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Abstract

We present a new compilation strategy, implemented at a small
cost, to optimize image applications developed on top of a high
level image processing library for an heterogeneous processor with
a vector image processing accelerator. The library provides the se-
mantics of the image computations. The pipelined structure of the
accelerator allows to compute whole expressions with dozens of
elementary image instructions, but is constrained as intermediate
image values cannot be extracted. We adapted standard compila-
tion techniques to perform this task automatically. Our strategy is
implemented in PIPS, a source-to-source compiler which greatly
reduces the development cost as standard phases are reused and
parameterized for the target. Experiments were run on the hard-
ware functional simulator. We compile 1217 cases, from elemen-
tary tests to full applications. All are optimal but a few which are
mostly within a mere accelerator call of optimality. Our contribu-
tions include: 1) a general low cost compilation strategy for image
processing applications, based on the semantics provided by library
calls, which improves locality by an order of magnitude; 2) a spe-
cific heuristic to minimize execution time on the target vector ac-
celerator; 3) numerous experiments that show the effectiveness of
our strategy.

1. Introduction

Heterogeneous hardware accelerators, based on GPU, FPGA or
ASIC, are used to reduce the execution time, the energy used and/or
the cost of a small set of application specific computations, or even
the cost of a whole embedded system. They can also be used to
embed the intellectual property of manufacturers or to ensure prod-
uct perennity. Thanks to Moore’s law, their potential advantage in-
creases with respect to standard general-purpose processors which
do not gain anymore from the increase in area and transistor num-
ber. But all these gains are often undermined by large software de-
velopment cost increases, as programmers knowledgeable in the
target hardware must be employed, and as this investment is lost
when the next hardware generation appears.

∗ This work is funded by the French ANR through the FREIA project [2].

We present a compilation strategy to map image processing ap-
plications developed on top of a high-level image library onto a
heterogeneous processor with a vector image processing accelera-
tor. This approach is relatively inexpensive as mostly-standard and
reusable compilation techniques are involved: only the last code
generation phase is fine-tuned and target-specific.

Our hardware target, the SPoC vector image processing acceler-
ator [9], currently runs on a FPGA chip as part of a SoC. The hard-
ware accelerator implements directly some basic image operators,
possibly part of the developer visible API: this hardware-level API
characterizes the accelerator instruction set. Dozens of elementary
image operations such as dilatations, erosions, ALUs, thresholds
and measures, can be combined to compute whole image expres-
sions per accelerator call. However these capabilities come with
constraints: only two images can be fed into the accelerator inter-
nal pipeline structure, and two images can be extracted after various
image operations performed on the fly. The accelerator is a set of
chained vector units. It does not hold a single image but only a few
lines (2 lines per unit) which are streamed in and out of the main
memory. There is no way to extract intermediate image values from
the pipeline.

The application development relies on the FREIA image pro-
cessing library API [2]. A software implementation on top of Ful-
guro [8], a portable open-source image processing library, is used
for functional tests. The developer has no knowledge of the target
accelerator hardware. Operators of the FREIA image library must
be programmed specifically for the chosen target accelerator, either
by simply calling basic hardware accelerated operators (basic hard-
ware operator library implementation), or, better, with a specialized
implementation (hardware optimized library implementation) that
takes advantage of the hardware by composing basic operations.
Although the library layer provides functional application portabil-
ity over accelerators, it does not provide all the time, energy and
cost performance expected from these pieces of hardware.

In order to reach better performance, library developers may be
tempted to increase the sizes of API’s to provide more opportuni-
ties for optimized code to be used, but this is an endless process
leading to over-bloated libraries and possibly non-portable code:
up to thousands of entries are defined in VSIPL [1], the Vector Sig-
nal Image Processing Library. In contrast to this library-restricted



approach, we use the basic hardware operator library implementa-
tion, but the composition of operations needed to derive an efficient
version is performed by the compiler for the whole application. We
see the image API as a domain specific programming language, and
we compile this language for the low-level target architecture.

The keys to performance improvement are to lower the control
overhead and to increase data locality at the accelerator level, so
that larger numbers of operations are performed for each memory
load. This is achieved by merging successive calls to the accelera-
tor, with no or few memory transfers for the intermediate values. To
detect which calls to merge, techniques have been developed such
as loop fusion or complex polyhedral transformations. Such tech-
niques cannot be applied usefully on a well-designed, highly mod-
ular software library such as Fulguro: loops and memory accesses
are placed in different modules and loop nests are not adjacent: size
checks, type dispatch and dynamic allocations of intermediate val-
ues are performed between image processing steps.

Instead of studying the low-level source code and trying to guess
its semantics with respect to the available hardware operators, we
remain at the higher image operation level. We inline high-level
API function calls not directly implemented in the accelerator, un-
roll loops, flatten the code, so as to increase the size of basic blocks.
These basic blocs are then analyzed to build expression DAGs us-
ing the instruction set of the accelerator. They are optimized by
removing common sub-expressions and propagating copies. Up to
here, the hardware accelerator is only known by the operations it
implements. We then consider hardware constraints, such as the
number of vector units, data paths, code size or local memory avail-
able, and split these expression DAGs into parts as large as possible,
but meeting these constraints. Finally, using the expression DAGs
as input, we generate the configuration code ands calls to a run-
time library activating the accelerator, and replace the expressions
by these calls.

The whole optimization strategy is automated and implemented
in PIPS [4, 17], a source-to-source compiler, which let the user see
the C source code that is generated. This greatly helps compiler
debugging. We compile 1217 test cases, from elementary tests to
full applications, all of which are optimal but a few. Experiments
were run with the SPoC functional simulator. The results on the
running example included in this paper show a speed-up of 16.5
over the most naı̈ve use of the accelerator, and a speed-up of 3 over
the use of the optimized library.

In the remainder of this paper, we first introduce our running
example which is a short representative of the application domain
(Section 2) and present the target architecture (Section 3). Then
we show how the user source code is preprocessed to obtain basic
blocks with optimization opportunities (Section 4). Next, compiler
middle-end optimizations for locality are described (Section 5), and
the back-end SPoC specific hardware configuration generation is
detailed (Section 6). We finally present our implementation and
experimental results obtained with a SPoC simulator (Section 7),
and discuss the related work (Section 8).

2. Applications and Running Example

The FREIA project aims at mapping efficiently an image process-
ing applications developed on top of a high-level API onto dif-
ferent hardware accelerators. The image applications use all kind
of image processing operations, such as: AND-ing an image with
a mask to select a subregion; MAXLOC-cating where is the hottest
point; THR-esholding an image with values to select regions of in-
terest; mathematical morphology (MM) [20] operators. The MM
framework created in the 1960’s provides a well-founded theory to
image analysis, with algorithms described on top of basic image
operators. The project targets high performance, possibly hardware
accelerated, very often embedded, high-throughput image process-

Figure 1. License plate (LP): character extraction

Figure 2. Out of position (OOP): airbag ok or not

Figure 3. Video survey (VS): motion detection

ing. For this purpose, the software developer is ready to make some
efforts in order reach the expected high performances for critical
applications on selected hardware. Current development costs are
high, as application must be optimized from the high-level algo-
rithmic choices down to the low-level assembler code and memory
transfers for every hardware targets. The project aims at reducing
these costs through optimizing compilation and careful runtime de-
signs. Typical applications extract informations from one image or
from a stream of images, such as a license plate in a picture (LP,
Figure 1), whether a car passenger is out of position and could be
harmed if the airbag is triggered (OOP, Figure 2), or whether there
is some motion under a surveyance camera (VS, Figure 3).

The high-level FREIA image API has several implementations.
The first one is pure C, based on the Fulguro [8] open-source image
processing library, and is used for the functional validation of the
applications. There are two implementations for the SPoC vector
hardware accelerator (Section 3), which can run over a functional
simulator or on top of the actual FPGA-based hardware: One uses
SPoC for elementary functions, which are directly supported by
the SPoC instruction set, one elementary operator at a time. The
other is hand-optimized at the library call level by taking full ad-
vantage of the SPoC vector hardware capability to combine opera-
tions. Other on going versions of the library are optimized for the
Terapix [5] SIMD accelerator, and for OpenCL targeting graphics
hardware (GPGPU).

The code in Figure 4 was defined as part of the FREIA project
to provide a short test case significant both for the difficulties in-
volved and for the optimization potential, with the two hardware
accelerators in mind. The test case contains all the steps of a typi-



#include <stdio.h>

#include <freia.h>

int main(void) {
freia dataio fin, fout;

freia data2d *in, *og, *od;

int32 t min, vol;

// initializations

freia common open input(&fin, 0);

freia common open output(&fout, 0, ...)

in = freia common create data(fin.bpp, ...);

od = freia common create data(fin.bpp, ...);

og = freia common create data(fin.bpp, ...);

// get input image

freia common rx image(in, &fin);

// perform some computations

freia global min(in, &min);

freia global vol(in, &vol);

freia dilate(od, in, 8, 10);

freia gradient(og, in, 8, 10);

// output results

printf("input global min = %d\n", min);

printf("input global volume = %d\n", vol);

freia common tx image(od, &fout);

freia common tx image(og, &fout);

// cleanup

freia common destruct data(in);

freia common destruct data(od);

freia common destruct data(og);

freia common close input(&fin);

freia common close output(&fout);

return 0;

}

Figure 4. FREIA API running example

cal image processing code: an image is read, intermediate images
are allocated and processed, and results are displayed. As it is short
enough to fit in a paper, we use it as running example, together with
extracts from larger applications. Optimization opportunities at the
main level of our test case are very limited. The min and vol func-
tion calls correspond to two SPoC instructions. Since they are next
to each other and use the same input argument, they can be merged
into a unique call to SPoC. The dilate and gradient functions are
not part of the SPoC instruction set. They are implemented in the
non-optimized SPoC version of the FREIA library, using calls to
elementary functions. Since these calls are not visible in the main
function, no optimization is possible in this case. With the naı̈ve
elementary function based implementation, 33 calls to the acceler-
ator are used per frame, hidden in the callees. A hand-optimized
SPoC implementation of the FREIA image library results in 6 ac-
celerator calls only, because calls to elementary functions can be
merged within the implementation of the FREIA functions.

3. SPoC Architecture

Figure 5 outlines the structure of the SPoC processor. It can be seen
as a simplified version of the 30 year old CDC Cyber 205 [16], spe-
cialized for image processing instead of floating point computation.
A MicroBlaze provides a general purpose scalar host processor and
a streaming unit, the SPoC pipeline, made of several image pro-
cessing vector units, constitutes the image processing accelerator.
It also contains a DDR3 memory controller, DMA engines, FIFOs
to synchronize memory transfers and vector computations and the
host, a gigabit Ethernet interface and video converters for I/Os.
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Figure 5. SPoC architecture
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Figure 6 shows one vector unit of the SPoC pipeline, with two
inputs and two outputs of 16 bit-per-pixel images. The units are
chained linearly, directly one to the next, using their outputs and
inputs: there is no apparent vector image registers. The first inputs
and last outputs are connected to the external memory by DMA en-
gines. A vector unit is made of several operators, but the intercon-
nection is not free: the data paths are quite rigid, with some control
by multiplexers MX. One morphological operator MORPH can be
applied to each input. Their results can be combined by an arith-
metic and logic unit, ALU. Two outputs are selected among those
three results by the four multiplexers which control the stream of
images. Then a threshold operator, THR, can be applied to each
selected output and the reduction engine MES compute reductions
such as maximal or sum of the passing pixels, the result of which
can be extracted if needed after the accelerator call. To sum up,
each micro-instruction can perform concurrently up to 5 full image
operations and a number of reductions, equivalent to 29 pixel op-
erations per tick. A NOP micro-instruction is available to copy the
two inputs on the two outputs. It is useful when some vector units
of the SPoC pipeline are unused.

The host processor controls the vector units by sending them
one micro-instruction each and by configuring the four DMA en-
gines for loading and storing pixels. The host processor can also
retrieve the reduction results from the vector units. The control
overhead remains small because images are always large enough
to generate very long pixel vectors. A low resolution image, for
instance 320× 240, is equivalent to a 76800 element vector.

When considering FPGA implementations, the number of vec-
tor micro-instructions that can be executed concurrently, i.e. the
number of vector units, ranges from 4 to 32. The limiting factor is
the internal RAM available. Our reference target hardware includes
8 vector processing units, but the solution we suggest below is para-
metric with respect to this number. In practice, this vector depth
provides a reasonable cost-performance trade-off as it fits patterns
of iterated erosions and dilatations on few images that are often
found in typical applications, but is yet not too expensive when
these patterns are not found. With a specific set of application in
mind, several vector depth can be tested to choose the best setting.
The total number of image operations that can be executed at a



given time is 5 times the number of units, not counting the reduc-
tions. So the compiler must chain 40 image operations of the proper
kind and order to obtain the peak performance. Unlike the Cray
vector register architecture, only two inputs are available. Unlike
the CDC 205, no general interconnection is present between ele-
mentary functional unit. Chaining and register allocation are very
much constrained as each vector processing unit is pipelined: delay
lines help compute 3 × 3 morphological convolutions, including a
transparent and accurate management of image boundaries which
are out of the stencil. Thus the size of the output image is equal to
the input image size, contrary to repeated stencil computations [11]
which usually reduce the image size. This is another reason why
low-level loop transformation-based approaches are likely to fail.
Micro-instruction scheduling and compaction is easy once the or-
der of operations is determined.

To sum up, the useful hardware constraints are 1) the structure
of the micro-instruction set and the structure of the vector unit data
paths, 2) the maximal number of chained microinstructions, i.e. the
number of vector units, and 3) the number of image paths, two.
Furthermore, the operations must be as packed as possible to reduce
the number of micro-instructions. With 8 vector units, up to 40 full
image operations can be performed for two loads and two stores,
which leads to 10 SPoC operations per memory access, including
high-level morphological convolutions which require more than 20
elementary operations each, and not counting the many reductions.
So between 50 and 100 elementary operations can be executed per
memory access.

4. Phase 1 – Application Preprocessing

The FREIA API [2] and its Fulguro [8] implementation are de-
signed to be general with respect to the connectivity, the image
sizes and the pixel representation. Standard or advanced loop trans-
formations cannot take advantage of such source code because the
loops are distributed into different functions and because elemen-
tary array accesses are hidden into function calls to preserve the
abstraction over the pixel structure.

To build large basic blocks of elementary image operations,
control flow breaks such as procedure call sites, local declarations,
branches and loops must be removed by using key parameters such
as connectivity and image size set up by the main and propagated to
callees such as the image dilatation. Several source-to-source trans-
formations help achieve this goal: 1) inlining to suppress functional
boundaries, 2) partial evaluation to reduce the control complexity
and 3) constant propagation to allow full loop unrolling, 4) dead
code elimination to remove useless control, 5) declaration flatten-
ing to suppress basic block breaks. Safety tests are automatically
eliminated as the application is assumed correct before its optimiza-
tion is started. The order of application of these five transformations
is chosen to maximize the available information so as to simplify
the code and obtain larger basic blocks. Figure 7 shows the result-
ing code after automatic application of these transformations on the
main function in Figure 4. It contains a sequence of elementary im-
age operators mixed with scalar operations and temporary image
allocations and deallocations.

5. Phase 2 – DAG Optimization

The basic blocks of the image application are analyzed to build an
expression DAG as the one in Figure 8 (on next page), which is then
optimized for locality. The vertices are the operations to perform,
which may be image operations (MORPH as rectangles, ALU as
trapezium, THR as parallelogram, MES as diamond, copy and in-
put/output images as circles) or intermediate scalar operations de-
picted as question marks. The arcs represent the dependencies be-
tween operations, when a piece of data defined at the source node

// perform some computations

freia aipo global min(in, &min);

freia aipo global vol(in, &vol);

freia aipo dilate 8c(od, in, k8c);

freia aipo dilate 8c(od, od, k8c);

// previous line repeated 10 times...

I 0 = 0;

tmp = freia common create data(...);

freia aipo dilate 8c(tmp, in, k8c);

freia aipo dilate 8c(tmp, tmp, k8c);

// previous line repeated 10 times...

freia aipo erode 8c(og, in, k8c);

freia aipo erode 8c(og, og, k8c);

// previous line repeated 10 times...

freia aipo sub(og, tmp, og);

freia common destruct data(tmp);

Figure 7. Excerpt of the main of Figure 4 after preprocessing
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end is used at the sink node. Arcs shown as black arrows embed
image dependencies, and white arrows represent scalar dependen-
cies. For instance the result of reductions on an image is used after
some computation for thresholding it.

The DAG derived from our running example is shown in the up-
per part of Figure 9. The third row of dilatations is the call to the
freia dilate function with connectivity 8 and size 10. This DAG
is then optimized in a target independent manner, with standard
compilation techniques: common sub-expressions elimination and
copy propagation are applied at the image level. Operator commu-
tativity is taken into account to perform CSE, thanks to the image
operator semantics which is available by recognizing the calls. Sim-
ple information about parameters, image or scalar, input and/or out-
put, are derived automatically from C source stubs. Image copies
are propagated forward toward their uses, with the exception of
copies on output images which are propagated backward to their
producer so that they are directly generated instead of using a tem-
porary image. Remaining input and output image copies are ex-
tracted from the DAG to be performed outside of the accelerator.
In our running example, the optimization detects that all operations
of the dilatation are also performed within the gradient, so they are
removed in the lower part of Figure 9, and the intermediate result
is simply extracted.

Other challenges are found in the DAG for the license plate ap-
plication in Figure 10, where repeated operations are denoted as
dashed arrows. In this debug version of the code, every two op-
erations are image copies either inserted within the computations
or diverted to extract intermediate images. All these useless copies
are removed from the optimized DAG. Eliminating such diversions
is important for our target vector accelerator because extractions
break the computation pipeline, thus inducing more accelerator
calls. The DAG in Figure 11 is extracted from the OOP applica-
tion. The optimized version removed both copies and a common
subexpression involving 3 operations. These redundancies are not
obvious to spot in the source code. The optimization of the DAG
in Figure 8 removes both copy operations on input and within the
graph.

The result of this phase is an optimized image expression DAG
ready to be mapped onto the available hardware.

6. Phase 3 – SPoC Hardware Configuration

Finally, an accelerator specific compilation phase generates the
hardware configuration, i.e. the micro-instructions for evaluating
the optimized DAG resulting from the previous phase. We have two
code generators; one for SPoC described hereafter, and one under
development for the Terapix SIMD accelerator.

Problem Description

The SPoC hardware accelerator [9] constraints discussed in Sec-
tion 3 must be met: The computations in the hardware accelerator
must only involve two live images at any single point because only
two data paths are available (Figure 6). Actual computations must
be scheduled on components so that live images can still reach their
use or the end of the path. If all available vector units in the SPoC
pipeline are used for a computation and more operations remain,

the pipeline spilling must be managed. The optimality criterion is
to minimize the number of calls to the accelerator, taking into ac-
count its actual number of vector units, as one call lasts about the
same time whatever the operations performed in the pipeline.

The problem of mapping an image expression DAG onto the
SPoC accelerator is very close to the pebble game problems used
in register allocation, with in our case only two registers. However,
unlike register allocation problems, our spill code is to interrupt
our computation pipeline, resulting in both registers to be spilled
at the same cost as one of they occur simultaneously. So although
mapping scalar expression DAG onto a register machine [3, 6] is
NP-complete, these results do not apply directly to our case.

We conjecture nevertheless that our problem is NP-complete,
because of the close similarity with the code generation problem
for register-machines. First, the setting is highly combinatorial if
one enumerates all possible evaluation orders compatible with the
dependencies when there is a high degree of parallelism available
in the DAG. Second, evaluating the cost of a proposed solution is
reasonably easy: given an order of operations, one can detect in
one pass over the vertices when an infinite pipeline should be cut
because an operation would create more than two live images; if the
finite number of vector units is considered, instruction compaction
can tell when the pipeline is full.

Code Generation

Given the combinatorial nature of the problem, our heuristic con-
sists in breaking down the problem into three successive stages.
Each stage satisfies one of the constraints independently, and there
is no guarantee of global optimality. First, we meet the two live
image constraint with a decomposition of the expression DAG into
sub-DAGs, where each resulting sub-DAG operations are ordered
by the decomposition process so that their evaluation in that order
only requires two live images. Then, instructions are compacted in
a conceptually infinite pipeline, which is finally cut according to the
number of available vector units. We chose to avoid a global combi-
natorial optimization because this simple heuristic, which satisfies
each constraint one after the other, leads to excellent experimental
results (Section 7).

The optimized expression DAG is first split into sub-DAGS with
no more than two live images and no internal scalar-carried depen-
dencies. As noted above, this is very similar to evaluating an ex-
pression with only two registers. We use the simple list scheduling
of basic blocks technique described in the Dragon book, with a pri-
oritized topological order which focuses on the critical resource,
namely the small number of data paths. Scalar dependencies, can-
not be handled within one hardware accelerator call as images are
processed concurrently, so the needed result would not be avail-
able at the start of the dependent computation: they must be split
across distinct sub-DAGs. The greedy list scheduling heuristic ex-
pands a subgraph as much as possible, and never backtracks. The
priority choices favor the immediate use of computed images in the
pipeline: reductions that do not update their source are performed
first, then operations that use up an image and define another one,
ordered by the number of uses, then other operations. The result of
the first pass is a list of DAGs, each with an ordered list of opera-



tions that require no more than two live images if processed in that
particular order along the pipe.

Each sub-DAG is then mapped onto a pipeline with a conceptu-
ally infinite number of vector units by compacting operations into
microinstructions. We do not allow much freedom at this stage be-
cause the order of operations cannot be modified without putting at
risk the two live image constraint. It is kept unchanged. Microin-
struction compaction is performed at the same time because the
packing constraints are very easy to meet: structural, control and
data pipeline hazards are avoided by the hardware, hence sophisti-
cated microinstruction scheduling and compaction are not required.
The compaction is achieved by scheduling operations in the first
available slot. When only one image is needed by the pipeline, it is
sent on both input paths so as to help the compaction at the begin-
ning of the pipe. Path selection implies the multiplexer configura-
tion. It must ensure that computed images reach the operators that
process them, which may shift a computation further down in the
pipeline in some cases. Under these assumptions, this compaction
stage could be proven optimal, that is the number of units used is
minimal, by induction on the structure of the pipeline, as we choose
the first available operator at each iteration. However this optimal-
ity is weak because it requires that there is no reordering of the
operations, which could improve the result if allowed. Moreover
this optimality is local, and taking this constraint in the previous
stage could help improve the overall solution.

The third stage of the code generation process is to map the
open-ended pipeline onto the available vector units. This is simply
achieved by cutting the micro-instructions sequence at the number
of available vector units, and to perform another activation of the
SPoC pipeline for the remainder, until all sub-DAG operations
are performed. This stage of the process is trivially optimal if the
compaction is optimal.

This heuristic phase for the SPoC accelerator reuses standard
compilation techniques to generate most of the time optimal results.
It is followed by a quick cleanup of intermediate images which are
not used anymore by the function. The techniques are applied on
very long vector flows of pixels from images, whereas they were
originally designed for scalars in registers. This works well because
the SPoC architecture takes care of pipeline hazards and performs
stencil computations without reducing the image size: images are
equivalent to scalar variables.

7. Discussion, implementation and experiments

There is a cost performance tradeoff in choosing the number of
vector units, as longer pipeline are less efficiently used when no
operations can be scheduled and add to the overall latency of
accelerator calls. The solution to this tradeoff depends on the actual
applications and on the user ability to select optimal hardware. It is
not taken into account here as we assume that the number of vector
units is a given, with 8 a typical figure.

Our optimization strategy is implemented in PIPS [10], for a
small development cost measured hereafter with the KLOCs (line
of codes) involved. Figure 12 summarizes the different phases pre-
sented in detail in the previous sections. Transformations of Phase 1
are standard in an advanced optimizing compiler. Phase 2 opera-
tions are also standard, but are used here for full image processing
calls although the usual scope is on elementary scalar processor op-
erations. Its implementation uses about 2 KLOCs for representing
the FREIA elementary operator semantics, plus building and op-
timizing the DAG representation. Phase 3 is the back-end specific
code generation. It uses about 1.6 KLOCs including DAG splitting,
scheduling, wiring, and SPoC configuration. It produces accelera-
tion functions to be called from the initial application. Each gen-
erated pipeline configuration function (see excerpt in Figure 13) is
called from the main with the appropriate arguments (in Figure 14).

Phase 1 application preprocessing – enlarge basic blocs

1. inlining of FREIA library functions

2. partial evaluation

3. constant propagation and loop full unrolling

4. dead code elimination

5. block flattening

Phase 2 DAG optimization

1. DAG construction per sequence

2. common sub-expression elimination, with commutativity

3. forward or backward copy propagation

4. extraction of remaining copies

5. dead image operation removal

Phase 3 SPoC configuration: map DAG onto hardware

1. DAG splitting and scheduling of sub-DAGs

2. instruction compaction and path selection

3. pipeline overflow management

4. unused image cleanup

Figure 12. Outline of our compilation strategy: phases and stages

void helper 0(freia data2d * o0, freia data2d * o1,

freia data2d * i0, int32 t * red0, int32 t * red1,

int32 t * kern2 /* ... up to kern16 */)

{
// SKIPPED: declarations & initializations

// - si & op: micro instructions

// - sp & par: operation parameters

// - redres & reduc: reduction results

// set state of MUX stage 0 number 0

si.mux[0][0].op = SPOC MUX IN0;

// set state of POC stage 1 side 0

si.poc[1][0].op = SPOC POC DILATE;

si.poc[1][0].grid = SPOC POC 8 CONNEX;

// and its kernel

for(i=0 ; i<9 ; i++)

sp.poc[1][0].kernel[i] = kern2[i];

// SKIPPED: more configurations...

// actual call to the hardware accelerator

// instructions, params, 2 images out, 2 images in

freia cg process 2i 2o(op, par, o0, o1, i0, i0);

// extract reductions results

freia cg read reduction results(&redres);

*red0 = (int32 t) reduc.measure[0][0].minimum;

*red1 = (int32 t) reduc.measure[0][0].volume;

}

Figure 13. One stub source code (excerpt) for Figure 4

// perform some computations

helper 0(od, og, in, &min, &vol, k8c, /* 18 more k8c args */);

helper 1(od, og, od, og, k8c, k8c, k8c, k8c, k8c);

Figure 14. Code in Figure 4 is reduced to two stub calls
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Figure 15. Speed-ups on SPoC with 8 vector units for Figure 4

Other applications may require more preprocessing phases, such as
while loop unrolling or code hoisting, to obtain longer basic blocks.

Figure 15 compares speed-ups obtained on versions the running
example Figure 2 with differing numbers of iterations (the source
code selected executes 10 iterations). In the baseline version, each
call to the accelerator performs only one operation. In the optimized
library version, each call to a FREIA operator is optimized indepen-
dently. Finally the PIPS version is generated with the techniques
described in this paper to optimized the whole application. It fares
better than any other versions, thanks to the extracted common sub-
expression and the optimal (in this case) hardware mapping which
combines elementary operations whenever possible. Note that the
optimized version runs out of vector units for a size 8 gradient op-
eration, whereas the version using the SPoC optimized library goes
down for 9: the first vector unit is used up by the optimized version
for the volume and minimum measurements in the input image,
hence the shift of the discontinuity between the two versions. Our
compiler was tested on 1217 cases, comprising 1005 combinatorial
tests (3 to 6 ops), 105 elementary tests (1 to 13 ops), 40 atomic tests
(1 op for which we generate the hardware accelerated version) and
finally 57 significant applications or functional blocks (5 to 135
ops) tested with various parameters. Only 15 results are not opti-
mal for the target SPoC accelerator: 14 are one call from optimal-
ity, and one is non optimal by 3 calls. Most of these non optimality
cases are linked to the greedy nature of the heuristic coupled with
pipeline spilling effects.

8. Related Work

The related work is rather limited because people developing hard-
ware accelerators in an academic environment usually do not have
the resources required to develop a full programming tool chain.
They either design a specialized language, or use pragmas to guide
the optimizer, or build an optimized library, which may grow
with each new application to include the application-specific API
that leads to good performance, or they develop applications with
target-knowledgeable people and do not advertise it. We break the
related work in two parts, software development for accelerators
and optimization of expression evaluation.

Software development for accelerators

Specialized languages have been designed to address various needs
of application domains and target architectures which are not well
served by general purpose languages. The OpenCL recent stan-
dard aims at providing portability across accelerators, especially
GPGPU targets, but it is quite large and pretty low-level: applica-
tion developers should be able to ignore it. It remains an interesting

output language for a source-to-source tool like PIPS, or for im-
plementing an efficient runtime to be called by the generated code.
Array-OL [13] is an example of a domain-specific language de-
signed for signal processing and for accelerator programming. On
the one hand, Array-OL is not general enough to write a whole
application, and on the other hand it is still hard to compile effi-
ciently for a given target: parts of the application must be isolated
and coded in Array-OL, and the Array-OL optimization process be
performed under human supervision using a graphical tool.

Pragma annotations on top of a standard language are used to
preserve the portability of applications and allow their functional
validation in a standard environment. OpenMP allows the devel-
oper to hint about the program semantics, say loop parallelism or
critical sections, but does not yet address all the requirements of
hardware accelerators, especially when the hardware accelerator
must be programmed. HMPP [7] is another pragma set designed by
CAPS Enterprise to provide higher level pragmas. It can be used to
program an accelerator such as Nvidia Tesla or AMD FireStream,
including the use of several accelerators linked to a unique host,
issue which is not addressed by our technique. However the set of
directives is very specific and requires deep architectural insight
from the developer to be exploited fully.

Another way of achieving high performance on specialized
hardware and still retain portability is to use domain-specific li-
braries which can be implemented for various targets. VSIPL [1]
in the signal processing field was developed as an open standard by
an industry, government and research consortium. It contains thou-
sands of functions, and various level of partial implementations are
defined in the standard, starting from the 127 functions core lite
profile, followed by the 513 functions core profile, but implemen-
tations do not necessarily implement these profiles in full. As the
functions are not independent and orthogonal, the developer must
choose an implementation strategy which may result in different
performances with differing library implementations, and may im-
pair the portability when all functions are not available. Moreover,
we observed in the Ter@ops project that an API has a direct impact
on the application structure, which may not lead to good perfor-
mance on a new piece of hardware. A library has been designed for
vector-based instruction set additions such as Altivec or Intel SSE
extension family. To optimize its functions, application-level loops
had to be moved down into the library to improve data re-use. When
the application was ported on a new MPSoC, without any vector
operation support but with multiple processors, loops were moved
back up across functional boundaries [15] to re-optimize the ap-
plication differently. When performance is a concern, a fixed API
cannot really remain target independent. Although our approach
relies on an API, it is used to provide the underlying application
semantics, and the generated code does not have to respect the
API; the compiler restructures the computations to fit the target
hardware.

Application-specific instructions can be added to an existing
general-purpose instruction set. For instance, the Video Specific
Instruction Set Processor [18] has special instructions for compu-
tational intensive parts such as inter-block prediction but also uses
co-processors for specific tasks such as entropy encoding. This is
close to our case, although these instructions are very algorithm-
specific, while we have generic elementary operators.

Optimization of expression evaluation

We use commutativity to detect more common subexpressions,
but we do not currently attempt to use advanced algebraic proper-
ties [21], mainly because none of our test cases would benefit from
these complex combinatorial optimizations. However we would
consider using them if we had a motivating example that would be
really improved by such optimizations. Basic block enlargement



is useful for trace scheduling [12] and obtained by different code
transformations, including code hoisting and code sinking [14]. For
image processing applications, code hoisting and sinking do not
seem useful. Our technique is close to the optimization of expres-
sion evaluation and vector instruction chaining [19], although in
our case we must preliminary meet the pipeline constraints of our
target hardware.

9. Conclusion and Future Work

We have shown how standard compilation techniques can be effi-
ciently reused and adapted to optimize applications based on an im-
age processing library for a domain-specific hardware accelerator
composed of multiple chained vector units. Applications can be de-
veloped in C by any programmer competent in the image process-
ing field, but without knowledge of the hardware accelerator, and
are automatically optimized for the specific target system without
any of the traditional hurdles such as the procedure calls imposed
by the different APIs used. The source code transformations and the
high-level optimization strategy is simple, it properly combines and
adapts existing techniques to perform a wide range of loop fusions
based on semantical information. This simplicity is an asset, as it
greatly reduces the development costs of the compiler and bring
large speedups.

Some experimental results are even better than expected. The
PIPS automatically optimized version of the running example beats
the hardware expert first-cut hand-optimized version, because com-
mon sub-expression elimination opportunities were not considered.
It is up to three times faster than the version based on the hand op-
timized FREIA library implementation, and it is optimal, as most
of our 1217 test cases. The compiler also generates, as a side ef-
fect, the basic hardware accelerated library version by considering
elementary operations as a whole application. The full library hard-
ware accelerated version is more subtle, as it dynamically adapts
the generated configuration to the parametric number of iterated
operations (see the dilatation) and the available hardware pipeline
depth. These are known to the compiler when considering a full
applications in context, but not when simply looking at a function
library implementation.

What are the underlying reason of our success? Firstly, the ap-
plication domain uses one large type of data, images, and a limited
set of operators executed on whole images, with a lot of implicit
locality and parallelism. Secondly, the architectural choices of the
hardware with the high level instruction set provided by SPoC [9]
takes advantage of these opportunities to provide a potentially high
performance pipeline, which, although not as convenient as a cross-
bar which would enable any operator chaining, fits the kind of
DAG found in applications, and is accessible through runtime calls
which handle low-level details but enable all necessary configura-
tions. Thirdly, the library API is reasonably small (about 40 basic
operations and about 20 higher level combined operations), and is
both relevant to the application developers who can find high level
operations and develop functional blocks, and still easily mapped
onto the hardware which implements directly most of the elemen-
tary operations. Thus the gap is small enough to be compatible with
a simple compilation strategy, allowing a low cost fast development
and integration in an existing source-to-source compiler.

This does not preclude the implementation of the same approach
on more traditional SIMD hardware accelerators or GPGPU tar-
gets, because the high level API provides all the semantical infor-
mation needed to generate code and perform many classical com-
piler optimizations. However it may need to be combined with
more traditional loop transformation techniques to produce opti-
mized combined operation microcode for these targets, or to de-
velop a specific runtime which takes advantage of the available
hardware once high-level optimizations and choices are performed.

Such work is already underway. A second direction is to test our ap-
proach on more real-life applications. We also have to look at the
impact on our strategy on domains with multiple data types, such
as signal processing applications. A third direction is to reuse the
semantical loop fusion and emulate its the schedule of our target to
benefit from the locality increase for general-purpose processors.
The technique used by our accelerator to handle image boundaries
by maintaining a constant image size could also be useful.
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