
HAL Id: hal-00915979
https://minesparis-psl.hal.science/hal-00915979v1

Submitted on 9 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In and Out of SSA : a Denotational Specification
Sebastian Pop, Pierre Jouvelot, George André Silber

To cite this version:
Sebastian Pop, Pierre Jouvelot, George André Silber. In and Out of SSA : a Denotational Specification.
Workshop Static Single-Assignment Form Seminar„ Apr 2009, Autrans, France. �hal-00915979�

https://minesparis-psl.hal.science/hal-00915979v1
https://hal.archives-ouvertes.fr

In and Out of SSA: A Denotational Specification

Sebastian Pop, Pierre Jouvelot†, Georges-André Silber†

Open Source Compiler Engineering, Advanced Micro Devices Inc., Austin, Texas,
†CRI, École des mines de Paris, France

sebastian.pop@amd.com, {jouvelot, silber}@cri.ensmp.fr

Abstract
We present non-standard denotational specifications of theSSA
form and of its conversion processes from and to imperative pro-
gramming languages. Thus, we provide a strong mathematical
foundation for this intermediate code representation language used
in modern compilers such asGCC or Intel CC.

More specifically, we provide (1) a new functional approach
to SSA, the Static Single Assignment form, together with its de-
notational semantics, (2) a collecting denotational semantics for a
simple imperative languageImp, (3) a non-standard denotational
semantics specifying the conversion ofImp to SSA and (4) a non-
standard denotational semantics for the reverseSSA to Imp conver-
sion process. These translations are proven correct, ensuring that
the structure of the memory states manipulated by imperative con-
structs is preserved in compilers’ middle ends that use theSSA
form as control-flow data representation. Interestingly, as unex-
pected by-products of our conversion procedures, we offer (1) a
new proof of the reducibility of theRAM computing model to the
domain of Kleene’s partial recursive functions, to whichSSA is
strongly related, and, on a more practical note, (2) a new algorithm
to perform program slicing in imperative programming languages.
All these specifications have been prototyped usingGNU Common
Lisp.

These fundamental results prove that the widely usedSSA tech-
nology is sound. Our formal denotational framework furthersug-
gests that theSSA form could become a target of choice for other
optimization analysis techniques such as abstract interpretation
or partial evaluation. Indeed, since theSSA form is language-
independent, the resulting optimizations would be automatically
enabled for any source language supported by compilers suchas
GCC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Denotational
Semantics

General Terms Languages, Theory

Keywords static single assignment, SSA, RAM model, partial
recursive functions theory, program slicing

Static Single-Assignment Form Seminar27-30 April 2009, Autrans, France

1. Introduction
Many modern and widely distributed compilers for imperative and
even some functional languages use theSSA form as an inter-
mediate code representation formalism. The Static Single Assign-
ment (SSA) form [29] is based on a clear separation of control
and data information in programs. While the data model is data
flow-based, so that no variable is assigned more than once, the con-
trol model traditionally is graph-based, and represents basic blocks
linked within a control-flow graph. When more than one path reach
a given block, values may need to be merged; to preserve the func-
tional characteristics of the dataflow model, this is achieved via
so-calledφ-nodes, which assign to a new identifier two possible
values, depending on the incoming flow path.

Based on simple concepts,SSA is surprisingly efficient; var-
ious compiler optimization algorithms such as constant propaga-
tion or dead-code elimination are of lower complexity when speci-
fied onSSA than when tuned to more classical control-flow graphs
(see [36]). This formalism has therefore been widely used inboth
academic (e.g.,GCC [18, 30],LLVM [26]) and commercial (Intel
CC [33]) compilers.

Yet, we believe the theoretical foundations ofSSA are some-
what lacking (see Section 2 for a presentation of some of the ear-
lier attempts to formally describe such a framework). One ofthe
main goals of our paper is thus to provide what we believe to be
a firmer foundation for this ubiquitous intermediate representation
format, addressing both theSSA language itself and the conversion
processes used to translate imperative source code to intermediate
SSA constructs and back. Our work intends then to strengthen the
core formalism ofSSA and enable the introduction of more formal
correctness proofs forSSA-based optimization algorithms in the
future, a key concern given the importance of code correctness in
software engineering tools as crucial as compilers.

Our approach is also practical in that we want to address one
shortcoming we see in most of the current literature on theSSA
form. The original motivation for the introduction ofφ-nodes was
the conditional statements found in imperative programming lan-
guages, for which two paths need to be merged when reaching the
end of the alternative branches. Thus, most of the methods ofφ-
node placement present in the literature, when dealing withthe
related but, we believe, somewhat differentφ-nodes that logically
occur after structured loops, simply consider them as equivalent to
conditionalφ-nodes. In particular, loop exit conditions are not tra-
ditionally considered an intrinsic part of theSSA; in practice this
is not a major issue, since most compilers’ middle ends keep code
information on the side (e.g., control-flow graphs or continuations)
from which they can be retrieved.

The introduction of loop-specificφ-nodes by the research com-
munity (see [35, 5]) with the “GatedSSA” variant ofSSA, in which
such expressions do appear in loop nodes, was mostly motivated by
the desire to extendSSA to dataflow languages and architectures,

while its recent adoption by theGCC community [14, 39, 38] is
practical and related to the ease with which code transformation al-
gorithms working directly on loop structures and not general graphs
can be designed. These somewhat narrow-focused beginningsmay
explain why loop-specificφ-nodes were overlooked in recent sur-
veys ofSSA [6], as their semantic role was not quite well under-
stood at the time.

As we shall see in this paper, these “loop-closingφ” expres-
sions are in fact crucial to the expressiveness ofSSA, providing the
key construct that boosts the computational power of the “pure”
SSA language, namely a functional dataflow language without ad-
ditional ad-hoc control-flow information, from primitive recursion
to full-fledged partial recursive functions theory. Moreover, the
structural nature of the denotational framework we use herein lieu
of the traditional graph-based algorithms, in which the distinction
between conditional and loop-originating edges is lost, makes this
requirement even more compelling.

The structure of the paper is the following. After this introduc-
tion, we survey the related work (Section 2). In Section 3, wein-
troduceImp, a very basic yet complete imperative programming
language, and provide its standard denotational semantics. In Sec-
tion 4, we formally present our functional definition ofSSA form,
together with its rather straightforward and standard denotational
semantics. In these two sections, we use collecting trace-based se-
mantics, which will be required for our later proofs. In Section 5,
we show how any construct fromImp can be translated toSSA,
using a non-standard denotational semantics to specify this con-
version process; we also provide our first theorem, which shows
that Imp andSSA evaluation processes preserve the consistency of
memory states. We look at the dual issue ofSSA-to-Imp conver-
sion in Section 6, which includes its specification and our second
correctness proof. Building on these core results, we discuss in Sec-
tion 7 some consequences of our results, in particular the reduction
of RAM programs to partial recursive functions and the application
of our conversion processes to program slicing. We look at future
work in Section 8 and conclude in Section 9. All proofs can be
found in [31].

2. Related Work
Since the motivation for the introduction ofSSA is mostly one built
out of experience stemming from the implementation of compilers’
middle ends, there is scant work looking at its formal definition
and properties. Yet, it is worth mentioning some previous work that
offers a couple of different semantics for theSSA form:

• The early papers [11, 12], which introduce the notation for
SSA, mostly present informal semantics and proofs for some
optimization algorithms based on theSSA representation.

• Kelsey [24] studies the relationship between theSSA form and
the functional programming paradigm, providing a somewhat
more formal view of the semantic link between these two no-
tions (see also [4]). He defines a non-standard semantics that
translates programs inSSA form to continuation-passing style
and back toSSA, providing a way to compile functional lan-
guages to theSSA, and making it possible to use theSSA op-
timizing technology on functional languages. In some sense,
our work can be viewed as opening a new venue for this ap-
proach by formally showing that the imperative programming
paradigm can be mapped to theSSA form and vice versa. In
addition, we provide mathematical correctness proofs for these
conversion processes.

• A similar semantics, based on continuations, is given by
Glesner [19]: she gives an abstract state machine semantics
for the SSA, and uses an automatic proof checker to validate

optimization transformations onSSA. Yet, there is no formal
proof provided to ensure the correctness of this mapping be-
tweenASM and SSA. We provide a different, denotational,
semantics forSSA and use it to prove the correctness of the
SSA conversion processes for imperative programs.

• A rule-based operational semantics for a graph version ofSSA,
an algorithm for translating statements expressed in a register-
level language intoSSA and a somewhat informal correctness
proof of this process are given in [37]. A survey of optimiza-
tions based onSSA is also provided. Our approach focuses
on a new, functional syntax and semantics forSSA, and offers
formal proofs of its direct translation from and to a high-level
structured imperative language.

The already mentioned work of Ballance and al. [5], perhaps
not coincidentally mostly targeted to the extension of theSSA form
to the dataflow (and hence functional) computing paradigm, offers
some striking similarities to our approach ofSSA and its seman-
tics. The authors introduce the “Program Dependence Web”, built
on top of a variant ofSSA, the “GatedSSA”, GSA, which intro-
duces specific loop nodes in theSSA representation, as we do. Our
results indirectly provide a simplification of their definition (GSA
is a graph-based representation with three gating functions, while
we show that only two, graph-independent constructs are, infact,
needed), a clean denotational semantics forSSA and direct transla-
tions between imperative programs andSSA (theGSA conversion
algorithms are built on top of the Program Dependence Graph of
Ferrante and al [17]). Finally, we provide formal correctness proofs
for our denotationally-based transformations and show that SSA
has the computational power of the RAM computing model.

Indeed, beside looking at the formal definition ofSSA seman-
tics, our paper also addresses the issues of convertingSSA from
and to imperative programs, which implies that a proper framework
for specifying these processes be used. The usual references in the
literature [8, 12, 7, 5] rest on graph algorithms, which is appropri-
ate given the graph nature of classicalSSA. Since we take here a
purely programming language-based approach, we use a different
theoretical foundation to both express these processes andprove
their correctness. We found the denotational framework [34] to be
well suited to this task, given the structural definitions ofour lan-
guages and our desire to express precise, formal correctness proofs,
required to ensure the soundness ofSSA; all the specifications we
provide below can be seen as non-standard denotational seman-
tics [23, 13] of imperative orSSA programs defined on the abstract
syntax of the languages under study.

An added, practical benefit with this approach is that such spec-
ifications are executable using any functional language [23]; since
we were only interested here in getting a proof-of-concept imple-
mentation, we used GNU Common Lisp as our “executable speci-
fication language” [20].

3. Imp, the Simple Imperative Language
Since we are interested in this paper by the basic principlesunder-
pinning theSSA conversion processes, we use a very simple yet
RAM-complete imperative language,Imp, based on assignments,
sequences and while loops1. As is well-known, conditional state-
ments can always be encoded by a sequence of one or two loops
[32], and thus need not be part of our core syntax.

1 The RAM model requires array-like constructs that are missing from our
definition. SinceSSA mostly deals with control structures, we don’t see this
as a restriction, since adding such aggregate data structures is a dual issue
to the ones we tackle in this paper.

3.1 Syntax

Imp is defined by the following syntax:

N ∈ Cst

I ∈ Ide

E ∈ Expr ::= N | I | E0 ⊕E1

S ∈ Stmt::= I := E | S0;S1 | while E do S end

with the usual predefined integer constants, identifiers andopera-
tors⊕.

Since theSSA semantics encodes recursive definitions of ex-
pressions in a functional manner (see Section 4), we found iteasier
to define the semantics forImp as a collecting semantics. It gath-
ers for each identifier and program point its value during execution.
To keep track of such execution points, we use both syntacticand
iteration space information:

• Each statement in the program tree is identified by a Dewey
number,h ∈ N∗. These numbers can be extended ash.x,
which adds a new dimension toh and sets its value tox; it
is used to identify thex-th son of the node located ath in
the program tree. For instance, the top-level statement is1,
while the second statement in a sequence of Numberh is h.2.
The statement that directly syntactically followsh is located at
h+, which is defined as follows, assuming tree nodes withm
children:

n+ = n+ 1

(h.n)+ = h.(n+ 1) (1 ≤ n < m)

(h.m)+ = h+

• To deal with the distinct iterations of program loops, we use
iteration space functionsk, of typeK = N∗ → N . The value
kh of Functionk for a while statement located ath denotes the
current loop index value for this loop. Informally,k collects the
counter values for all loops (identified by their Dewey number);
during execution, this function is updated as loops unroll,and
we notek[a/h] the function obtained fromk by replacing the
value at Indexh with a2.

To sum up, a program execution pointp is a pair (h, k) ∈
P = N∗ × K that represents a particular “run-time position”
in a program by combining both a syntactic information,h, and
a dynamic one,k, for proper localization. Intuitively, each(h, k)
occurs only once in a given execution trace (the ordered sequence
of all states).

The only requirement on points is that they be lexicographically
ordered, with the infix relation< ∈ P × P → Bool such that
(h1, k1)< (h, k) = (k1< k ∨ (k1 = k ∧ h1< h)); the order
relationship< on iteration functionsk is straightforwardly defined
over their ordered domains.

3.2 Semantics

As usual, the denotational semantics ofImp operates upon func-
tionsf on lattices or CPOs [34]; all the domains we use thus have a
⊥minimum element. The definition domain off , i.e., the set of val-
ues on which it is defined, is given asDom f = {x | f(x) 6= ⊥}.

The semantics of expressions uses statest ∈ T = Ide → P →
V ; a state yields for any identifier and execution point its numeric
value inV , a here unspecified numerical domain for values. The
use of points gives our semantics its collecting status; in some
sense, our semantics specifies traces of execution. The semantics

2 Following a general convention, we notef [y/x] = (λa.y if a =
x, fa otherwise) andf [z/y/x] = (λa.λb.z if a = x ∧ b =
y, fab otherwise) the functions that extendf at a given valuex.

I[[]] ∈ Expr → P → T → V expresses that anImp expression,
given a point and a state, denotes a value inV (we useinV as the
injection function of syntactic constants inV) :

I[[N]]pt = inV (N)

I[[I]]pt = R<p(tI)

I[[E0 ⊕ E1]]pt = I[[E0]]pt⊕ I[[E1]]pt

where the only unusual aspect of this definition3 is the use of
R<xf = f(max<x Dom f), the reaching definition on a given
function f . To obtain the current value of a given identifier, one
needs to find in the state the last program point at whichI has been
updated, prior the currentp; since we use a collecting semantics,
we need to “search” the states to find this last definition.

To specify the semantics of statements, we need to introduce
augmented statesu ∈ U = K × T , called “rolling states”, that
combine iteration space functions and states. The semantics of
statementsI[[]] ∈ Stmt→ N∗ → U → U yields the rolling state
obtained after executing the given statement at the given program
Dewey number, given an incoming stateu = (k, t):

I[[I := E]]h(k, t) = (k, t[I[[E]](h, k)t/(h, k)/I])

I[[S0;S1]]h = I[[S1]]h.2 ◦ I[[S0]]h.1

These definitions are rather straightforward extensions ofa tradi-
tional standard semantics to a collecting one. For an assignment,
we add a new binding of IdentifierI at Point(h, k) to the value
of E. A sequence simply composes the transformers associated to
S0 andS1 at their respective pointsh.1 andh.2. And, as usual,
we specify the semantics of awhile loop as the least fixed point
fix(Wh) of theWh functional defined as:

I[[while E do S end]]h(k, t) = fix(Wh)(k[0/h], t)

Wh = λw.λu.
{

w(k′
h+, t

′), if I[[E]](h.1, k)t,
u, otherwise.

where(k′, t′) = I[[S]]h.1 and(k, t) = u

where, as a shorthand,kh+ is the same ask, except that the value
at Indexh is incremented by one (similarly, we latter usekh−, with
a decrement by one).

Beginning with an iteration vector set to 0 for Indexh, if the
value of the guarding expressionE is true, we iterate thewhile
loop with a state updated by the loop body, while incrementing the
iteration space vector, since an additional loop iterationhas taken
place. If the loop test is false, we simply consider the loop as a
no-op.

3.3 Example

To illustrate our results, we use a single example running through-
out this paper; we provide in Figure 1 this very simple program
written in a concrete syntax ofImp, together with its semantics, i.e.,
its outgoing state when evaluated from an empty incoming state.
Since we implemented all the denotational specifications provided
in this paper in GNU Common Lisp, interested readers are welcome
to try longer examples using this prototype [22].

In this example, if we assume that the whole program is at
Dewey number 1, then the first statement is labelled 1.1 whilethe
rest of the sequence (after the first semi-column) is at 1.2. The
whole labelling then proceeds recursively from there. Since there
is only one loop, the iteration space function domain has only one
element, at Dewey number 1.2.2. Thus, for instance, after two loop
iterations, the value ofJ is 14, and this will cause the loop to

3 For any ordered setS, we notemax<x S the maximum element ofS that
is less thanx (or ⊥ if no such element exists).

S:

I := 7;
J := 0;

while J < 10 do
J := J + I;

end

yI[[]] 1⊥

t:

I → (1.1,⊥) → 7

J →

(1.2.1,⊥) → 0
(1.2.2.1, (1.2.2 → 0)) → 7
(1.2.2.1, (1.2.2 → 1)) → 14

Figure 1. Syntax and semantics for anImp program:(k, t) =
I[[S]]1⊥.

terminate. The collecting nature of the semantics is exemplified
here by the fact that we keep track of all values assigned to each
variable throughout the whole computation.

4. SSA

If the definition of Imp given above is rather straightforward, the
treatment ofSSA given below is new. We motivate in this section
the need for such a fresh approach toSSA and specify its syntax
and semantics.

4.1 Functional SSA

In the standardSSA terminology [12, 29], theSSA intermedi-
ate representation of an imperative program is a graph of def-use
chains inSSA form. Nodes in the graph are basic blocks possibly
ending with a test, and each assignment targets a unique variable.
φ nodes occur at merge points of the control flow graph to restore
the proper values from the renamed variables according to the se-
mantics of the original imperative constructs (i.e., to represent the
proper evolution of variables in loop and conditional statements).
As an example, Figure 2 provides the graph-basedSSA representa-
tion for our running example given in Figure 1.

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟❄

❄

✻ ❅
❅
❅❘

J1 := 0

J2 := φ(J1, J3)
if (J2 < 10)

I1 := 7

J3 := J2 + I1
*

Figure 2. ClassicalSSA graph.

This original representation ofSSA suffers from one drawback:
variable names defined in loops are accessible from anywhereafter
the loop. For instance, one could, and indeed sometimes doesto
get the exit value of VariableJ, write “X := J_2” in a basic
block that follows the starred exit arc of the while graph. Although
operationally valid, such accesses clearly lack structure, since all
accesses toJ from theSSA representation need to go deep into
the graph structure. Moreover, multiple exit arcs can be a problem
when dealing withSSA graph operations such as insertion and
deletion of edges.

The current versions ofGCC, beginning with Version 4.0, use
“loop close”φ nodes [14] that are inserted immediately after the
loop for each variable used outside of the loop. This ensuresthat
every edge of theSSA graph points to a variable defined at most
one loop level deeper, avoiding complicatedSSA graph rewiring

after code transformations. The “loop closed” version of the SSA
graph for our running example can be seen in Figure 3.

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

❄

❄

✻ ❅
❅
❅❘

J1 := 0

J2 := φ(J1, J3)

if (J2 < 10)

J4 := φ(J2)
. . .

I1 := 7

J3 := J2 + I1

Figure 3. Loop closedSSA graph.

Even though this representation is admittedly more structured than
the original one, maintaining a proper control-flow graph onthe
side of theseSSA expressions is still required, if only to grant
access to the exit boolean expressions that label while loops.

In this paper, we suggest to go one step further by recognizing
that one can replace this whole graph-based approach with a pro-
gramming language-based paradigm. In this new “functionalSSA”
form, theφ assignments are capturing all the control characteristics
of programs, making usual control-flow primitives consequently re-
dundant. The corresponding functionalSSA code for our running
example is given in the upper part of Figure 4 (see next subsections
for a formal explanation of our syntax and semantics).

The definition of this self-contained, functional format for SSA
is one of the new ideas we introduce in this paper. This program-
ming language approach provides a more formal view of the defi-
nition of SSA, its conversion processes and their correctness; stan-
dard yet powerful proof techniques developed in the realm ofpro-
gramming language theory can, as shown below, be more readily
applied here than when using graph-based representations.

4.2 Syntax

A program in functionalSSA form is a set of assignments of
SSA expressionsE ∈ SSA to SSA identifiersIh ∈ Ideh. These
expressions are defined as follows:

E ∈ SSA ::=

N | Ih | E0 ⊕E1 | looph(E0, E1) | closeh(E0, E1)

which extend the basic imperative definitions ofExpr with two
types ofφ expressions:loop andclose terms.φ nodes that merge
expressions declared at different loop depths are calledlooph nodes
and have a recursive semantics. Acloseh node collects the final
value that comes either from the looph or from before the loop
h, when the loop trip count, related to the first argument, is zero.
Since we stated that imperative control flow primitives should not
be part of ourSSA representation, we intendedly annotateφ nodes
with a label informationh that ensures that theSSA syntax is self-
contained and expressive enough to be equivalent to any imperative
program syntax, as we show in the rest of this paper.

More traditionalφ-nodes, also called “conditional-φ” in GCC,
are absent from our coreSSA syntax since they would only be re-
quired to handle imperative conditional statements, whichwithout
loss of generality are, as mentioned above, absent from the syntax
of Imp; these nodes would be handled by a proper combination of
loop andclose nodes.

Note that identifiersIh in an SSA expression are also labeled
with a Dewey number. Since every assignment inImp is located at a
uniqueh, we use, in theImp-to-SSA conversion process described
below, this number to uniquely tag identifiers in order to ensure
that no identifiers in an imperative program will ever be assigned
twice once converted toSSA form, thus enforcing its static single
assignment property.

The set of assignments representing anSSA program is denoted
in our framework as a finite functionσ ∈ Σ = Ideh → SSA
mapping each identifier to its defining expression.

4.3 Semantics

Since in anSSA programσ all expressions in its image domain
recursively refer, via identifiers, to the sameσ, the semantics ofσ
uses an environmentρ ∈ H = Ideh → K → V , defined as a
fixed point of the environment extension functionR ∈ (Ideh ×
SSA) → ρ → ρ, which iterates over the domain ofσ. The
semantics function forSSA expressionsE [[]] has then typeSSA →
H → K → V ; it associates to a given expression in such a
recursively constructed environment and with an iterationspace
function its value.

The semantics of anSSA programσ is thus the finite function
Rσ defined as follows:

Rσ = fix(
⊔

I∈Dom σ

R(I, σI))

R(I,E)ρ = ρ[λk.E [[E]]ρk/I]

whereR is used, via the fixed point operator, to build a recursive
environmentρ in which all identifiersI , when given an iteration
functionk, are bound to the value of the expressionE = σI that
defines them inσ. The evaluation of such an expression is defined
below:

E [[N]]ρk = inV (N)

E [[I]]ρk = ρIk

E [[E0 ⊕ E1]]ρk = E [[E0]]ρk ⊕ E [[E1]]ρk

E [[looph(E0, E1)]]ρk =

{

E [[E0]]ρk, if kh = 0,
E [[E1]]ρkh−, otherwise.

E [[closeh(E0, E1)]]ρk =

E [[E1]]ρk[min{x | ¬E [[E0]]ρk[x/h]}/h]

Constants such asN are denoted by themselves. We already ex-
plained how the semantics of identifiers relies on the recursively
built environmentρ. Operator-based expressions are straightfor-
wardly defined by induction.

looph nodes, by their very iterative nature, are designed to rep-
resent the values of variables successively modified in imperative
loop bodies, whilecloseh nodes compute the final value of such
induction variables in loops guarded by test expressions related to
E0. Of course, when a loop is infinite, there is no iteration thatex-
its the loop, i.e., there is nok such that¬E [[E0]]ρk, and thus the set
{x | ¬E [[E0]]ρk[x/h]} is empty. In such a case,min ∅ corresponds
to⊥.

4.4 Example

We informally illustrate in Figure 4 the semantics ofSSA using an
SSA programσ intended to be similar to theImp program provided
in Figure 1.

Since by definitionSSA uses single assignments, we need to use
a different identifier (i.e., subscript) for each assignment to a given
identifier (see for instanceJ) in theImp program. Of course, all val-
ues are functions mapping iteration vectors to a constant. To merge
the two paths reaching inImp the loop body, we use aloop ex-
pression to combine the initial value ofJ and its successive iterated
values within the loop. Aclose expression “closes” the iterative
function associated toJ2 to retrieve its final value, obtained when
the test expression evaluates tofalse; in this case, this yields 14, if
evaluated inRσ.

σ:

I1 → 7
J1 → 0

J2 → loop1(J1, J3)
J3 → J2 + I1
J4 → close1(J2 < 10, J2)

yR

ρ:

I1 → λk.7

J1 → λk.0

J2 → λk.

{

J1(k) for k1 = 0
J3(k1−) for k1 > 0

J3 → λk.J2(k) + I1(k)

J4 → λk.J2(k[min{x | ¬J2(k[x/1]) < 10}/1]) = λk.14

Figure 4. Syntax and semantics ofφ expressions:ρ = Rσ.

5. Conversion ofImp to SSA

We are now ready to specify how imperative constructs fromImp
can be translated toSSA expressions. We use a non-standard deno-
tational framework to specify formally this transformation process.

5.1 Specification

As any denotational specification, our transformation functions use
states. These statesθ = (µ, σ) ∈ T = M × Σ have two
components:µ ∈ M = Ide → N∗ → Ideh maps imperative
identifiers toSSA identifiers, yielding their latestSSA names (these
can vary since a given identifierI can be used in more than oneImp
assignment statement);σ ∈ Σ = Ideh→ SSA simply collects the
SSA definitions associated to each identifier in the image ofM .

The translation semanticsC[[]] ∈ Expr → N∗ → M → SSA
for imperative expressions yields theSSA code corresponding to
an imperative expression:

C[[N]]hµ = N

C[[I]]hµ = R<h(µI)

C[[E0 ⊕ E1]]hµ = C[[E0]]hµ⊕ C[[E1]]hµ

As in the standard semantics forImp, we need to find the reaching
definition of identifiers, although this time, since this is acompile-
time translation process, we only look at thesyntacticorder corre-
sponding to Dewey numbers.

The translation semantics of imperative statementsC[[]] ∈
Stmt → N∗ → T → T maps conversion states to updated
conversion states. The cases for assignments and sequencesare
straightforward:

C[[S0;S1]]h = C[[S1]]h.2 ◦ C[[S0]]h.1

C[[I := E]]h(µ, σ) = (µ[Ih/h/I], σ[C[[E]]hµ/Ih])

since, for sequences, conversion states are simply propagated. For
assignments,µ is extended by associating to the imperative identi-
fier I the newSSA nameIh, to which the convertedSSA right hand
side expression is bound inσ, thus enriching theSSA program with
a new binding forIh.

As expected, most of the work is performed inwhile loops:

C[[while E do S end]]h(µ, σ) = θ2 with

θ0 = (µ[Ih.0/h.0/I]I∈Dom µ,

σ[looph(R<h(µI),⊥)/Ih.0]I∈Dom µ),

θ1 = C[[S]]h.1θ0,

θ2 = (µ1[Ih.2/h.2/I]I∈Dom µ1
,

σ1[looph(R<h(µI), R<h.2(µ1I))/Ih.0]I∈Dom µ1

[closeh(C[[E]]h.1µ1, Ih.0)/Ih.2]I∈Dom µ1
)

where we noteθi = (µi, σi). We also used the notationf [y/x]x∈S

to represent the extension off to all valuesx in S with y.
As usual, the conversion process is, by induction, applied on

the loop bodyS located ath.1. Yet, this cannot be performed in
the original conversion state(µ, σ), since any imperative variable
could be further modified in the loop body, creating a new binding
which would be visible at the next iteration. To deal with this
issue, a new Dewey number is introduced,h.0, precedingh.1, via
which all variables are bound toloop nodes (note that only theSSA
expressions corresponding to the control flow coming into the loop
can be expressed at that point). It is now appropriate to convert
the loop body in this updated conversion state; all references to
variables will be toloop nodes, as expected.

Similarly, after the converted loop body, a new Dewey number,
h.2, followingh.1, is introduced to bind all variables toclose nodes
that represent their values when the loop exits (or⊥ if the loop is
infinite, as we will see). All references to any identifier once the
loop is performed are references to theseclose expressions located
at h.2, which follows, by definition of the lexicographic order on
points, all other points present in the loop body.

At this time, we are able to provide the entire definition for
loop expressions bound at levelh.0; in particular the proper second
subexpression within eachloop corresponds to the value of each
identifier after one loop iteration.

5.2 Example

We find in Figure 5 the result of theImp-to-SSA conversion al-
gorithm on our running example:C[[S]]1⊥. TheSSA codeσ, i.e., a
mapping ofSSA identifiers toSSA expressions, represented here as
a tabulated list, is taken verbatim from the output of our GNUCom-
mon Lisp prototype. The current binding for the imperative iden-
tifier I in µ is I_12212, andJ_12212 for J (we represent Dewey
numbers inSSA identifiers as suffixes preceded by_; the dots are
removed for readability purposes).

As expected, thisSSA program is similar to the one in Figure 4,
up to the renaming of theSSA identifiers. BothI andJ are bound
to close expressions with the same test expression that involves the
value ofJ_12210, a loop expression that evaluates to 0 for the first
iteration and to the sum ofJ+I translated inSSA form for the sub-
sequent ones. Note how the value of the loop invariantI is managed
by the loop expressionI_12210 which evaluates to 7 for the first
iteration, and keeps its value afterwards; a simpleSSA code opti-
mization4 would replace this binding inσ with (I_12210, I_11),
equivalent modulo termination to the constant binding in Figure 4.

As advertised earlier, all control-flow information has been
removed from theImp program, thus yielding a “pure”, self-
containedSSA form, without any need for additional, on-the-side
control-flow data structure.

4 Proving the correctness of this optimization could be performed using the
denotational semantics ofSSA provided in this paper. More generally, the
need for optimization inSSA-generated code is discussed in Section 8.

S:

I := 7;
J := 0;

while J < 10 do
J := J + I;

end

yC[[]]1⊥

σ:

I 12212, close 1221(J 12210<10, I 12210)

J 12212, close 1221(J 12210<10, J 12210)
I 12210, loop 1221(I 11, I 12210)

J 12210, loop 1221(J 121, J 122111)
J 122111, J 12210+I 12210
J 121, 0

I 11, 7

Figure 5. Conversion fromImp to SSA: (µ, σ) = C[[S]]1⊥.

5.3 SSA Conversion Consistency

We are finally equipped with all the material required to express
our first main theorem. Our goal is to prove that our conversion
process maintains the memory states consistency between the im-
perative andSSA representations. This relationship is expressed in
the following definition:

DEFINITION 1 (Consistency).A conversion stateθ = (µ, σ) is
consistentwith the memory statet at point p = (h, k), noted
P (θ, t, p), iff

∀I ∈ Dom t, I[[I]]pt = E [[C[[I]]hµ]](Rσ)k (1)

which specifies that, for any identifier, its value at a given point in
the standard semantics is the same as its value in theSSA semantics
when applied to its translatedSSA equivalent (see Figure 6).

Expr
C[[]]hµ

−−−−−→ SSA

I[[]](h,k)t

y

y

E[[]](Rσ)k

v ∈ V v ∈ V

Figure 6. Consistency propertyP ((µ, σ), t, (h, k)).

This consistency requirement on identifiers can be straightfor-
wardly extended to arbitrary expressions:

LEMMA 1 (Consistency of Expression Conversion).Given that
P (θ, t, p) with p = (h, k), and an expressionE ∈ Expr,

I[[E]]pt = E [[C[[E]]hµ]](Rσ)k (2)

This directly leads to our main theorem, which ensures the
semantic correctness of the conversion process from imperative
constructs toSSA expressions:

THEOREM1 (Consistency of Statement Conversion).Given any
statementS and for all θ, t, p = (h, k) that verifyP (θ, t, p), then
P (θ′, t′, (h+, k′)) holds with

θ′ = C[[S]]hθ

(k′, t′) = I[[S]]h(k, t)

This theorem basically states that if the consistency property is
satisfied for any point before a statement, then it is also verified
for the statement that syntactically follows it.

We are left with the simple issue of checking that state consis-
tency is satisfied for the initial states.

LEMMA 2. P (⊥,⊥, (1, λh.0)) holds.

The final theorem wraps things up by showing that after evalu-
ating anSSA-converted program from a consistent initial state, we
end up in a state that is consistent. Note that this remains true even
if the whole program loops.

THEOREM 2. GivenS ∈ Stmt, withθ = C[[S]]1⊥ and (k, t) =
I[[S]]1(λh.0,⊥), the propertyP (θ, t, (2, k)) holds.

PROOF. Trivial using Lemma 2 and Theorem 1. �

6. Conversion ofSSA to Imp

If the functional characteristics ofSSA makes it particularly well
suited to program optimizations (see e.g., [25]), for such optimized
programs to run one has to find a way to get back to the imperative
paradigm required by most current computer architectures.We
provide in this section an algorithm that translates anSSA program
to its Imp equivalent, and explicit its correctness.

6.1 Specification

An SSA programσ specifies a binding of identifiers to expressions.
Thus, getting an imperative version for such a program amounts to
discovering theImp code required to compute the value of each
“useful” identifier. In the framework of compiler middle-ends we
envision in this paper, these will in fact be the identifiers required
to compute the result of imperative programs that were translated
into σ. Our SSA-to-Imp core translation functionO[[]] takes thus
as first argument one of these bindings, i.e., an identifierI and an
SSA expressionE, and returns theImp code required to compute
“I := E”.

SinceSSA expressions include loop constructs which, per se,
do not directly correspond to actualImp code (i.e., enclosingclose
expressions are required to specify loop bounds), we introduce
“loop environment” functions to keep track of pieces ofImp code
that eventually will be used to generate the whole imperative pro-
gram. The domain of a loop environment is a set of “loop aspects”,
which are tuplesa = (h, b) ∈ A, with h a Dewey number and
b ∈ Y = {head, body, iter, env} a symbol.

A loop environmentκ ∈ L = A → (Stmt+ P (Ide × Y))
maps such aspects to the statements associated to either theheader,
the body or the iteration step of the loop designated by the Dewey
numberh. A loop characterized by its Dewey numberh can thus
be seen as the following pattern:

κ(h, head) ;
while <test expression>

κ(h, body) ;
κ(h, iter) ;

end

Beyond these “structural” aspects,κ also maps “environment”
aspects (with the symbolenv) to the sets of identifiers defined
in Loop h; these sets are key in both the specification of the
conversion process and the correctness proof. We use two helper
functions to maintain loop environments:

up[[I, S]]aκ = upenv[[I]]a(κ[κa; S/a])

upenv[[I]](h, b)κ = κ[κ(h, env) ∪ {(I, b)}/(h, env)]

whereup[[]] extends with the statementS the code of Aspecta
which computes the value ofI while also updating the environment
of Looph with the newly defined identifier, via a call toupenv[[]].

The out ofSSA conversion specification isO[[]] ∈ (Ideh ×
SSA) → Σ → A → L → L. The termO[[I, E]]σaκ is
an extended loop environment in which theImp code required to
assign the imperative equivalent ofE to I is added to the code of

Aspecta in Loop environmentκ, usingσ to find the definitions of
the freeSSA variables that are required to evaluateE. It is defined,
for arithmetic expression bindings, as follows:

O[[I, N]]σ = up[[I, I := N]],

O[[I, I ′]]σaκ = up[[I, I := I ′]]aκ0,with

κ0 =

{

O[[I ′, σI ′]]σa(upenv[[I
′]]aκ), if I ′ /∈ domenv(κ)

κ, otherwise,

O[[I, E0 ⊕ E1]]σaκ = up[[I, I := I0 ⊕ I1]]aκ1,with

κ1 = (O[[I1, E1]]σa ◦ O[[I0, E0]]σa)κ

whereI0 andI1 denote fresh imperative variables, anddomenv(κ) =
π1(

⋃

(h,env)∈Dom κ κ(h, env)) is the set of identifiers5 of all the
environment aspects ofκ.

The case for constants is simple: we update the code for the cor-
responding aspect with the obvious assignment. This trivial case
occurs again when dealing with identifier assignments if thedefin-
ing identifierI ′ is already present in the environment. Otherwise,
one needs, before assigning toI , to collect the code for the expres-
sionσI ′ that definesI ′; this is done in a loop environment properly
updated to reflect the fact that, since we are currently defining the
code forI ′, there is no need to recurse ifI ′ ever occurs again in the
subsequent recursive calls toO[[]].

Finally, the case for an operator uses straightforward recursive
calls.

We focus now on “control-level” expressions inSSA:

O[[I, looph(E0, E1)]]σaκ = up[[I, I := I1]](h, iter)κ1,with

κ1 = (O[[I1, E1]]σ(h, body) ◦ O[[I, E0]]σ(h, head))κ,

O[[I, closeh(E0, E1)]]σaκ = up[[I,W ; I := I1]]aκ1,with

W = κ1(h, head);while I0 do κ1(h, body);κ1(h, iter) end

κ1 = (O[[I1, looph(E1, E1)]]σa ◦ O[[I0, looph(E0, E0)]]σa)κ

As already alluded to, there is no stand-alone code generated for
a loop expression; the aspect argumenta, where this code is sup-
posed to be added, is thus not used. Instead, one needs to distribute
parts of the corresponding code in the various aspects of Loop h
impacted by thelooph expression:E0 goes into the header andE1

in the body. Note that the expressionE1 defining the new valueI1
of I may possibly refer to the old value ofI obtained at the end of
the previous loop iteration;I gets its new valueI1 in the code for
the iteration aspect(h, iter) of the loop.

The code gathered inloop expressions is actually used when
a close expression is encountered. The values of the loop test and
body are bound toI0 andI1. We use loop expressions to compute
these values both in the header and the body of the loop; theseloop
expressions are required since we may or may not enter the loop
body and yet be able to provide a meaningful exit value to the rest
of the program. The final value ofI is obtained by an assignment of
I1, after the inclusion of CodeW ; this all-important code collects
all code fragments relevant to the header, body and iteration step of
Looph and stored in the loop environmentκ.

6.2 Example

To get a better grasp of the way our conversion executable speci-
fication works, we provide in Figure 7 the “out-of-SSA”Imp code
for the original runningSSA example given in Figure 4. This code
is taken from the output of our GNU Common Lisp prototype,
when requesting that the value ofJ4 be stored in the fresh variable
RESULT (see Theorem 4 for details):O[[RESULT, J4]]σ(0, head)⊥.

5π1 is the first projector for pairs, here naturally extended to sets of pairs.

σ:

I1 → 7
J1 → 0

J2 → loop1(J1, J3)
J3 → J2 + I1
J4 → close1(J2 < 10, J2)

y
O[[]]σ(0, head)⊥

S:

J1 := 0;
J2 := J1;

I0 33062 := J2;
I1 33062 := 10;

I0 33060 := I0 33062<I1 33062;
I1 33060 := J2;
while I0 33060 do

I0 33068 := J2;
I1 := 7;

I1 33068 := I1;
J3 := I0 33068+I1 33068;
I1 33064 := J3;

I0 33073 := J2;
I1 33073 := 10;

I1 33061 := I0 33073<I1 33073;
I1 33076 := J2;

J2 := I1 33064;
I0 33060 := I1 33061;
I1 33060 := I1 33076;

end
J4 := I1 33060;

RESULT := J4;

Figure 7. Conversion from SSA to Imp: S =
(O[[RESULT, J4]]σ(0, head)⊥)(0, head).

In our Lisp implementation, fresh identifier names requiredby
the specification are implemented by calls to Lisp’sgensym, using
I0 andI1 as string prefixes when called for by the specification.

Beside the obvious need for the straightforward code optimiza-
tions that we discuss in Section 8, it is easy to recognize from the
code provided the basic control and data structures we were ex-
pecting. The various loop aspects - header, body and iteration - are
also obvious to spot. Interestingly, except for the identifiers bound
to SSA loop expressions, the imperative code also uses single as-
signment.

One slight but key difference between this code and the origi-
nal imperative version in Figure 1 we were implicitly expecting to
obtain is the position of the constant assignment toI1. TheO[[]]
conversion process proceeds in a demand-driven manner, thus in-
troducing the assignment toI only where it is actually needed. This
is akin to the notion of “program slicing”, an issue we address in
Section 7.

6.3 Imp Conversion Consistency

As is the case for theImp to SSA conversion process, we need to
ensure that our reverse translation specification is correct. However,
recalling that someSSA expressions such as loops do not individ-
ually directly lead to executable code, we need to take a somewhat
indirect route to express our correctness requirement: indeed, we
use whole programs to define the consistency property between im-
perative andSSA codes.

DEFINITION 2 (Out ofSSA Consistency).An SSA definitionσ is
consistentwith a loop environmentκ, notedQ(σ, κ), iff for all
(h, env) ∈ Dom κ, Iteration Functionk and Statet, one has:

∀I ∈ κ(h, env), E [[I]](Rσ)k = I[[I]](h+, k′)t′

with

(k′, t′) = I[[κ(h, head); (κ(h, body);κ(h, iter))kh]]h(k, t)

whereSn is a shorthand for the sequenceS; . . . ;S, whereS is
copiedn times.Q basically states that the values of all identifiers
I in Loop environmentκ are identical whether they are considered
as (1)SSA expressions inσ, using any loop iteration functionk,
or (2) Imp expressions, using the state one obtains after executing,
from the initial state(k, t), the head andkh iterations of the loop
body and iteration codes for Looph.

Our second major theorem builds on this property by ensuring
that all code extensions toκ introduced by calls toO[[]] maintain
this equivalence relation betweenSSA andImp codes.

THEOREM3 (Out ofSSA Expression Consistency).Given Q(σ,
κ), for anyI /∈ domenv(κ), E ∈ SSA, Dewey numberh and struc-
tural symbolb, thenQ(σ′, κ′) holds with

κ′ = O[[I, E]]σ(h, b)κ

σ′ = σ ◦ [E′/I],

E′ =

{

looph(E, I), if b = head,
looph(I,E), if b = body

whereσ′ andκ′ take into account the new information introduced
by the call toO[[]]. The addition toκ of the code for “I := E” in
the structural aspect(h, b) of Looph requires, to maintain consis-
tency, that a new binding be added toσ. This new binding maps
the defined variableI to anSSA expression that takes into account
where theImp code has been included, i.e., either in the header
or the body of the loop located at Dewey numberh. This is what
theSSA looph expressions are precisely used for. Note that we ex-
tend the definition ofσ to arbitrary expressions by straightforward
structural induction.

As can be seen by the very definition of the Consistency Prop-
erty, any loop environment with no environment aspects in its do-
main is consistent with anySSA definition: all code required to
compile anSSA binding(I, E) will be regenerated from scratch if
need be. The following lemma is thus obvious:

LEMMA 3. For anySSA codeσ, Q(σ,⊥).

We are now equipped to express our final theorem. To generate
appropriateImp code from anSSA binding function, we need to
specify the variableI the value of which we are interested in.
For the middle end of a compiler that usesSSA as its internal
intermediary representation of imperative programs, the codes for
all the live variables at the end of theImp program from which the
SSA code is derived need to be concatenated. We useO[[]] to collect
in the head aspect of a “fake” top-level Loop 0 the corresponding
Imp code. Since the loop Dewey number 0 is never used in user
code, we simply have:

THEOREM4. Givenσ ∈ Σ and an identifierI in the domain ofσ.
If I0 is a fresh variable, then the code to compute the value ofI is
κ(0, head), whereκ = O[[I0, I]]σ(0, head)⊥.

PROOF. Trivial using Lemma 3 and Theorem 3. �

7. Discussion
Even though the initial purpose of our work is to provide a firm
foundation to the use ofSSA in modern compilers, our results also
yield interesting practical and theoretical insights on the computa-
tional power ofSSA.

7.1 Program Slicing

Program slicing is an optimization technique that extracts, for a
given program source, the subset of its instructions that are required
to compute a particular facet of the program under analysis,e.g., the
value of one of its variables at a given program point (see [27] for a

quick overview of this field). There are numerous applications for
program slicing, ranging from debugging to program optimizations
to parallelization.

Most approaches to compute a given slice of a program build
upon the usually graph-based data structure used to represent the
program control-flow, e.g. the Program Dependence Graph [8],
and perform a backward analysis of its edges to gather all the
instructions required to compute a given variable.

The dual translation processes from and toSSA for impera-
tive programs presented above offer a different means to reach the
same goal, without using graph algorithms. Indeed, ourSSA-to-
Imp specification is implicitly based on the concept of slices, since
O[[I, I]]σaκ installs, at Aspecta of κ, a slice for VariableI ex-
tracted from the imperative programS if σ = C[[S]]1⊥ andI is not
already present inκ. Beside its simplicity, one added advantage of
our approach is that it provides an immediate inductive correctness
proof for program slicing.

Somewhat informally, one could say thatSSA “slices” Imp. In
the conversion phase fromImp to SSA, the control-flow informa-
tion contained in the imperative language constructs, suchas the
sequence of statements or loop nesting, disappears. This informa-
tion is consumed by the compiler when generatingSSA code: as
Figure 6 shows, the Deweyh information is not used in theSSA
semantic functionE [[]]. Conversely, in the conversion toImp, the
Deweyh information is synthesized from the minimal set of de-
pendence relations implicitly contained in theSSA form.

Notice that the compiler toImp is free to implement different
run-time strategies for generating the imperative language infor-
mation for sequences; the duplication of computations introduced
by ourO[[]] specification directly leads to code parallelization, in
fact one of the many uses of program slicing.

7.2 The Essence ofSSA

All the existing definitions of theSSA form in the literature are in-
fluenced by the early papers [11, 12] and consider theSSA as a data
structure on top of some intermediate representation, e.g., control-
flow graphs augmented with a stream of commands belonging to
some imperative language, in other words, a decoration on top of
some existing compiler infrastructure. In contrast, our paper is the
first to give a complete, independent definition of theSSA form,
promoting theSSA to the rank of a full-fledged language. An im-
portant aspect ofSSA is exposed this way:SSA is a declarative
language, which, as such and contrarily to what its name might im-
ply, has nothing to do with the concept of assignments, a notion
only pertinent in imperative languages. This declarative nature ex-
plains why it is a language particularly well-suited to specifying
and implementing program optimizations.

Looking now at the conversion process, the mathematical word-
ing of the SSA Conversion Consistency Property (1) underlines
one of its key aspects. Whilep only occurs on the left hand side
of the consistency equality, the syntactic locationh and the itera-
tion space functionk are uncoupled in the right-hand side expres-
sion. Thus, via theSSA conversion process, the standard seman-
tics for expression gets staged, informally getting “curryied” from
Expr→ (N∗ × K) → T → V to Expr→ N∗ → K → T → V ;
this is also visible on Figure 6, where the pair(h, k) is used on the
left arrow, whileh andk occur separately on the top and right ar-
rows. This perspective change is rather profound, since it uncouples
syntactic sequencing from run time iteration space sequencing.

7.3 Recursive Partial Functions Theory

There exists a formal computing model that is particularly well
suited to describing iteration behaviors, namely Kleene’stheory
of partial recursive functions [34]. In fact, the version ofSSA we
introduce in this paper appears to be a syntactic variant of such a

formalism. We provide below a rewritingK[[]] of SSA bindings to
recursive function definitions.

First, to eachSSA identifier I , we associate a functionI(x),
and translate anySSA expression involving neitherloop nor close
nodes6 as function calls:

K[[N]]x = N

K[[I]]x = I(x)

K[[E0 ⊕ E1]]x = ⊕(E [[E0]]x, E [[E1]]x)

wherex is anm-uple (x1, . . . , xm) of syntactic integer variables;
m is the number of different Dewey numbers that occur, inlooph

andcloseh expressions, inσ. To eachh is allocated a slot inx; with
a slight abuse of notation, we useh to also denote the index inx of
this slot.

Then, to collect partial recursive function definitions corre-
sponding to anSSA programσ, we simply gather all the definitions
for each binding,

⋃

I∈Dom σ K[[I, σI]]x, usingxp,q as a shorthand
for thexp, xp+1, . . . , xq−1, xq tuple:

K[[I, looph(E0, E1)]]x =

{I(x1,h−1, 0, xh+1,m) = K[[E0]](x1,h−1, 0, xh+1,m),

I(x1,h−1, z + 1, xh+1,m) = K[[E1]](x1,h−1, z, xh+1,m)}

K[[I, closeh(E0, E1)]]x =

{minI(x1,h−1, xh+1,m) =

(µy.K[[E0]](x1,h−1, y, xh+1,m) = 0),

I(x) = K[[E1]](x1,h−1, minI(x1,h−1, xh+1,m), xh+1,m)}

K[[I, E]]x = {I(x) = K[[E]]x}

whereµ is Kleene’s minimization operator. We also assumed that
boolean values are coded as integers (false is 0). Informally, for
loop expressions, we simply rewrite the two cases corresponding
to their standard semantics. Forclose expressions, we add an an-
cillary function that computes the minimum value (if any) ofthe
loop counter corresponding to the number of iterations required to
compute the final value, and plug it into the final expression.

As an example of this transformation to partial recursive func-
tions, we provide in Figure 8 the translation of our running exam-
ple into partial recursive functions. For increased readability, we
renamed variables to use shorter indices.

I1(x1) = 7

J1(x1) = 0

J2(0) = J1(0)

J2(z + 1) = J3(z)

J3(x1) = +(J2(x1), I1(x1))

minJ4
() = (µy. < (J2(y), 10) = 0)

J4(x1) = J2(minJ4
())

Figure 8. Partial recursive functions example.

Our conversion process fromImp to SSA can thus be seen as a
way of converting anyRAM program [21] to a set of Kleene’s par-
tial recursive functions. This and the existence of the dualSSA-to-
Imp translation provide a new proof of Turing’s Equivalence Theo-
rem between these two computational models, previously typically
proven using simulation [21].

6 Without loss of generality, we assume thatφ nodes only occur as top-level
expression constructors.

8. Future Work
Our first goal with this paper is to provide a foundation for speci-
fying the denotational semantics ofSSA. This has important future
implications since this formalization of theSSA language is the
missing stone needed to see other formal frameworks for program
analysis, such as abstract interpretation [9, 10], extended toSSA. It
will be interesting to see whether our results lead to new insights
for program analysis. For instance, regarding abstract interpreta-
tion, one intriguing issue is complexity, since most uses ofabstract
interpretation are based on classical iterative data flow techniques
applied to control-flow graphs which introduce an overhead com-
pared to static analysis algorithms working directly on theSSA
form [11]. Our approach may be a venue for improvements in this
direction.

The second intent of this paper is to investigate the relationship
betweenSSA and the imperative programming paradigm. The two
non-standard semantics, namelyC[[]] andO[[]], that translate pro-
grams from one style to the other focus on semantic equivalence
and not efficiency, as is evident from Figure 7. In addition toob-
vious optimizations such as increasing temporary variablereuse or
performing constant folding and partial evaluation, our approach
could benefit from code duplication removal. This is a serious is-
sue mostly on uniprocessors, since the lack of code sharing can on
the contrary be a blessing when dealing with parallel architectures.
In fact, as mentioned above, our approach offers all the advantages
of program slicing, which is conducive to a high degree of paral-
lelism.

One limitation of our results is that they mainly deal with con-
trol issues. On the one hand, this is whatSSA is mostly about. But,
on the other hand, beyond simple identifiers and values, one would
also need to be able to handle more abstract data types such asar-
rays or objects to tackle full-fledged languages. Even though this
would be a serious endeavor, we see this as dual issues to the ones
we address in this paper and do not expect them to significantly
impact our results, at least as long as such aggregate data structures
are considered atomically (see for instance [16] for a more sophis-
ticated approach that strives to detect data dependencies within ar-
rays).

Another restriction imposed by our framework is that, by focus-
ing on only structured abstract syntax trees, unstructuredor even ir-
reducible control-flow graphs need to be handled by framing them
into such a representation. If this may seem a moot point given
the structured design of current programming languages, unstruc-
tured control-flow graphs may in fact be more prevalent nowadays
than before, given the generalization of exception mechanisms to
deal with special cases in otherwise structured code; exceptions
do, indeed, destroy the structure of the control flow wherever they
are raised. To manage this issue, techniques such as code duplica-
tion [1] or control-flow restructuring [15, 2] can be used to recover
the program structure required by our approach, although exten-
sions to ourSSA language that would deal with this problem in a
more direct way may exist.

9. Conclusion
We presented denotational specifications for both the semantics of
SSA and its conversion processes to and from a core imperative
programming language. Our main theorems show that this seman-
tics is preserved after the transformation of imperative programs
to their SSA intermediate form and back. As by-products of our
approach, we offer (1) a new way to perform program slicing and
(2) another reduction proof for theRAM computational model to
Kleene’s partial recursive functions theory. All our specifications
have been prototyped using GNU Common Lisp.

SSA is the central control-flow intermediate representation for-
mat used in the middle ends of modern compilers such asGCC or
Intel CC that target multiple source languages. Yet, there is sur-
prisingly very limited work studying the formal propertiesof this
central data representation technique. Since our results ensure the
correctness of the translation process of all imperative programs to
SSA and back, they pave the way to additional research from the
programming language community, for instance for static analysis,
optimization or parallelization purposes, which would directly tar-
get SSA instead of specific source languages. UsingSSA as the
language of interest for code manipulation and optimization would
ensure the portability of the resulting algorithms (see [3]for some
examples) to all programming languages supported byGCC or
other similar compilers. This applies to both imperative orobject-
oriented programming languages (such as C, Fortran, C++, Java or
Ada viaGCC) or functional ones (such as Erlang via HiPE [28]).

Acknowledgments
The authors thank Neil Jones for his help regarding Kleene’spartial
recursive functions theory, Ken Zadeck for his remarks onclose
nodes and François Irigoin and Albert Cohen for their suggestions.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles,

Techniques, and Tools. Addison Wesley, 1986.

[2] Z. Ammarguellat. A Control-Flow Normalization Algorithm and its
Complexity. IEEE Transactions on Software Engineering (TOSE),
18(3):237–251, 1992.

[3] A. W. Appel. Modern Compiler Implementation. Cambridge
University Press, 1998.

[4] A. W. Appel. SSA is Functional Programming.SIGPLAN Notices,
33(4):17–20, 1998.

[5] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The Program
Dependence Web: A Representation Supporting Control-, Data-,
and Demand-Driven Interpretation of Imperative Languages. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 257–271, 1990.

[6] G. Bilardi and K. Pingali. Algorithms for Computing the Static
Single Assignment Form.Journal of the ACM (JACM), 50(3):375–
425, 2003.

[7] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Predicated
static single assignment. In IEEE, editor,Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 245–255, october 1999.

[8] R. Cartwright and M. Felleisen. The Semantics of Program
Dependence. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages
13–27, 1989.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. InProceedings of the ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 238–252, 1977.

[10] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. InProceedings of the ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), pages
269–282, 1979.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An Efficient Method of Computing Static Single Assignment
Form. InProceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 25–35, 1989.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently Computing Static Single Assignment Form and

the Control Dependence Graph.ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[13] V. Donzeau-Gouge. Utilisation de la sémantique dénotationnelle
pour l’étude d’interprétations non-standard. Technical Report R 273,
INRIA, Le Chesnay, France, 1978.

[14] Z. Dvorak. [lno] Enable unrolling/peeling/unswitching of arbitrary
loops. GCC Patch Mailing List:http://gcc.gnu.org/ml/
gcc-patches/2004-03/msg02212.html, march 2004.

[15] A. M. Erosa and L. J. Hendren. Taming Control Flow: A Structured
Approach to Eliminating GOTO Statements. In IEEE, editor,
Proceedings of the International Conference on Computer Languages
(ICCL), pages 229–240, may 1994.

[16] P. Feautrier. Dataflow Analysis of Scalar and Array References.
International Journal of Parallel Programming, 20(1):23–53,
february 1991.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program
Dependence Graph and Its Use in Optimization.ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319–349,
1987.

[18] The GNU Compiler Collection.http://gcc.gnu.org.

[19] S. Glesner. An ASM Semantics for SSA Intermediate Represen-
tations. InProceedings of the International Workshop on Abstract
State Machines (ASM), volume 3052 ofLecture Notes in Computer
Science. Springer Verlag, may 2004.

[20] J. Guy L Steele.Common LISP: The Language (Second Edition).
Digital Press, 1990.

[21] N. D. Jones.Computability and Complexity from a Programming
Perspective. MIT Press, 1997.

[22] P. Jouvelot. In and Out of SSA Compilers in GNU Common Lisp.
http://www.cri.ensmp.fr/people/pj/ssa.html.

[23] P. Jouvelot. Semantic Parallelization: a Practical Exercise in Abstract
Interpretation. InProceedings of the ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), pages
39–48, 1987.

[24] R. A. Kelsey. A Correspondence Between Continuation Passing
Style and Static Single Assignment Form.ACM SIGPLAN Notices,
30(3):13–22, 1995.

[25] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow. Partial
Redundancy Elimination in SSA Form.ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(3):627–676,
1999.

[26] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In IEEE, editor,
Proceedings of the International Symposium on Code Generation
and Optimization (CGO), march 2004.

[27] A. D. Lucia. Program Slicing: Methods and Applications. In IEEE,
editor, First International Workshop on Source Code Analysis and
Manipulation (SCAM), pages 142–149, nov 2001.

[28] D. Luna, M. Pettersson, and K. Sagonas. Efficiently Compiling
a Functional Language on AMD64: the HiPE Experience. In
Proceedings of the ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP), pages
176–186, 2005.

[29] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[30] S. Pop, A. Cohen, and G.-A. Silber. Induction Variable Analysis
with Delayed Abstractions. InProceedings of the International
Conference on High Performance Embedded Architectures and
Compilers (HiPEAC), volume 3793 ofLecture Notes in Computer
Science, pages 218–232. Springer Verlag, november 2005.

[31] S. Pop, P. Jouvelot, and G.-A. Silber. In and Out of SSA: a
Denotational Specification. Technical Report E-285, CRI/ENSMP,
2007.

[32] L. Presser. Structured Languages.SIGPLAN Notices, 10(7):22–24,
1975.

[33] D. Schouten, X. Tian, A. Bik, and M. Girkar. Inside the Intel
Compiler. Linux Journal, 106, 2003.

[34] J. E. Stoy.Denotational Semantics: the Scott-Strachey Approach to
Programming Languages Theory. MIT Press, 1977.

[35] P. Tu and D. Padua. Gated SSA-Based Demand-Driven Symbolic
Analysis for Parallelizing Compilers. In ACM, editor,Proceedings
of the International Conference on Supercomputing (ICS), pages
414–423, 1995.

[36] M. N. Wegman and F. K. Zadeck. Constant Propagation withCondi-
tional Branches.ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(2):181–210, 1991.

[37] B. Yakobowski.Étude sémantique d’un langage intermédiaire de type
Static Single Assignment. Master’s thesis, INRIA Rocquencourt,
september 2004.

[38] F. K. Zadeck. Loop Closed SSA Form. Personal communication.

[39] F. K. Zadeck. Static Single Assignment Form, GCC and GNU
Toolchain Developers’ Summit.http://naturalbridge.com/
GCC2004Summit.pdf, 2004.

Appendix
PROOF OFCONSISTENCY OFSTATEMENT CONVERSIONTHEO-
REM. By induction on the structure ofStmt, assumingP (θ, t, p):

• for the assignment[[I := E]]:

(µ′, σ′) = C[[I := E]]hθ = (µ[Ih/h/I], σ[C[[E]]hµ/Ih]),

(k′, t′) = I[[I := E]]h(k, t) = (k, t[I[[E]]pt/p/I])

I[[I]]p+t′

= R<p+(t
′I) (I[[]])

= I[[E]]pt (t′)

= E [[C[[E]]hµ]](Rσ)k (Lemma 1)

= E [[C[[E]]hµ]](Rσ′)k (extension ofσ′)

= E [[σ′Ih]](Rσ′)k (σ′)

= E [[Ih]](R(Ih, σ
′Ih)(Rσ′))k (R)

= E [[Ih]](
⊔

I∈Dom σ′

R(I, σ′I)(Rσ′))k (fixed point)

= E [[Ih]](Rσ′)k (R)

= E [[µ′Ih]](Rσ′)k (µ′)

= E [[R<h+(µ
′I)]](Rσ′)k (R<)

= E [[C[[I]]h+µ′]](Rσ′)k (C[[]])

The extension toσ′ is possible because it does not modify
the reaching definitions:R<p. So the property holds forI ,
but it also trivially holds for anyI ′ 6= I, I ′ ∈ Dom t. So,
P (θ′, t′, (h+, k′)) holds.

• for the sequence[[S0;S1]]:

Since there are no new bindings betweenh andh.1, R<p =
R<(h.1,k) and thusP (θ, t, (h.1, k)) holds.

By induction, using the result of the theorem onS0, with
θ1 = C[[S0]]h.1θ, and (k1, t1) = I[[S0]]h.1(k, t), the prop-
ertyP (θ1, t1, (h.1+, k1)) holds.

Since h.1+ = h.2, by induction, using the result of the
theorem onS1, with θ2 = C[[S1]]h.2θ1, and (k2, t2) =
I[[S1]]h.2(k1, t1), the propertyP (θ2, t2, (h.2+, k2)) holds.

So, the propertyP (θ2, t2, (h+, k2)) holds, sinceh.2+ = h+.

• for the loop[[while E do S end]]:

The recursive semantics forwhile loops suggests to use fixed
point induction ([34], p.213), but this would require us to define
new properties and functionals operating on(θ, t, p) as a whole,
while changing the definition ofP to handle ordinals. We prefer
to keep a simpler profile here, and give a somewhat ad-hoc but
more intuitive proof.

We will need a couple of lemmas to help us build the proof. As
a shorthand, we noteθij = (µi, σj).

LEMMA 4. With t = t0, P0 = P (θ12, t0, (h.1, k[0/h])) holds.

This lemma states that ifP is true at loop entry, then it remains
true just before the loop body of the first iteration, at point
(h.1, k[0/ℓ]).

PROOF. ∀I ∈ Dom t:

I[[I]](h.1, k[0/h])t

= R<(h.1,k[0/h])(tI) (I[[]])

= R<p(tI) (t)

= I[[I]]pt (I[[]])

= E [[C[[I]]hµ]](Rσ)k (P (θ, t, h, k))

= E [[R<h(µI)]](Rσ)k (C[[]])

= E [[R<h(µI)]](Rσ)k[0/h] (first iteration)

= E [[R<h(µI)]](Rσ0)k[0/h] (extension toσ0)

= E [[looph(R<h(µI),⊥)]](Rσ0)k[0/h] (looph)

= E [[σ0Ih.0]](Rσ0)k[0/h] (σ0)

= E [[Ih.0]](Rσ0)k[0/h] (E [[]])

= E [[µ0Ih.0]](Rσ0)k[0/h] (µ0)

= E [[R<h.1(µ0I)]](Rσ0)k[0/h] (R<)

= E [[C[[I]]h.1µ0]](Rσ0)k[0/h] (C[[]])

So,P (θ0, t, (h.1, k[0/h])) holds. The extension ofθ0 to θ12
concludes the proof of Lemma 4. �

LEMMA 5. Let (kx, tx) = I[[S]]h.1(kx−1[x − 1/h], tx−1).
GivenPx−1 = P (θ12, tx−1, (h.1, k[x− 1/h])) for somex ≥
1, thenPx = P (θ12, tx, (h.1, kx[x/h])) holds.

This second lemma ensures that ifP is true at iterationx − 1,
then it stays the same at iterationx, after evaluating the loop
body. Note that the issue of whether we will indeed enter the
loop again or exit it altogether is no factor here.

PROOF. By induction, applying the theorem toS, we know
that the propertyP 0

x−1 = P (θ12, tx, (h.2, k[x− 1/h])) holds,
sinceh.1+ = h.2, andθ12 = C[[S]]h.1θ12, asC[[]] is idempo-
tent. We thus only need now to “go around” to the top of the
loop:

I[[I]](h.1, k[x/h])tx

= R<(h.1,k[x/h])(txI) (I[[]])

= R<(h.2,k[x−1/h])(txI) (R<)

= I[[I]](h.2, k[x− 1/h])tx (I[[]])

= E [[C[[I]]h.2µ1]](Rσ2)k[x− 1/h] (P 0
x−1)

= E [[R<h.2(µ1I)]](Rσ2)k[x− 1/h] (C[[]])

= E [[looph(R<h(µI),R<h.2(µ1I))]](Rσ2)k[x/h] (looph)

= E [[σ2Ih.0]](Rσ2)k[x/h] (σ2)

= E [[Ih.0]](Rσ2)k[x/h] (E [[]])

= E [[µ1Ih.0]](Rσ2)k[x/h] (µ1)

= E [[R<h.1(µ1I)]](Rσ2)k[x/h] (R<)

= E [[C[[I]]h.1µ1]](Rσ2)k[x/h] (C[[]])

This concludes the proof of Lemma 5. �

We are now ready to tackle the different cases that can occur
during evaluation. These three cases are:

1. when the loop is not executed, that is when the exit condi-
tion is false before entering the loop body: we know that
¬I[[E]](h.1, k[0/h])t. Based on Lemma 4, we can show
thatP (θ′, t′, (h+, k′)) holds, asθ′ = θ2 that extendsθ12,
t = t′ as defined by the exit of thewhile in I[[]], and
k[0/h] = k′:

I[[I]](p+)t

= R<p+(tI) (I[[]])

= R<p(tI) (t)

= I[[I]]pt (I[[]])

= E [[C[[I]]hµ]](Rσ)k (P)

= E [[C[[I]]hµ]](Rσ)k′ (k[0/h] = k′)

= E [[R<h(µI)]](Rσ)k′ (C[[]])

= E [[R<h(µI)]](Rσ2)k
′ (extensionσ2)

= E [[looph(R<h(µI),R<h.2(µ1I))]](Rσ2)k
′ (looph)

= E [[σ2Ih.0]](Rσ2)k
′ (σ2)

= E [[Ih.0]](Rσ2)k
′ (R)

= E [[closeh(C[[E]]h.1µ1, Ih.0)]](Rσ2)k
′ (closeh)

= E [[σ2Ih.2]](Rσ2)k
′ (σ2)

= E [[Ih.2]](Rσ2)k
′ (R)

= E [[µ2Ih.2]](Rσ2)k
′ (µ2)

= E [[R<h+(µ2I)]](Rσ2)k
′ (R<)

= E [[C[[I]]h+µ2]](Rσ2)k
′ (C[[]])

2. when the loop is executed a finite number of times, that is
when the loop body is executed at least once: letω > 0
be the first iteration on which the loop condition becomes
false:

ω = min{x | ¬I[[E]](h.1, k[x/h])tx}

= min{x | ¬E [[C[[E]]h.1µ1]](Rσ2)k[x/h]} (Lemma 1)

By Lemmas 4 and 5, using induction onS, we know that
P 0
ω = P (θ12, tω, (h.2, k[ω − 1/h])) holds. We prove be-

low thatP (θ′, tω, (h+, k′)) also holds (as a shorthand, we
notekn = k[n/h]):

I[[I]](p+)tω

= R<p+(tωI) (I[[]])

= R<(h.2,kω−1)(tωI) (R<)

= I[[I]](h.2, kω−1)tω (I[[]])

= E [[C[[I]]h.2µ1]](Rσ2)k
ω−1 (P 0

ω)

= E [[R<h.2(µ1I)]](Rσ2)k
ω−1 (C[[]])

= E [[looph(R<h(µI),R<h.2(µ1I))]](Rσ2)k
ω (looph)

= E [[σ2Ih.0]](Rσ2)k
ω (σ2)

= E [[Ih.0]](Rσ2)k
ω (R)

= E [[closeh(C[[E]]h.1µ1, Ih.0)]](Rσ2)k (closeh)

= E [[σ2Ih.2]](Rσ2)k (σ2)

= E [[Ih.2]](Rσ2)k (R)

= E [[µ2Ih.2]](Rσ2)k (µ2)

= E [[R<h+(µ2I)]](Rσ2)k (R<)

= E [[C[[I]]h+µ2]](Rσ2)k (C[[]])

Finally, using Kleene’s Fixed Point Theorem [34], we can
relate the least fixed point fix(Wh) used to define the stan-
dard semantics ofwhile loops and the successive iterations
W i

h(⊥) of the loop body:

t′ = fix(Wh)(k[0/h], t)

= lim
i→∞

W i
h(⊥)(k[0/h], t)

= Wω
h (⊥)(k[0/h], t)

= tω

and soP (θ′, t′, (h+, k′)) holds.

3. when the loop is infinite:
(k′, t′) = limi→∞ W i

h(⊥)(k[0/ℓ], t) = (⊥,⊥). Thus:

I[[I]](p+)⊥

= ⊥ (I[[]])

= E [[closeh(C[[E]]h.1µ1, Ih.0)]](Rσ2)k (min ∅ = ⊥)

= E [[σ2Ih.2]](Rσ2)k (σ2)

= E [[Ih.2]](Rσ2)k (R)

= E [[µ2Ih.2]](Rσ2)k (µ2)

= E [[R<h+(µ2I)]](Rσ2)k (R<)

= E [[C[[I]]h+µ2]](Rσ2)k (C[[]])

So,P (θ′, t′, (h+, k′)) holds.

Thus completing the proof of our main theorem, and ensuring the
consistency of the wholeSSA conversion process. �

PROOF OFOUT OFSSA EXPRESSIONCONSISTENCY.
We use the following lemmas in the proof, which deal with the

impact of theup[[]] helper function on the Consistency Property .

LEMMA 6 (Consistency ofup[[]] for Aspect a = (h, head)). Assume
an execution pointp = (h, k), a statet, a variableI and a “sim-
ple” expressionE (a constant, variable or⊕ of simple expres-
sions). IfQ(σ, κ), I /∈ domenv(κ), I doesn’t occur inE and all
variables ofE are unbound in7 Un = {(h, body), (h, iter)}, then
Q(σ′,κ′) holds with:

σ′ = σ ◦ [looph(E, I)/I]

κ′ = up[[I ,I :=E]](h, head)κ

Proof: The Out ofSSA Consistency Property is obvious for all
variables, butI . Let

(k0, t0) = I[[κ(h, head); (κ(h, body);κ(h, iter))kh]]h(k, t)

(k′, t′) = I[[κ′(h, head); (κ′(h, body);κ′(h, iter))kh]]h(k, t)

Then,

E [[I]](Rσ′)k

= (Rσ′)Ik (E [[]])

= (R(I, looph(E, I))(Rσ′))Ik (σ′)

= ((Rσ′)[λx.E [[looph(E, I)]](Rσ′)x/I])Ik (R)

= E [[looph(E, I)]](Rσ′)k (apply toI andk)

= (1)

= E [[E]](Rσ)k (I unused inE)

= I[[E]](h+, k0)t0 (2)

= I[[I]](h+, k′)t′ (3)

(1) = E [[E]](Rσ′)k for kh = 0, by very definition of
E [[]]. Sinceσ′ = σ ◦ [looph(E, I)/I], for kh > 0 one gets
the same value by induction onkh, using the definition ofE [[]]
(E [[I]](Rσ′)kh−), i.e. the fact that the value ofI is defined when
kh = 0 and not modified in the subsequent iterations.

(2) by definition ofI[[]], structural induction onE using
the lemma hypothesis and the fact that the syntactic translation of
simple expressionsE from SSA to Imp is the identity.

(3) sinceκ′(h, head) = κ(h, head); I := E and the state-
ments inκ′(h, body) and inκ′(h, iter) do not contain assignments
to I or variables ofE. �

LEMMA 7 (Consistency ofup[[]] for Aspect a = (h, body)). Similar
to Lemma 6, with

Un = {(h, iter)}

σ′ = σ ◦ [looph(I,E)/I]

κ′ = up[[I ,I :=E]](h, body)κ

Proof similar to the one for Lemma 6, except that:
(1) = E [[I]](Rσ′)k for kh = 0, by very definition ofE [[]];

the value ofI is ⊥ (undefined) in bothE [[]] andI[[]] (since the loop
body is not executed). Forkh > 0, (1) = E [[E]](Rσ′)kh− , using
the definition ofE [[]]. Sinceσ′ = σ ◦ [looph(I, E)/I], the value
of I is, at every iterationkh > 0, the one ofE; only the last
value matters (sinceI /∈ domenv(κ), the code inκ′(h, iter) does
not contain assignments toI).

(3) sinceκ′(h, body) = κ(h, body); I := E and the code
in κ′(h, iter) does not contain assignments toI or variables ofE.�

7 A variableI is unbound in Uniff for all (h, b) ∈ Un, (I, b) 6∈ κ(h, env).

LEMMA 8 (Consistency ofup[[]] for Aspect a = (h, iter)). Similar
to Lemma 7, with no constraints onI and

Un = ∅

κ′ = up[[I ,I :=E]](h, iter)κ

Proof similar to the one for Lemma 7, with
(3) κ′(h, iter) = κ(h, iter); I := E and the assignment to

I is the last in the loop body. �

AssumingQ(σ, κ), the proof of the main theorem looks at
O[[I, E]]σaκ, whereI /∈ domenv(κ). It uses a double induction
on (1) the number of identifiers in the domain ofσ present in
domenv(κ) and (2) the structure of theSSA expressionE:

• for N , Q(σ′, κ′) holds, by Lemmas 6 and 7.

• for I ′, I ′ ∈ domenv(κ), Q(σ′, κ′) holds, by Lemmas 6 and
7. Indeed, analyzing the defining cases forO[[]], all calls
up[[I, I := I ′]]σaκ whereI ′ ∈ domenv(κ) are such thatκ only
includes a callO[[I ′, . . .]]σa0κ0 wherea = a0 or a = (h, iter)
anda0 = (h, body). In both cases,I ′ is unbound inUn.

• for I ′, I ′ /∈ domenv(κ), Q(σ′, κ′) holds with

κ0 = O[[I ′, σI ′]]σa(upenv[[I
′]]aκ)

Q(σ, κ)

⇒ Q(σ0, κ0) (1)

⇒ Q(σ′, κ′) (2)

(1) by induction on|Dom σ−domenv(κ)|, with σ0 = σ ◦
[looph(σI

′, I ′)/I ′]. Note that even thoughI ′ ∈ domenv(upenv[[I
′]]aκ),

the use of the conclusion of Theorem 3 is valid, since we use
for E the expressionσI ′ that definesI ′.

(2) by Lemma 6, fora = (h, head), as above. One then
gets:

σ′ = (σ ◦ [looph(σI
′, I ′)/I ′]) ◦ [looph(I

′, I)/I]

= σ ◦ [looph(looph(σI
′, I ′), I)/I]

= σ ◦ [looph(σI
′, I)/I]

= σ ◦ [looph(I
′, I)/I] (E [[]])

as requested. The proof for(h, body) uses Lemma 7.

• for E0 ⊕ E1, Q(σ′, κ′) holds:

κ0 = O[[I0, E0]]σaκ

κ1 = O[[I1, E1]]σaκ0

σ0 = σ ◦ [looph(E0, I0)/I0]

σ1 = σ0 ◦ [looph(E1, I1)/I1]

Q(σ, κ) ⇒ Q(σ0, κ0) (induction onE0)

⇒ Q(σ1, κ1) (induction onE1)

⇒ Q(σ′, κ′) (*)

(*) using, fora = (h, head), Lemma 6 withE = I0 ⊕ I1,
yielding σ′ = σ1 ◦ [looph(I0 ⊕ I1, I)/I]. By definition of
σ0 and σ1, this can be successively rewritten asσ′ = σ0 ◦
[looph(I0 ⊕ looph(E1, I1), I)/I] = σ ◦ [looph(looph(E0, I0) ⊕
looph(E1, I1), I)/I]. By distributivity of loop over ⊕, one gets
σ′ = σ ◦ [looph(looph(E0 ⊕ E1, I1 ⊕ I0), I)/I], which is
σ ◦ [looph(E0 ⊕E1, I)/I], by definition of the semantics ofloop;
this is the expected formula forσ′ required to complete the proof.
Similarly, the proof fora = (h, body) uses Lemma 7.

• for looph1
(E0, E1), Q(σ′, κ′) holds:

κ0 = O[[I, E0]]σ(h1, head)κ

κ1 = O[[I1, E1]]σ(h1, body)κ0

σ0 = σ ◦ [looph1
(E0, I)/I]

σ1 = σ0 ◦ [looph1
(I1, E1)/I1]

Q(σ, κ) ⇒ Q(σ0, κ0) (induction onE0)

⇒ Q(σ1, κ1) (induction onE1)

⇒ Q(σ′, κ′) (*)

(*) using Lemma 8 withE = I1, one gets, by definition of
σ1 andσ0 and semantics ofloop:

σ′ = σ1 ◦ [looph1
(I, I1)/I]

= σ0 ◦ [looph1
(I, looph1

(I1, E1))/I]

= σ ◦ [looph1
(looph1

(E0, I), looph1
(I1, E1))/I]

= σ ◦ [looph1
(E0, E1)/I]

Note that the proof is independent ofa.

• for closeh1
(E0, E1), Q(σ′, κ′) holds:

κ0 = O[[I0, looph1
(E0, E0)]]σaκ

κ1 = O[[I1, looph1
(E1, E1)]]σaκ0

κ′ = up[[I,W ; I := I1]]aκ1

σ0 = σ ◦ [looph(looph1
(E0, E0), I0)/I0]

σ1 = σ0 ◦ [looph(looph1
(E1, E1), I1)/I1]

Q(σ, κ) ⇒ Q(σ0, κ0) (induction on loopE0)

⇒ Q(σ1, κ1) (induction on loopE1)

⇒ Q(σ′, κ′) (*)

(*) In the absence ofW , for a = (h, head), using
Lemma 6, the induction would yield a consistent state with
σ′ = σ ◦ [looph(looph1

(E1, E1), I)/I]. For a = (h, body),
one would get a similar result, with the loop expression andI
swapped. For any aspect,I would be bound inσ′ to a loop that
iterates overE1; I is always equal toE1. A similar result exists
for I0 andE0.

The statement W located athW , if its execution terminates in
the rolling state(k′, t′) after starting in(k, t), is, by definition
of I[[]], semantically equivalent to

κ1(h1, head); (κ1(h1, body);κ1(h1, iter))
ω,

where

ω = min{x | ¬I[[I0]](h1.1, k[x/h1])tx},

wheretx denotes the state afterx iterations of the loop, with
t0 = t. Note that, sinceQ(κ1, σ1), the values of all variables of
domenv(κ1), after executing the unrolled loop, are independent
of hW andt

By continuity, if W doesn’t terminate, thenω is the minimum
of the empty set, i.e.,+∞, and we can keep the same definition
and semantic equivalence.

Thus, from any starting rolling state(k, t), the sequence
W ; I := I1 located ath imposes that the valueI[[I1]]((h.1)+, k′)t′

of I1, latter assigned toI , is determined in a state(k′, t′) that is
equivalent to the one mentioned in Definition 2 withkh1 = ω
iterations of LoopW , located ath.1. Since the Out ofSSA
Consistency property using the rolling state(k[ω/h1], tω) en-
sures that, forI1:

I[[I1]]((h.1)+, k′)t′ = E [[I1]](Rσ1)k[ω/h1]

and similarly forI0:

ω = min{x | ¬I[[I0]]((h.1).1, k[x/h1])tx}

= min{x | ¬E [[I0]](Rσ1)k[x/h1]},

the value ofI1, and henceI , is thus, in the presence of W:

E [[I1]](Rσ1)k[min{x | ¬E [[I0]](Rσ1)k[x/h1]}/h1],

i.e., E [[E′]](Rσ1)k, with E′ = closeh1
(I0, I1), which yields,

by definition ofE [[]] and substitutions usingσ1:

closeh1
(looph(looph1

(E0, E0), I0), looph(looph1
(E1, E1), I1))

For the theorem to be true, we need to haveσ′ = σ ◦
[looph(closeh1

(E0, E1), I)/I]. This requires us to show that
E′ andlooph(closeh1

(E0, E1), I) are equal.

Forkh 6= 0, bothSSA expressions evaluate to⊥. Whenkh =
0,E′ is equivalent tocloseh1

(looph1
(E0, E0), looph1

(E1, E1)),
while the second iscloseh1

(E0, E1); they need to be shown
equivalent. The semantics ofE′ is

E [[looph1
(E1, E1)]]k[min{x | ¬E [[looph1

(E0, E0)]]k[x/h1]}/h1].

If the minimum,ω, is 0, thenE [[looph1
(E1, E1)]]k[ω/h1] =

E [[E1]]k[ω/h1]. A similar reasoning works forlooph1
(E0, E0).

The value ofE′ is thus the same as the one ofcloseh(E0, E1).

If ω is not 0, then the semantics ofE′ is

E [[E1]]k[min{x | ¬E [[E0]]k[x− 1/h1]} − 1/h1].

Definingy = x− 1, one can rewrite this as:

E [[E1]]k[min{y + 1 | ¬E [[E0]]k[y/h1]} − 1/h1],

which, by distributing+1 overmin, is the same asE [[E1]]k[ω/h1].
The value ofE′ is thus here also the same as the one of
closeh1

(E0, E1). �

