u1, v1),
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where Z is continuous on a neighborhood of 0 ∈ R
n × R

n and such that

Z(u1, v1) = O
(

|v1|2; |u1|
)

.(4.47)

Let us compute the time derivative of V3 along the classical C1-solutions of system
(4.44) with boundary conditions (4.46). One has

V̇3 =

∫ 1

0

{

2wtrS(u)wt + wtr
(

S(u)
)

t
w
}

e−µxdx

=

∫ 1

0

{

−2wtrS(u)F (u)wx − 2wtrS(u)
(

[F ′(u)w]v + 2[F ′(u)v]w + [F ′′(u)(v, v)]v
)

−wtr[S′(u)F (u)v]w
}

e−µxdx.(4.48)

From now on, V3 and V̇3 are considered as functionals defined, respectively, by (4.8)
and (4.48) on the set V3 of (u, v, w) ∈ C3([0, 1],Rn) × C2([0, 1],Rn) × C1([0, 1],Rn)
such that

|u|0 < ε0,(4.49)

ux = v, vx = w,(4.50)

u0 = G(u1),(4.51)

F (u0)v0 = G′
(

u1

)

F
(

u1

)

v1,(4.52)

w0 = F (G(u1))
−1H(u1)F (u1)w1 + Z(u1, v1),(4.53)

with u0 := u(0), u1 := u(1), v0 := v(0), and v1 := v(1) as above, and w0 := w(0) and
w1 := w(1).

The matrix S(u) is selected as the matrix N(F (u)) of Lemma 4.1 now with
Δ := Λ2D2Λ. Our estimates on V3 and V̇3 are in the following lemma.

Lemma 4.5. There exists µ3 > 0 such that, for every µ ∈ (0, µ3), there exist
positive real constants α3, β3, δ3 such that, for every (u, v, w) ∈ V3 such that |u|0 +
|v|0 � δ3, one has

1

β3

∫ 1

0

|w|2dx � V3(u, v, w) � β3

∫ 1

0

|w|2dx,(4.54)

V̇3(u, v, w) � −α3V3(u, v, w) + β3|v1|4 + β3

∫ 1

0

(

|v|2|w| + |w|2|v|
)

dx.(4.55)

Proof of Lemma 4.5. Throughout this proof, we assume that (u, v, w) ∈ V3. By
the construction of S, we have

Λ−2S(0)Λ−1 = D2 ∈ Dn,+(4.56)

and the existence of δ31 ∈ (0, ε0/2) such that

S(a) ∈ Sn,+ and S(a)F (a) ∈ Sn,+ ∀a ∈ R
n such that |u| � δ31.(4.57)

Clearly, from (4.57), we obtain that, for every µ > 0, there exists β3 > 0 such that
(4.54) holds if |u|0 � δ31.
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Let us now deal with the estimate (4.55) on V̇3(= V̇3(u, v, w)). Let us decompose
V̇3 in the following way:

(4.58) V̇3 = T31 + T32 + T33,

with

T31 := −µ

∫ 1

0

(

wtrS(u)F (u)w
)

e−µxdx,

T32 := −
∫ 1

0

(

wtrS(u)F (u)we−µx
)

x
dx,

T33 := −
∫ 1

0

{

−wtr
(

[(S(u)F (u))xv] + [S′(u)F (u)v]
)

w + 2wtrS(u)[F ′(u)w]v

+ 4wtrS(u)[F ′(u)v]w + 2wtr[F ′′(u)(v, v)]v
}

e−µxdx.

Analysis of the first term T31. By (4.54) and (4.57), for every µ > 0, there exists
a positive real constant α3 > 0 such that, if |u|0 � δ31,

(4.59) T31 � −α3V3.

Analysis of the second term T32.

T32 = −
[

wtrS(u)F (u)we−µx
]1

0

= −
(

wtr
1 S(u1)F (u1)w1e

−µ − wtr
0 S(u0)F (u0)w0

)

.

Under the boundary conditions (4.51) and (4.53), we have, also using (4.47),

T32 = −wtr
1

(

S(u1)F (u1)e
−µ

− F (u1)
trH(u1)

tr
(

F (G(u1))
−1
)tr

S
(

G(u1)
)

H(u1)F (u1)
)

w1

+ O(|v1|4 + |v1|2|w1|; |u1|)

= −wtr
1

(

S(0)Λe−µ − Λ2KtrΛ−2S(0)Λ−1KΛ2
)

w1

+ O
(

|v1|4 + |v1|2|w1| + |w1|2|u1|; |u1|
)

.(4.60)

For w1 ∈ R
n, we define ζ := Dw1. Then, using (4.56), we have, for every w1 ∈ R

n,

wtr
1 KtrΛ−2S(0)Λ−1Kw1 = wtr

1 KtrDDKw1

=
(

ζtrD−1KtrD
) (

DKD−1ζ
)

= |DKD−1ζ|2.

Therefore, for every w1 ∈ R
n, we have, using (4.56) once again,

wtr
1 KtrΛ−2S(0)Λ−1Kw1 � ‖DKD−1‖2ζtrζ = ‖DKD−1‖2wtr

1 Λ−2S(0)Λ−1w1.
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From this inequality and the fact that ‖DKD−1‖2 < 1, it follows that, choosing µ > 0
small enough, Λ−2S(0)Λ−1e−µ − KtrΛ−2S(0)Λ−1K is a positive definite symmetric
matrix, which, in turn, implies that the matrix

(4.61) S(0)Λe−µ − Λ2KtrΛ−2S(0)Λ−1KΛ2

is also positive definite. Moreover, for every η > 0 and for every (v1, w1) ∈ R
n × R

n,

|v1|2|w1| �
1

4η
|v1|4 + η|w1|2.

Hence, taking η > 0 small enough and also using (4.60), one gets the existence of
δ32 > 0 and β32 > 0 such that, if |u|0 + |v|0 � δ32,

(4.62) T32 � β32|v1|4.

Analysis of the third term T33. Note that

(F (u)G(u))x = [F ′(u)v]G(u) + F (u)G′(u)v.

It follows that there exist δ33 > 0 and β33 > 0 such that, if |u|0 + |v|0 � δ33, then

(4.63) T33 � β33

∫ 1

0

(

|v|2|w| + |w|2|v|
)

dx.

Then, collecting inequalities (4.59), (4.62), and (4.63) together, we conclude that if
|u|0 + |v|0 � δ3 := min{δ31, δ32, δ33} and β3 := max{β32, β33}, then

(4.64) V̇3 = T31 + T32 + T33 � −α3V3 + β3|v1|4 + β3

∫ 1

0

(

|v|2|w| + |w|2|v|
)

dx.

This completes the proof of Lemma 4.5.
Finally, we deal with V (see (4.5)) and V̇ , which are now considered as functionals

on the set V of u ∈ C3([0, 1],Rn) satisfying (4.49), (4.51), (4.52), and (4.53) with v :=
ux and w := uxx, u0 := u(0), u1 := u(1), v0 := ux(0), v1 := ux(1), w0 := uxx(0), and
w1 := uxx(1). Of course, we “define” V̇ by V̇ (u) := V̇1(u)+ V̇2(u, ux)+ V̇3(u, ux, uxx).
The following lemma holds.

Lemma 4.6. Let µ ∈ (0,min{µ1, µ2, µ3}). There exist positive real constants α,
β, and δ such that, for every u ∈ V such that |u|0 + |ux|0 � δ, we have

1

β

∫ 1

0

(|u|2 + |ux|2 + |uxx|2)dx � V (u) � β

∫ 1

0

(|u|2 + |ux|2 + |uxx|2)dx,(4.65)

V̇ � −αV.(4.66)

Proof of Lemma 4.6. Throughout this proof, u is assumed to be in V. Let
δ̄ := min{δ1, δ2, δ3}, ᾱ := min{α1, α2, α3}, and β̄ := max{β1, β2, β3}. It readily
follows from (4.11), (4.32), and (4.54) that if |u|0 + |ux|0 � δ̄, then

1

β̄

∫ 1

0

(|u|2 + |ux|2 + |uxx|2)dx � V (u) � β̄

∫ 1

0

(|u|2 + |ux|2 + |uxx|2)dx.(4.67)
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In order to check (4.66) (for δ > 0 small enough and β > 0 large enough), let us
first point out that, for every η > 0,

∫ 1

0

|ux|2|uxx|dx �

∫ 1

0

(

1

4η
|ux|4 + η|uxx|2

)

dx

�
1

4η
|ux|20

∫ 1

0

|ux|2dx + η

∫ 1

0

|uxx|2dx.(4.68)

In order to get (4.66), it suffices to use (4.12), (4.33), (4.54), (4.55), (4.67), (4.68)
with η := α3/(2β3)

2 and to point out that

∫ 1

0

|u|2|ux|dx � |ux|0
∫ 1

0

|u|2dx,

∫ 1

0

|ux|3dx � |ux|0
∫ 1

0

|ux|2dx,

∫ 1

0

|uxx|2|ux|dx � |ux|0
∫ 1

0

|uxx|2dx.

This concludes the proof of Lemma 4.6.
Finally, let us explain how to deduce Theorem 2.3 from Proposition 2.1 and

Lemma 4.6. By the Sobolev inequality (see, for instance, [3, Théorème VII, page
129]), there exists C > 0 such that, for every u in the Sobolev space H2((0, 1),Rn),

|u|0 + |ux|0 � C0|u|H2((0,1),Rn),(4.69)

with

|u|H2((0,1),Rn) :=

(∫ 1

0

(|u|2 + |ux|2 + |uxx|2)dx
)1/2

.

We choose µ ∈ (0,min{µ1, µ2, µ3}]. Let us point out that a simple density argument
shows that (4.65) and (4.66) hold for every u ∈ H2((0, 1),Rn) satisfying (4.51), (4.52),
and |u|0 + |ux|0 � δ. Let

ε := min

{

δ

2C0β
,
δ0
β

}

.(4.70)

Note that β � 1. Using Lemma 4.6, (4.69), and (4.70), the following implications
hold for every u ∈ H2((0, 1),Rn) satisfying (4.51) and (4.52):

(

|u|H2((0,1),Rn) � ε
)

⇒
(

|u|0 + |ux|0 �
δ

2
and V (u) � βε2

)

,(4.71)

(

|u|0 + |ux|0 � δ and V (u) � βε2
)

⇒
(

|u|0 + |ux|0 �
δ

2
and |u|H2((0,1),Rn) � δ0

)

,

(4.72)

(|u|0 + |ux|0 � δ) ⇒ (V̇ (u) � 0).(4.73)
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Now let u0 ∈ H2((0, 1),Rn) satisfying (4.2), (4.3), and

|u0|H2((0,1),Rn) � ε.

Let u ∈ C0([0, T ), H2((0, 1),Rn)) be the maximal classical solution the Cauchy prob-
lem (2.5)–(2.7). Using implications (4.71) to (4.73), one gets that

|u(t, ·)|H2((0,1),Rn) � δ0 ∀t ∈ [0, T ),(4.74)

|u(t, ·)|0 + |ux(t, ·)|0 � δ ∀t ∈ [0, T ).(4.75)

Using Proposition 2.1 and (4.74), one gets that T = +∞. Using Lemma 4.6 and
(4.75), one gets that

|u(t, ·)|2H2((0,1),Rn) � βV (u(t, ·)) � βV (u0)e−αt
� β2|u0|2H2((0,1),Rn)e

−αt.

This concludes the proof of Theorem 2.3 when m = n.
Let us now explain the modifications we use in order to deal with the case 0 <

m < n (of course, the case m = 0 can be reduced to the case m = n by considering
ũ(t, x) := u(t, 1 − x)).

One first needs the following parametric version of Lemma 4.1.
Lemma 4.7. Let Λ := diag (Λ1, . . . ,Λn) ∈ Dn be such that (2.4) holds. There

exist a positive real number η and a map N : {M × Δ ∈ Mn,n(R) ×Dn; ‖M − Λ‖ <
η} → Sn of class C∞ such that

N (Λ,Δ) = Δ ∀Δ ∈ Dρ
n,

N (M,Δ)M −M trN (M,Δ) = 0 ∀(M,Δ) ∈ Mn,n(R) ×Dn such that ‖M − Λ‖ < η.

Proof of Lemma 4.7. With the notation of the proof of Lemma 4.1, it suffices to
define N (M,D) by N (M,D) := L−1

M (0,Δ).
The Lyapunov function V now has the following structure:

(4.76) V (u, v, w) = V1(u) + V2(u, v) + V3(u, v, w),

with

V1(u) =

∫ 1

0

utrQ(x, u)udx,(4.77)

V2(u, v) =

∫ 1

0

vtrR(x, u)vdx,(4.78)

V3(u, v, w) =

∫ 1

0

wtrS(x, u)wdx,(4.79)

where Q(x, u), R(x, u), and S(x, u) are symmetric positive definite matrices depending
on x ∈ [0, 1] defined in the following way. We fix D ∈ Dn,+ such that ‖DKD−1‖ < 1.
Let µ ∈ (0,+∞), which will be chosen small enough later. Let us recall that |Λ| =
diag (|Λ1|, . . . , |Λn|) = diag (Λ1, . . . ,Λm, |Λm+1|, . . . , |Λn|).

(i) We define Q(x, u) by

Q(x, u) := N
(

F (u), D2|Λ|−1diag (e−µx, . . . , e−µx, eµx, . . . , eµx)
)

.
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(ii) We define R(x, u) by

R(x, u) := N
(

F (u), D2|Λ|diag (e−µx, . . . , e−µx, eµx, . . . , eµx)
)

.

(iii) Finally, we define R(x, u) by

S(x, u) := N
(

F (u), D2|Λ|3diag (e−µx, . . . , e−µx, eµx, . . . , eµx)
)

.

(In the above equalities and in the following, in diag (e−µx, . . . , e−µx, eµx, . . . , eµx),
e−µx is repeated m times and eµx is repeated (n −m) times.) In order to deal with
the boundary conditions on u and v, let us define

a0 :=

(

u+(0)

u−(1)

)

, a1 :=

(

u+(1)

u−(0)

)

, b0 :=

(

v+(0)

v−(1)

)

, b1 :=

(

v+(1)

v−(0)

)

.(4.80)

The boundary condition (4.10) is now (see (2.6))

a0 = G(a1).(4.81)

Now V1 is defined as the set of u ∈ C1([0, 1],Rn) such that (4.81) holds and |u|0 < ε0.
Clearly, the estimate on V1 given in Lemma 4.3 still holds. Let us check that the

estimate of this lemma on V̇1 also holds.
The decomposition (4.15)–(4.18) becomes

V̇1 = T11 + T12 + T13,

with

T11 :=

∫ 1

0

utrQx(x, u)F (u)udx,

T12 := −
∫ 1

0

(

utrQ(x, u)F (u)u
)

x
dx,

T13 :=

∫ 1

0

utr
(

[Q′
u(x, u)v]F (u) + Q(x, u)[F ′(u)v] − [Q′

u(x, u)F (u)v]
)

udx.

Noticing that

Qx(x, 0) = −µD2Λ−1diag (e−µx, . . . , e−µx, eµx, . . . , eµx)
)

,

the term T11 can be treated as above. Similarly the term T13 can also be treated as
above. Concerning T12, one has

T12 = −u1Q(1, u1)F (u1)u1 + u0Q(0, u0)F (u0)u0

= −utr
1 D

2|Λ|−1Λu1 + utr
0 D

2|Λ|−1Λu0 + O(|u1|3; |u1|) + O(µ|u1|2;µ).(4.82)

Let

K++ ∈ Mm,m(R), K+− ∈ Mm,(n−m)(R),

K−+ ∈ M(n−m),n(R), K−− ∈ M(n−m),(n−m)(R)
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be such that

K =

(

K++ K+−

K−+ K−−

)

.

Using (4.80) and (4.81), one has

u0 =

(

K++ K+−

0 Idn−m

)

a1 + O(|a1|2; |a1|), u1 =

(

Idm 0

K−+ K−−

)

a1 + O(|a1|2; |a1|).

(4.83)

Using (4.82) and (4.83), straightforward computations lead to

T12 = −atr
1 (D2 −KtrD2K)a1 + O(|a1|3; |a1|) + O(µ|a1|2;µ).(4.84)

However, ‖DKD−1‖ < 1 implies (and is in fact equivalent to) the property “the
symmetric matrix tr(D2 −KtrD2K) is positive definite,” which, together with (4.84),
implies again the existence of δ12 > 0 such that (4.22) holds if |a1| � δ12. Hence
Lemma 4.3 still holds.

Similarly it can be checked that Lemmas 4.4 and 4.5 also hold, except that in
(4.33) and (4.55), |v1| has to be replaced by |b1| (and the definitions of V2 and V3 have
to be modified in order to deal with the new compatibility conditions). The proof of
Theorem 2.3 is then completed as in the case m = n.

Remark 4.8. One can give a lower bound on the exponential decay in Theorem 2.3.
Indeed, it follows from our proof of this theorem that, if ρ1(G

′(0)) < 1, for every
ν ∈ (0,−min{|λ1|, . . . , |λn|} ln(ρ1(G

′(0)))), there exist ε > 0 and C > 0 such that,
for every u0 ∈ H2((0, 1),Rn) satisfying |u0|H2((0,1),Rn) � ε and the compatibility
conditions (2.8)–(2.10), the classical solution u to the Cauchy problem (2.5)–(2.7) is
defined on [0,+∞) and satisfies (2.13).

5. Conclusion and final remarks. We have presented a new sufficient con-
dition on the boundary conditions for the exponential stability of one-dimensional
nonlinear hyperbolic systems on a bounded interval. Our analysis relies on the con-
struction of an explicit strict Lyapunov function. Moreover, we have compared our
sufficient condition with other known sufficient conditions for nonlinear and linear
systems. We conclude the paper with two additional comments.

1. The Lyapunov stability analysis presented in this paper can be extended to
nonlinear hyperbolic systems of the form

(5.1) ut + F (u)ux = h(u),

i.e., systems having a nonzero right-hand side h(u) with the map h : R
n → R

n

of class C2 vanishing at zero (h(0) = 0). Our main theorem (Theorem 2.3)
can be extended, in a straightforward way, to system (5.1) with boundary
conditions (1.4), provided ‖h′(0)‖ is sufficiently small.

2. For the sake of simplicity, we have assumed throughout the paper that the
diagonal matrix F (0) has distinct nonzero diagonal entries. It turns out
that this assumption may be slightly relaxed when the matrix F (u) is block-
diagonal. Indeed, in such a case, it is sufficient to assume that the Λi values
are different in each block, but different blocks may share identical Λi values.
This situation typically occurs when the system ut + F (u)ux = 0 is a model
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for a network of interconnected 2 × 2 hyperbolic systems. Typical examples
are hydraulic networks modeled by Saint Venant equations [7], road networks
modeled by Aw–Rascle equations [1, 8], or pipeline networks modeled by
isentropic Euler equations [2].

Appendix A. Some properties of the function ρ1. In this appendix we give
some properties which are useful for estimating and computing ρ1. Some of these
properties are used to prove Proposition 3.7.

Proposition A.1. Let l ∈ {1, . . . , n− 1}. Let K1 ∈ Ml,l(R), K2 ∈ Ml,n−l(R),
K3 ∈ Mn−l,l(R), K4 ∈ Mn−l,n−l(R) and let K ∈ Mn,n(R) be defined by

K :=

(

K1 K2

K3 K4

)

.

Then

ρ1(K) � max{ρ1(K1), ρ1(K4)}.(A.1)

Moreover, if K2 = 0 or K3 = 0, then

ρ1(K) = max{ρ1(K1), ρ1(K4)}.(A.2)

Proof of Proposition A.1. Let D ∈ Dn,+. Let D1 ∈ Dl,+ and D2 ∈ Dn−l,+ be
such that

D =

(

D1 0

0 D2

)

.

Let

M := DKD−1.

We have

M trM =

(

M11 M12

M21 M22

)

,

with

M11 := D−1
1 Ktr

1 D2
1K1D

−1
1 + D−1

1 Ktr
3 D2

2K3D
−1
1 ,

M12 := D−1
1 Ktr

1 D2
1K2D

−1
2 + D−1

1 Ktr
3 D2

2K4D
−1
2 ,

M21 := D−1
2 Ktr

2 D2
1K1D

−1
1 + D−1

2 Ktr
4 D2

2K3D
−1
1 ,

M22 := D−1
2 Ktr

2 D2
1K2D

−1
2 + D−1

2 Ktr
4 D2

2K4D
−1
2 .

For X ∈ R
l, let X̃ ∈ R

n be defined by

X̃ :=

(

X

0

)

.
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Note that |X̃| = |X| and that

X̃trM trMX̃ = XtrD−1
1 Ktr

1 D2
1K1D

−1
1 X + XtrD−1

1 Ktr
3 D2

2K3D
−1
1 X

� XtrD−1
1 Ktr

1 D2
1K1D

−1
1 X.

Hence

max{ZtrM trZ; Z ∈ R
n, |Z| = 1} � max{XtrD−1

1 Ktr
1 D2

1K1D
−1
1 X; X ∈ R

l, |X| = 1}

� ρ1(K1)
2,

which implies that ρ1(K1) � ρ1(K). Similarly ρ1(K4) � ρ1(K). This proves (A.1).
Let us now prove (A.2). We deal only with the case K3 = 0 (the case K2 = 0

being similar). Let η > 0. Let D1 ∈ Dl,+ and D2 ∈ Dn−l,+ be such that

‖D1K1D
−1
1 ‖ � ρ1(K1) + η, ‖D2K4D

−1
2 ‖ � ρ1(K4) + η.(A.3)

Let ε > 0 and

D :=

(

εD1 0

0 D2

)

∈ Dn,+, M := DKD−1 ∈ Mn,n(R).

Let Z ∈ R
n and let X ∈ R

l and Y ∈ R
n−l be such that

Z =

(

X

Y

)

.

We have

ZtrM trMZ = XtrD−1
1 Ktr

1 D2
1K1D

−1
1 X + 2εXtrD−1

1 Ktr
1 D2

1K2D
−1
2 Y

+ ε2Y trD−1
2 Ktr

2 D2
1K2D

−1
2 Y + Y trD−1

2 Ktr
4 D2

2K4D
−1
2 Y.

Hence there exists a constant C > 0 independent of Z and ε > 0 such that

ZtrM trMZ � (‖D1K1D
−1
1 ‖|X|)2 + (‖D2K4D

−1
2 ‖|Y |)2 + Cε|Z|2.(A.4)

From (2.1), (A.3), and (A.4), we obtain that

ρ1(K)2 � max{(ρ1(K1) + η)2, (ρ1(K4) + η)2} + Cε.(A.5)

Letting ε → 0 and η → 0 in (A.5), one gets that ρ1(K)2 � max{ρ1(K1)
2, ρ1(K4)

2}.
This concludes the proof of Proposition A.1.

Proposition A.2. The map ρ1 : Mn,n(R) → [0,+∞) is continuous.
Proof of Proposition A.2. We proceed by induction on n. For n = 1 the function

ρ1 satisfies ρ(k) = |k| for every k ∈ R = M1,1(R) and is therefore continuous. We
now assume that ρ1 is continuous on Mp,p(R) for every p ∈ {1, . . . , n − 1} and
prove that ρ1 is continuous on Mn,n(R). Since, for every D ∈ Dn,+, the function
K ∈ Mn,n(R) �→ ‖K‖ ∈ R is continuous, it readily follows from (2.1) that ρ1 is upper
semicontinuous on Mn,n(R). It remains only to check that ρ1 is lower semicontinuous.
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We argue by contradiction: let K ∈ Dn,n(R) and let (Kk)k∈N be a sequence of elements
of Mn,n(R) such that

Kk → K as k → +∞,(A.6)

lim
k→+∞

ρ1(Kk) < ρ1(K).(A.7)

Let (Dk)k∈N be a sequence of elements of Dn,+ such that

‖DkKkD
−1
k ‖ � ρ1(Kk) + k−1 ∀k ∈ N \ {0}.(A.8)

Note that, denoting by (e1, . . . , en) the canonical basis of R
n,

|Aij | = |etr
i Aej | � ‖A‖ ∀A ∈ Mn,n(R), ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n}.

Hence, if we denote by Kijk the term on the ith line and jth column of the matrix
Kk,

|Kijk|
dik
djk

� ‖DkKkD
−1
k ‖ ∀(i, j) ∈ {1, . . . , n}2, ∀k ∈ N,(A.9)

where (dik)i∈{1,...,n} is defined by Dk = diag (d1k, . . . , dnk). After suitable reorderings
(note that ρ1(ΣAΣ−1) = ρ1(A) for every A ∈ Mn,n(R) and for every permutation
matrix Σ) and extracting subsequences if necessary, we may assume without loss of
generality that

d1k � d2k � · · · � d(n−1)k � dnk ∀k ∈ N.(A.10)

A simple scaling argument also shows that we may assume without loss of generality
that

d1k = 1 ∀k ∈ N.(A.11)

Extracting subsequences if necessary, there exist l ∈ {1, . . . , n}, (d1, . . . , dl) ∈ [1,+∞)l

such that

dik → di as k → +∞ ∀i ∈ {1, . . . , l},(A.12)

dik → +∞ as k → +∞ ∀i ∈ {l + 1, . . . , n}.(A.13)

We first treat the case where l = n. Let D := diag (d1, . . . , dn) ∈ Dn,+. From (A.12),
we have

Dk → D as k → +∞.(A.14)

From (2.1), we have

ρ1(K) � ‖DKD−1‖,(A.15)

which, together with (A.8) and (A.14), implies that

lim inf
k→+∞

ρ1(Kk) � ρ1(K),

in contradiction with (A.7).
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It remains to deal with the case where l < n. Let us denote Kij the term on the
ith line and jth column of the matrix K. From (A.6), (A.7), (A.8), (A.9), (A.12),
and (A.13), one gets that

Kij = 0 ∀(i, j) ∈ {l + 1, . . . , n} × {1, . . . , l}.(A.16)

Let K1 ∈ Ml,l(R), K2 ∈ Ml,n−l(R), K4 ∈ Mn−l,n−l(R) be such that

K =

(

K1 K2

0 K4

)

.

Similarly, for k ∈ N, let K1
k ∈ Ml,l(R), K2

k ∈ Ml,n−l(R), K3
k ∈ Mn−l,l(R), K4

k ∈
Mn−l,n−l(R) be defined by

K :=

(

K1
k K2

k

K3
k K4

k

)

.

From (A.2), we have

ρ1(K) = max{ρ1(K
1), ρ1(K

4)}.(A.17)

From (A.1), we have

ρ1(Kk) � max{ρ1(K
1
k), ρ1(K

4
k)} ∀k ∈ N.(A.18)

From our induction hypothesis (the continuity of ρ1 on Mp,p(R) for every p ∈
{1, . . . , n− 1}) and (A.6), we get that

lim
k→+∞

ρ1(K
1
k) = ρ1(K

1), lim
k→+∞

ρ1(K
4
k) = ρ1(K

4),

which, together with (A.17) and (A.18), again leads to a contradiction with (A.7).
This concludes the proof of Proposition A.2.

Our next proposition shows a case where the value of ρ1(K) may be given directly.
(For a converse of this proposition, see Proposition B.1.)

Proposition A.3. Let l ∈ {1, . . . , n}. Let (Aj)j∈{1,...,l} and (Bj)j∈{1,...,l} be two
sequences of vectors in R

n such that

Atr
j Ak = Btr

j Bk ∀(j, k) ∈ {1, . . . , l}2,(A.19)

l
∑

j=1

A2
ij =

l
∑

j=1

B2
ij ∀i ∈ {1, . . . , n},(A.20)

where Aij (resp., Bij) is the element on the ith line of the vector Aj (resp., Bj).
We assume that the l vectors A1, . . . , Al are linearly independent. Let R � 0 and let
K ∈ Mn,n(R) be such that

KAj = RBj ∀j ∈ {1, . . . , l},(A.21)

|KX| � R|X| ∀X ∈ R
n such that XtrAj = 0 ∀j ∈ {1, l}.(A.22)

Then ρ1(K) = R.
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Proof of Proposition A.3. It readily follows from the assumptions of this proposi-
tion that ‖K‖ = R. Hence it remains only to check that

‖DKD−1‖ � R ∀D ∈ Dn,+.(A.23)

Let D := diag (D1, . . . , Dn) ∈ Dn,+. For j ∈ {1, . . . , l}, let us define

Ej := (E1j , . . . , Enj)
tr ∈ R

n \ {0}, Fj := (F1j , . . . , Fnj)
tr ∈ R

n \ {0}

by

Ej := DAj , Fj := DBj .

We have, for every j ∈ {1, . . . , l},

DKD−1Ej = RFj ,(A.24)

Eij = DiAij , Fij = DiBij ∀i ∈ {1, . . . , n}.(A.25)

Using (A.20), (A.24), and (A.25), we get

l
∑

j=1

|DKD−1Ej |2 =R2
l
∑

j=1

(

n
∑

i=1

F 2
ij

)

=R2
n
∑

i=1

D2
i

⎛

⎝

l
∑

j=1

B2
ij

⎞

⎠

=R2
n
∑

i=1

D2
i

⎛

⎝

l
∑

j=1

A2
ij

⎞

⎠

=R2
l
∑

j=1

|Ej |2.

In particular, there exists p ∈ {1, . . . l}, such that

|DKD−1Ep|2 � R2|Ep|2,

which, together with the fact that Ep �= 0, implies that ‖DKD−1‖ � R. This
concludes the proof of Proposition A.3.

Appendix B. Proof of Proposition 3.7. Inequality (3.22) is obvious: indeed,
for every (θ1, . . . , θn)tr ∈ R

n and for every D ∈ Dn,+,

ρ(diag (eιθ1 , . . . , eιθn)K) = ρ(Ddiag (eιθ1 , . . . , eιθn)KD−1)

= ρ(diag (eιθ1 , . . . , eιθn)DKD−1)

� ‖diag (eιθ1 , . . . , eιθn)DKD−1‖

� ‖diag (eιθ1 , . . . , eιθn)‖‖DKD−1‖ = ‖DKD−1‖.
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The proof of (3.23) for every n ∈ {1, 2, 3, 4, 5} is more complicated and relies on
various independent propositions. The first proposition provides the converse (up to
the D) to Proposition A.3 for generic K ∈ Mn,n(R).

Proposition B.1. Let K ∈ Mn,n(R) be such that, for every M > 0, there exists
δ > 0 such that

(B.1)

(

D := (D1, . . . , Dn) ∈ Dn,+,

n
∑

i=1

Di = 1, min{D1, . . . , Dn} < δ

)

⇒ (‖DKD−1‖ > M).

(It is easily checked that this property holds, for example, if Kij �= 0, for every (i, j) ∈
{1, . . . , n}2 such that i �= j, which is a generic property.) Then there exist D ∈ Dn,+,
an integer l ∈ {1, . . . , n}, l vectors Aj ∈ R

n, j ∈ {1, . . . , l}, and l vectors Bj ∈ R
n,

j ∈ {1, . . . , l}, such that (A.19) and (A.20) hold and

the vectors Aj ∈ R
n, j ∈ {1, . . . , l}, are linearly independent,(B.2)

DKD−1Aj = ρ1(K)Bj ∀j ∈ {1, . . . l},(B.3)

|DKD−1X| � ρ1(K)|X| ∀X ∈ R
n.(B.4)

Remark B.2. Proposition B.1 is false if assumption (B.1) is removed. Indeed, let
us take n = 2 and

K =

(

0 1

0 0

)

.

Then ρ1(K) = 0, and it is easily seen that the conclusion of Proposition B.1 does not
hold.

Proof of Proposition B.1. From (B.1), one gets the existence of D̃ ∈ Dn,+ such
that

‖D̃KD̃−1‖ = ρ1(K).(B.5)

Replacing K by D̃KD̃−1, we may assume without loss of generality that D̃ is the
identity map Idn of R

n. Then

‖K‖ = ρ1(K).(B.6)

Clearly, (B.1) implies that K �= 0, and therefore, by (B.6),

ρ1(K) �= 0.(B.7)

(In fact, if K = 0, the conclusion of Proposition B.1 obviously holds.) Note that (B.6)
implies (B.4) with D := Idn. Let p ∈ {1, . . . , n} be the dimension of the kernel of
KtrK − ρ1(K)2Idn and let (X1, . . . , Xp) be an orthonormal basis of this kernel. For
j ∈ {1, . . . , p}, let Yj := KXj . One has

|Yj |2 = Xtr
j KtrKXj = ρ1(K)2|Xj |2 ∀j ∈ {1, . . . , p},(B.8)

Y tr
k Yj = Xtr

k KtrKXj = ρ1(K)2Xtr
k Xj = 0 ∀(k, j) ∈ {1, . . . , p}2 such that k �= j.

(B.9)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISSIPATIVE BOUNDARY CONDITIONS 1489

For i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, let us denote by Xij (resp., Yij) the ith com-
ponent of Xj (resp., Yj). For j ∈ {1, . . . , p}, let us denote by Ej the element of R

n

whose ith component is

Eij := Y 2
ij −X2

ij .(B.10)

Let us assume, for the moment, that

∀τ ∈ R
n, there exists j ∈ {1, . . . , p} such that τ trEj � 0.(B.11)

Applying the separation principle for convex sets to {0} and the convex hull of the
vectors Ej , j ∈ {1, . . . , p} (see, e.g., [19, Theorem 3.4(b), page 58]), it follows from
(B.11) that 0 ∈ R

n is in the convex hull of the vectors E1, . . . Ep : there exist p
nonnegative real numbers t1, . . . , tp such that

p
∑

j=1

ti = 1,

p
∑

j=1

tiEi = 0.

Let l ∈ {1, . . . , p} be the number of the ti’s which are not equal to 0. Reordering the
Xi’s if necessary, we may assume that

tj > 0 ∀j ∈ {1, . . . , l}, tj = 0 ∀j ∈ {l + 1, . . . p}.

For j ∈ {1, . . . , l}, we define Aj ∈ R
n and Bj ∈ R

n by

Aj :=
√

tjXj , Bj :=
√

tjYj .(B.12)

Then it is easily checked that the vectors A1, . . . , Al are linearly independent, that
(A.19) and (A.20) hold (one even has Atr

k Aj = Btr
k Bj = 0 for every (k, j) ∈ {1, . . . , l}2

such that k �= j), and that (B.3) holds with D := Idn.
It remains only to prove (B.11). Let τ := (τ1, . . . , τn)tr ∈ R

n. For s ∈ R, let

D(s) := diag (1 + sτ1, . . . , 1 + sτn) ∈ Dn.

For s small enough, D(s) ∈ Dn,+, and therefore, by (B.6),

‖D(s)KD(s)−1‖2
� ‖K‖2 = ‖D(0)KD(0)−1‖2.(B.13)

Let us estimate the left-hand side of (B.13). By a classical theorem due to Rellich
(see, e.g., [18, Theorem XII.3, page 4]) on perturbations of the spectrum of self-adjoint
operators, there exist ε > 0, p real functions λ1, . . . , λp of class C1 from (−ε, ε) into
R, and p maps x1, . . . , xp of class C1 from (−ε, ε) into R

n such that

λj(0) = ρ1(K)2, xj(0) = Xj ∀j ∈ {1, . . . , p},(B.14)

D(s)−1KtrD(s)2KD(s)−1xj(s) = λj(s)xj(s) ∀s ∈ (−ε, ε), ∀j ∈ {1, . . . , p},(B.15)

xj(s)
trxj(s) = 1 ∀s ∈ (−ε, ε), ∀j ∈ {1, . . . , p},(B.16)

xj(s)
trxk(s) = 0 ∀s ∈ (−ε, ε), ∀(j, k) ∈ {1, . . . , p}p such that k �= j,(B.17)

‖D(s)KD(s)−1‖2 = max{λ1(s), . . . , λp(s)} ∀s ∈ (−ε, ε).(B.18)
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Differentiating (B.15) with respect to s and using (B.10), (B.14), (B.16), and (B.17),
one gets

λ′
j(0) = 2ρ1(K)2τ trEj ∀j ∈ {1, . . . , p}.(B.19)

Property (B.11) follows from (B.7), (B.13), (B.18), and (B.19). This concludes the
proof of Proposition B.1.

The number l appearing in Proposition B.1 turns out to be important to compare
ρ0 and ρ1: we have the following proposition.

Proposition B.3. Let K ∈ Mn,n(R), D ∈ Dn,+, l ∈ {1, . . . , n}, l vectors Aj ∈
R

n, j ∈ {1, . . . , l}, and l vectors Bj ∈ R
n, j ∈ {1, . . . , l}, be such that (A.20), (B.2),

(B.3), and (B.4) hold. If l = 1, there exist X ∈ R
n and Υ := diag (Υ1, . . . ,Υn) ∈ Dn

such that

|X| �= 0,(B.20)

Υi ∈ {1,−1} ∀i ∈ {1, . . . , n},(B.21)

KX = ρ1(K)ΥX.(B.22)

If l = 2, there exist X ∈ C
n and (Υ1, . . . ,Υn) ∈ C

n such that

|X| �= 0,(B.23)

|Υi| = 1 ∀i ∈ {1, . . . , n},(B.24)

KX = ρ1(K)diag (Υ1, . . . ,Υn)X.(B.25)

In both cases (l = 1 or l = 2), one has (3.23).
Proof of Proposition B.3. Let us first consider the case l = 1. Let i ∈ {1, . . . , n}.

From (A.20), one has |Ai1| = Bi1, and therefore there exists Υi ∈ {−1, 1} such that
Bi1 = εiAi1. From (B.3), one gets (B.22) if one defines X by X := D−1A1. Let us
check that (3.23) holds. Let (θ1, . . . , θn)tr ∈ R

n be defined by

θi = 0 if Υi = 1, θi = −π if Υi = −1.

Then (B.22) implies that

diag (eιθ1 , . . . , eιθn)KX = ρ1(K)X.(B.26)

From (3.21), (B.20), and (B.26), we get that

ρ0(K) � ρ1(K),(B.27)

which, together with (3.22), gives (3.23).
Let us now turn to the case l = 2. Let i ∈ {1, . . . , n}. From (A.20), one has

|Ai1 + ιAi2| = |Bi1 + ιBi2|,

and therefore there exists Υi ∈ C such that |Υi| = 1 and Bi1 + ιBi2 = Υi(Ai1 + ιAi2).
From (B.3), one gets (B.22) if one defines X by X := D−1(A1 + ιA2). Finally,
the proof of (3.23) is the same as in the case l = 1. This concludes the proof of
Proposition B.3.

The next proposition deals with the case n = l.
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Proposition B.4. Let K ∈ Mn,n(R), D ∈ Dn,+, l ∈ {1, . . . , n}, l vectors
Aj ∈ R

n, j ∈ {1, . . . , l}, and l vectors Bj ∈ R
n, j ∈ {1, . . . , l}, be such that (A.20),

(B.2), (B.3), and (B.4) hold. If l = n, there exist X ∈ C
n satisfying (B.23) and θ ∈ R

such that

KX = e−ιθρ1(K)X(B.28)

and (3.23) again holds.
Proof of Proposition B.4. If ρ1(K) = 0, then K = 0 and the conclusion of

Proposition B.4 holds. If ρ1(K) > 0, it follows from (A.19), (B.2), and (B.3) and
the assumption l = n that ρ1(K)−1KDKD−1 is an isometry. Hence there exist
Y ∈ C

n \ {0} and θ ∈ R such that ρ1(K)−1DKD−1Y = e−ιθY , which implies (B.28)
if X := D−1Y . Finally, (3.23) again follows from (B.23) and (B.28). This concludes
the proof of Proposition B.4.

Note that ρ0 is continuous. Hence, from Proposition A.2, Proposition B.1, Propo-
sition B.3, and Proposition B.4, in order to get (3.23) (for every n ∈ {1, . . . , 5}) of
Proposition 3.7, it remains to address, with the notation of the conclusion of Propo-
sition B.1, the cases (l, n) = (3, 4), (l, n) = (3, 5), and (l, n) = (4, 5). This is done in
the following proposition.

Proposition B.5. Let K ∈ Mn,n(R), D ∈ Dn,+, l ∈ {1, . . . , n}, l vectors
Aj ∈ R

n, j ∈ {1, . . . , l}, and l vectors Bj ∈ R
n, j ∈ {1, . . . , l}, be such that (A.20),

(B.2), (B.3), and (B.4) hold. If (l, n) ∈ {(3, 4), (3, 5), (4, 5)}, there exist X ∈ C
n and

(Υ1, . . . ,Υn) ∈ C
n such that (B.23), (B.24), and (B.25) hold. In particular, one has

(3.23).
Proof of Proposition B.5. The fact that (3.23) is implied by the assumptions of

Proposition B.5, (B.23), (B.24), and (B.25) has already been pointed out in the proof
of Proposition B.3. The case (l, n) = (3, 4) follows from the case (l, n) = (3, 5) by
replacing K ∈ M4,4(R) by the matrix

K̃ :=

(

K 0

0 0

)

.

Hence we may assume that n = 5. Taking X := D−1(Y1A1 + Y2A2 + · · · + YlAl) it
suffices to prove the existence of Y := (Y1, Y2, . . . , Yl)

tr ∈ C
l \ {0} such that

|Y1Bi1 + Y2Bi2 + · · · + YlBil|2 − |Y1Ai1 + Y2Ai2 + · · · + YlAil|2 = 0 ∀i ∈ {1, 2, 3, 4, 5}.
(B.29)

Let us recall that, for p ∈ N \ {0}, Sp denotes the set of elements Q ∈ Mp,p such
that Qtr = Q. For i ∈ {1, 2, 3, 4, 5}, there exists a unique Qi ∈ Sl such that, for every
Y := (Y1, Y2, . . . , Yl)

tr ∈ C
l,

Y trQiȲ
tr = |Y1Bi1 + Y2Bi2 + · · · + YlBil|2 − |Y1Ai1 + Y2Ai2 + · · · + YlAil|2,

with Ȳ := (Ȳ1, Ȳ2, . . . , Ȳl) (z̄ denoting the complex conjugate of z ∈ C). Then (B.29)
is equivalent to

Y trQiȲ
tr = 0 ∀i ∈ {1, 2, 3, 4, 5}.(B.30)

For a matrix M ∈ Mp,p(C), let us denote by tr (M) its trace. Using (A.20) we have
that

tr (Qi) = 0 ∀i ∈ {1, 2, 3, 4, 5}.
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Using (A.19), one gets that

Y trQ1Ȳ
tr + Y trQ2Ȳ + Y trQ3Ȳ + Y trQ4Ȳ + Y trQ5Ȳ = 0 ∀Y ∈ C

l.

Hence (B.30) is equivalent to

Y trQiȲ
tr = 0 ∀i ∈ {1, 2, 3, 4}.

Therefore Proposition B.5 is a consequence of the following proposition due to Voisin
[23].

Proposition B.6. Let l ∈ {3, 4}. Let Q1, Q2, Q3, and Q4 be four elements of
Sl such that

tr (Qi) = 0 ∀i ∈ {1, 2, 3, 4}.(B.31)

Then there exists Y ∈ C
l \ {0} such that

Y trQiȲ = 0 ∀i ∈ {1, 2, 3, 4}.(B.32)

Proof of Proposition B.6. We reproduce the proof of [23]. For l ∈ N, let Sl,+ be
the set of semidefinite positive S ∈ Sl. The first step is the following lemma.

Lemma B.7. Let l, p, and n be three positive integers. Let Qi, i ∈ {1, . . . , n}, be
n elements of Sl. Assume that

tr (Qi) = 0 ∀i ∈ {1, . . . , n},(B.33)

n <
(p + 1)(p + 2)

2
− 1.(B.34)

Then there exists S ∈ Sl,+ \ {0} such that

the rank of S is less than or equal to p,(B.35)

tr (SQi) = 0 ∀i ∈ {1, . . . , n}.(B.36)

Proof of Proposition B.7. Let

C := {S ∈ Sl,+; tr (S) = l, tr (SQi) = 0 ∀i ∈ {1, . . . , n}}.

The set C is a closed convex bounded subset of Ml,l(R). By (B.33), Idl ∈ C, and
therefore C is not empty. Hence, by the Krein–Milman theorem (see, e.g., [19, The-
orem 3.21, page 70]), the convex set C has at least an extreme point. Let S be an
extreme point of C. Then S ∈ Sl,+ \ {0} and satisfies (B.36). It remains only to
check that (B.35) holds. Let k be the rank of S. There exist an orthonormal matrix
O ∈ Ml,l(R) and a definite positive matrix S0 ∈ Sk such that

S = Otr

(

S0 0

0 0

)

O.(B.37)

Let

Π :=

{

Otr

(

S′ 0

0 0

)

O; S′ ∈ Sk, tr (S′) = 0

}

⊂ Sl.(B.38)
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Let us assume that

n <
k(k + 1)

2
− 1.(B.39)

Since Π is a vector subspace of Sl of dimension (k(k + 1)/2) − 1, (B.39) implies that
there exists S0 ∈ Π \ {0} such that

tr (S0Qi) = 0 ∀i ∈ {1, . . . , n}.(B.40)

Then, for τ ∈ R with |τ | small enough, S + τS0 is in C, which contradicts the fact
that S is an extreme point of C. Hence (B.39) does not hold, which, together with
(B.34), implies that k � p. This concludes the proof of Lemma B.7.

Let us go back to the proof of Proposition B.6. We apply Lemma B.7 with n = 4
and p = 2 (then (B.34) holds). We get the existence of S ∈ Sl,+ \ {0} satisfying

the rank of S is less than or equal to 2,(B.41)

tr (SQi) = 0 ∀i ∈ {1, . . . , 4}.(B.42)

Let λ1 > 0, λ2 � 0, and 0 be the eigenvalues of S. Let

S0 =

⎛

⎜

⎝

λ1 0 0

0 λ2 0

0 0 0

⎞

⎟

⎠
∈ Sl,+.

There exists an orthonormal matrix O such that

S = OtrS0O.(B.43)

Let Z := (
√
λ1, ι

√
λ2, 0) ∈ C

l \ {0} and Y := OtrZ ∈ C
l \ {0}. Then, using (B.42)

and (B.43), one gets that, for every i ∈ {1, . . . , 4},

2Y trQiY = tr ((Y Y
tr

+ Y Y )trQi) = tr (Otr(ZZ
tr

+ ZZtr)OQi)

= 2tr (OtrStr
0 OQi) = tr (SQi) = 0,

which concludes the proof of Proposition B.6 and therefore the proof of Proposi-
tion B.5.

Finally, in order to end the proof of Proposition 3.7, it remains only to check that,
for n = 6 and therefore for every n � 6, there exists K ∈ Mn,n(R) such that l = 3
and (3.24) hold. This is done in the following example.

Example B.8. Let (u1, v1, w1)
tr ∈ R

3, (u2, v2, w2)
tr ∈ R

3, (x1, y1, z1)
tr ∈ R

3, and
(x2, y2, z2)

tr ∈ R
3. We define A1 ∈ R

6, A2 ∈ R
6, A3 ∈ R

6, B1 ∈ R
6, B2 ∈ R

6, and
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B3 ∈ R
6 by

A1 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

1

u1

u2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

0

0

v1

v2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A3 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

0

w1

w2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

B1 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

1/
√

2

x1

x2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B2 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

1/
√

2

−1/
√

2

y1

y2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B3 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

1/
√

2

0

z1

z2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

One easily checks that (A.20) holds if (and only if)

u2
1 + v2

1 + w2
1 = x2

1 + y2
1 + z2

1 ,(B.44)

u2
2 + v2

2 + w2
2 = x2

2 + y2
2 + z2

2 .(B.45)

Similarly (A.19) holds if (and only if)

3

2
+ u2

1 + u2
2 − x2

1 − x2
2 = 0,(B.46)

−1 + v2
1 + v2

2 − y2
1 − y2

2 = 0,(B.47)

−1

2
+ w2

1 + w2
2 − z2

1 − z2
2 = 0,(B.48)

1

2
+ u1v1 + u2v2 − x1y1 − x2y2 = 0,(B.49)

u1w1 + u2w2 − x1z1 − x2z2 = 0,(B.50)

−1

2
+ v1w1 + v2w2 − y1z1 − y2z2 = 0.(B.51)

Note that (B.44), (B.46), (B.47), and (B.48) imply (B.45).
We take l := 3 and R := 1. We define K ∈ M6,6(R) by requiring (A.21) and

KX = 0 ∀X ∈ R
6 such that XtrA1 = XtrA2 = XtrA3 = 0.

From Proposition A.3 we get that if (B.44) and (B.46) to (B.51) hold, then

ρ1(K) = 1.

Let us assume, for the moment, that (B.46) to (B.51) hold. If (3.24) does not hold, we
have ρ0(K) = ρ1(K) = 1, and therefore there exist X ∈ C

6 and (Υ1, . . . ,Υ6)
tr ∈ C

n

such that (B.23), (B.24), and (B.25) hold. Clearly,

|KX| = |X|.(B.52)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISSIPATIVE BOUNDARY CONDITIONS 1495

Since

|K(Y + Z)| = |Y | ∀Y ∈ CA1 + CA2 + CA3,

∀Z ∈ C
n such that ZtrA1 = ZtrA2 = ZtrA3 = 0,

it follows from (B.52) that X ∈ CA1 +CA2 +CA3. Hence, there exist ξ1 ∈ C, ξ2 ∈ C,
and ξ3 ∈ C such that

X = ξ1A1 + ξ2A2 + ξ3A3.(B.53)

Using (B.25), one gets (KX)1 = Υ1X1 and (KX)2 = Υ1X2, which, together with
(A.21) and (B.24), imply that

|ξ1| = |ξ2| = |ξ3|.(B.54)

Using (B.23) and (B.54) one sees that, without loss of generality, we may assume that

ξ1 = 1, |ξ2| = |ξ3| = 1.

Hence there exist θ2 ∈ R and θ3 ∈ R such that

ξ2 = eiθ2 , ξ3 = eiθ3 .(B.55)

Now using |(KX)3| = |X3|, one gets

|ξ2 + ξ3| =
√

2,

which, together with (B.55), is equivalent to

cos(θ3 − θ2) = 0;

i.e., there exists ε3 ∈ {1,−1} such that

ξ3 = ε3ιξ2.(B.56)

Proceeding similarly with the fourth of KX, one gets the existence of ε2 ∈ {1,−1}
such that

ξ2 = ε2ι.(B.57)

Then |(KX)5| = |X5| and |(KX)6| = |X6| are equivalent to

(u1 + ε1w1)
2 + v2

1 = (x1 + ε1z1)
2 + y2

1 ,(B.58)

(u2 + ε1w2)
2 + v2

2 = (x2 + ε1z2)
2 + y2

2(B.59)

with

ε1 := −ε2ε3 ∈ {1,−1}.

Let

F : R
12 → R

7,

P := (u1, v1, w1, x1, y1, z1, u2, v2, w2, x2, y2, z2)
tr �→ F (P )

(B.60)
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be defined by

F (P ) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3

2
+ u2

1 + u2
2 − x2

1 − x2
2

−1 + v2
1 + v2

2 − y2
1 − y2

2

−1

2
+ w2

1 + w2
2 − z2

1 − z2
2

1

2
+ u1v1 + u2v2 − x1y1 − x2y2

u1w1 + u2w2 − x1z1 − x2z2

−1

2
+ v1w1 + v2w2 − y1z1 − y2z2

u2
1 + v2

1 + w2
1 − x2

1 − y2
1 − z2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let Σ be the subset of R
12 defined by

Σ := {P ∈ R
12; F (P ) = 0 and the rank of F ′(P ) is 7}.

Let

P̃ :=

(

0, 1, 0, 1, 0, 0,−1

4
,
1

2
,
3

4
,
3

4
,
1

2
,−1

4

)tr

∈ R
12.

One easily checks that F (P̃ ) = 0. Straightforward computations give

F ′(P̃ ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 −2 0 0 −1

2
0 0 −3

2
0 0

0 2 0 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 0 0
3

2
0 0

1

2

1 0 0 0 −1 0
1

2
−1

4
0 −1

2
−3

4
0

0 0 0 0 0 −1
3

4
0 −1

4

1

4
0 −3

4

0 0 1 0 0 0 0
3

4

1

2
0

1

4
−1

2

0 2 0 −2 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.(B.61)

In particular, the rank of F ′(P̃ ) is 7. Hence P̃ is in Σ, and the set Σ is not empty and
is a submanifold of R

12 of dimension 12 − 7 = 5. The tangent space to this manifold
at P̃ is Ker F ′(P̃ ). Let G+ be the map

G+ : R
12 → R

2,

P := (u1, v1, w1, x1, y1, z1, u2, v2, w2, x2, y2, z2)
tr �→ G+(P )

defined by

G+(P ) :=

(

(u1 + w1)
2 + v2

1 − (x1 + z1)
2 − y2

1

(u2 + w2)
2 + v2

2 − (x2 + z2)
2 − y2

2

)

.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISSIPATIVE BOUNDARY CONDITIONS 1497

Similarly, let G− be the map

G− : R
12 → R

2,

P := (u1, v1, w1, x1, y1, z1, u2, v2, w2, x2, y2, z2)
tr �→ G−(P )

defined by

G−(P ) :=

(

(u1 − w1)
2 + v2

1 − (x1 − z1)
2 − y2

1

(u2 − w2)
2 + v2

2 − (x2 − z2)
2 − y2

2

)

.

Let S+ ⊂ R
12 and S− ⊂ R

12 be defined by

S+ := {P ∈ R
12; G+(P ) = 0},

S− := {P ∈ R
12; G−(P ) = 0}.

It suffices to check that

Σ is not a subset of S− ∪ S+.(B.62)

Note that P̃ ∈ S− ∩ S+ and

G′
−(P̃ ) =

(

0 2 0 −2 0 2 0 0 0 0 0 0

0 0 0 0 0 0 −2 1 2 −2 −1 2

)

,(B.63)

G′
+(P̃ ) =

(

0 2 0 −2 0 −2 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 −1 −1 −1

)

.(B.64)

In particular the rank of G′
−(P̃ ) and the rank of G′

+(P̃ ) are both equal to 2. Hence, if

r > 0 is small enough, the set {P ∈ S−; |P−P̃ | < r} and the set {P ∈ S+; |P−P̃ | < r}
are submanifolds of R

12 of dimension 12 − 2 = 10 whose tangent spaces at P̃ are
Ker G′

−(P̃ ) and Ker G′
+(P̃ ), respectively. Therefore (B.62) holds if

Ker F ′(P̃ ) is not a subset of Ker G′
−(P̃ ) ∪ Ker G′

+(P̃ ).(B.65)

Property (B.65) follows from (B.61), (B.63), and (B.64). This concludes the proof of
Proposition 3.7.
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