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Abstract

We present non-standard denotational specifications oSf#e
form and of its conversion processes from and to imperatiee p

1. Introduction

Many modern and widely distributed compilers for imperatand
even some functional languages use ##A form as an inter-

gramming languages. Thus, we provide a strong mathematical mediate code representation formalism. The Static Singkigh-

foundation for this intermediate code representationdagg used
in modern compilers such &CC or Intel CC.

More specifically, we provide (1) a new functional approach
to SSA, the Static Single Assignment form, together with its de-
notational semantics, (2) a collecting denotational seit&ifor a
simple imperative languagenp, (3) a non-standard denotational
semantics specifying the conversionloefp to SSA and (4) a non-
standard denotational semantics for the reve&#&to Imp conver-
sion process. These translations are proven correct, ingsinat
the structure of the memory states manipulated by imperatwm-
structs is preserved in compilers’ middle ends that useStw
form as control-flow data representation. Interestingly,uaex-
pected by-products of our conversion procedures, we offela(
new proof of the reducibility of th&AM computing model to the
domain of Kleene’s partial recursive functions, to whigBA is
strongly related, and, on a more practical note, (2) a nearign
to perform program slicing in imperative programming laages.
All these specifications have been prototyped usifng) Common
Lisp.

These fundamental results prove that the widely &eaitech-
nology is sound. Our formal denotational framework furtbeg-
gests that th&6SA form could become a target of choice for other
optimization analysis techniques such as abstract irgton
or partial evaluation. Indeed, since tl88A form is language-
independent, the resulting optimizations would be autcraly
enabled for any source language supported by compilers asich
GCC.

Categories and Subject Descriptors  D.3.4 [Programming Lan-
guage¥ Processors—compilers; F.3.Rdgics and Meanings of
Programg: Semantics of Programming Languages—Denotational
Semantics

General Terms Languages, Theory

Keywords static single assignment, SSA, RAM model, partial
recursive functions theory, program slicing
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ment GSA) form [29] is based on a clear separation of control
and data information in programs. While the data model is dat
flow-based, so that no variable is assigned more than oreepti
trol model traditionally is graph-based, and represensichzocks
linked within a control-flow graph. When more than one patthe

a given block, values may need to be merged; to preserve tige fu
tional characteristics of the dataflow model, this is ackievia
so-called¢-nodes, which assign to a new identifier two possible
values, depending on the incoming flow path.

Based on simple conceptSSA is surprisingly efficient; var-
ious compiler optimization algorithms such as constanpaga-
tion or dead-code elimination are of lower complexity whpea-
fied onSSA than when tuned to more classical control-flow graphs
(see [36]). This formalism has therefore been widely useuabii
academic (e.gGCC [18, 30],LLVM [26]) and commerciall@tel
CC [33]) compilers.

Yet, we believe the theoretical foundationsS8A are some-
what lacking (see Section 2 for a presentation of some oféhe e
lier attempts to formally describe such a framework). On¢hef
main goals of our paper is thus to provide what we believe to be
a firmer foundation for this ubiquitous intermediate repreation
format, addressing both ti¥ A language itself and the conversion
processes used to translate imperative source code tmedéete
SSA constructs and back. Our work intends then to strengthen the
core formalism oSSA and enable the introduction of more formal
correctness proofs fd8SA-based optimization algorithms in the
future, a key concern given the importance of code corrsstire
software engineering tools as crucial as compilers.

Our approach is also practical in that we want to address one
shortcoming we see in most of the current literature onSBa
form. The original motivation for the introduction gfnodes was
the conditional statements found in imperative prograngniém-
guages, for which two paths need to be merged when reachéng th
end of the alternative branches. Thus, most of the methods of
node placement present in the literature, when dealing thich
related but, we believe, somewhat differgnhodes that logically
occur after structured loops, simply consider them as adgriv to
conditional¢-nodes. In particular, loop exit conditions are not tra-
ditionally considered an intrinsic part of tl6SA; in practice this
is not a major issue, since most compilers’ middle ends keep c
information on the side (e.qg., control-flow graphs or camitions)
from which they can be retrieved.

The introduction of loop-specifig-nodes by the research com-
munity (see [35, 5]) with the “GateSiSA” variant of SSA, in which
such expressions do appear in loop nodes, was mostly nextibgt
the desire to exten8SA to dataflow languages and architectures,



while its recent adoption by th6 CC community [14, 39, 38] is
practical and related to the ease with which code transftiomal-
gorithms working directly on loop structures and not gehgrraphs
can be designed. These somewhat narrow-focused begimings
explain why loop-specifig-nodes were overlooked in recent sur-
veys ofSSA [6], as their semantic role was not quite well under-
stood at the time.

As we shall see in this paper, these “loop-clositigexpres-
sions are in fact crucial to the expressivenesS34, providing the
key construct that boosts the computational power of the€'pu
SSA language, namely a functional dataflow language without ad-
ditional ad-hoc control-flow information, from primitivecursion
to full-fledged partial recursive functions theory. Moregvthe
structural nature of the denotational framework we use imdieu
of the traditional graph-based algorithms, in which theididion
between conditional and loop-originating edges is loskesahis
requirement even more compelling.

The structure of the paper is the following. After this irttue-
tion, we survey the related work (Section 2). In Section 3,inve
troducelmp, a very basic yet complete imperative programming
language, and provide its standard denotational semami&ec-
tion 4, we formally present our functional definition A form,
together with its rather straightforward and standard tsional
semantics. In these two sections, we use collecting traseébse-
mantics, which will be required for our later proofs. In Sent5,
we show how any construct frommp can be translated t6SA,
using a non-standard denotational semantics to speciycibm-
version process; we also provide our first theorem, whictwsho

optimization transformations ofiSA. Yet, there is no formal
proof provided to ensure the correctness of this mapping be-
tween ASM and SSA. We provide a different, denotational,
semantics foISSA and use it to prove the correctness of the
SSA conversion processes for imperative programs.

¢ Arule-based operational semantics for a graph versi&béf,

an algorithm for translating statements expressed in atexgi
level language int&SA and a somewhat informal correctness
proof of this process are given in [37]. A survey of optimiza-
tions based orbSA is also provided. Our approach focuses
on a new, functional syntax and semanticsS6A, and offers
formal proofs of its direct translation from and to a higkde
structured imperative language.

The already mentioned work of Ballance and al. [5], perhaps
not coincidentally mostly targeted to the extension of384 form
to the dataflow (and hence functional) computing paradidgfer®
some striking similarities to our approach A and its seman-
tics. The authors introduce the “Program Dependence Waeliit, b
on top of a variant o6SA, the “GatedSSA”, GSA, which intro-
duces specific loop nodes in tBEA representation, as we do. Our
results indirectly provide a simplification of their defioit (GSA
is a graph-based representation with three gating furstiohile
we show that only two, graph-independent constructs arfacin
needed), a clean denotational semantic$fok and direct transla-
tions between imperative programs &%A (the GSA conversion
algorithms are built on top of the Program Dependence Gréph o
Ferrante and al [17]). Finally, we provide formal corresmproofs

thatimp andSSA evaluation processes preserve the consistency of for our denotationally-based transformations and show $Sa

memory states. We look at the dual issueS6fA-to-Imp conver-
sion in Section 6, which includes its specification and owosd
correctness proof. Building on these core results, we distuSec-
tion 7 some consequences of our results, in particular thect®n

of RAM programs to partial recursive functions and the applicatio
of our conversion processes to program slicing. We look tairéu
work in Section 8 and conclude in Section 9. All proofs can be
found in [31].

2. Related Work

Since the motivation for the introduction 86A is mostly one built
out of experience stemming from the implementation of coengi

middle ends, there is scant work looking at its formal defbnit
and properties. Yet, it is worth mentioning some previouskvtioat

offers a couple of different semantics for t8A form:

e The early papers [11, 12], which introduce the notation for
SSA, mostly present informal semantics and proofs for some
optimization algorithms based on tBEA representation.

Kelsey [24] studies the relationship between $%A\ form and
the functional programming paradigm, providing a somewhat
more formal view of the semantic link between these two no-

tions (see also [4]). He defines a non-standard semantits tha 3

translates programs BSA form to continuation-passing style
and back tdSSA, providing a way to compile functional lan-
guages to th&SA, and making it possible to use tS&A op-
timizing technology on functional languages. In some sense

has the computational power of the RAM computing model.

Indeed, beside looking at the formal definitionS8A seman-
tics, our paper also addresses the issues of convesigfrom
and to imperative programs, which implies that a proper éaork
for specifying these processes be used. The usual referentee
literature [8, 12, 7, 5] rest on graph algorithms, which ipraypri-
ate given the graph nature of classi€8lA. Since we take here a
purely programming language-based approach, we use aetiffe
theoretical foundation to both express these processeprane
their correctness. We found the denotational framework {@%4e
well suited to this task, given the structural definitionsoaf lan-
guages and our desire to express precise, formal correqinesfs,
required to ensure the soundnes$84,; all the specifications we
provide below can be seen as non-standard denotationalnsema
tics [23, 13] of imperative 08SA programs defined on the abstract
syntax of the languages under study.

An added, practical benefit with this approach is that suele-sp
ifications are executable using any functional languag§ E8ce
we were only interested here in getting a proof-of-conceylé-
mentation, we used GNU Common Lisp as our “executable speci-
fication language” [20].

Imp, the Simple Imperative Language

Since we are interested in this paper by the basic principieer-
pinning theSSA conversion processes, we use a very simple yet
RAM-complete imperative languagbmp, based on assignments,

our work can be viewed as Opening a new venue for this ap_ Sequences and Whlle IOd‘p%S iS We”'knOWn, Conditional State-

proach by formally showing that the imperative programming
paradigm can be mapped to tBEA form and vice versa. In
addition, we provide mathematical correctness proofsHesé
conversion processes.

e A similar semantics, based on continuations, is given by

ments can always be encoded by a sequence of one or two loops
[32], and thus need not be part of our core syntax.

1The RAM model requires array-like constructs that are mig$iom our
definition. Since&SSA mostly deals with control structures, we don't see this

Glesner [19]: she gives an abstract state machine semanticsas a restriction, since adding such aggregate data stesdsia dual issue

for the SSA, and uses an automatic proof checker to validate

to the ones we tackle in this paper.



3.1 Syntax

Imp is defined by the following syntax:
N € Cst
I ¢ Ide
E € Expra=N|I|Ey®E;

S € Stmt:=1:= E| So; 51 |while Edo S end

with the usual predefined integer constants, identifierscpeta-
tors®.

Since theSSA semantics encodes recursive definitions of ex-
pressions in a functional manner (see Section 4), we foupakier
to define the semantics fdmp as a collecting semantics. It gath-
ers for each identifier and program point its value duringcasen.
To keep track of such execution points, we use both syntaatic
iteration space information:

e Each statement in the program tree is identified by a Dewey
number,h € N*. These numbers can be extendedhas,
which adds a new dimension o and sets its value ta; it
is used to identify ther-th son of the node located &t in
the program tree. For instance, the top-level statement is
while the second statement in a sequence of Nurhlierh.2.

The statement that directly syntactically followss located at
h+, which is defined as follows, assuming tree nodes with
children:

nt = n+1
(hn)+ = h(n+1) Q1<n<m)
(hom)+ h+

To deal with the distinct iterations of program loops, we use
iteration space functions, of type K = N* — N. The value
kh of Functionk for a while statement located Atdenotes the
current loop index value for this loop. Informally,collects the
counter values for all loops (identified by their Dewey numpe
during execution, this function is updated as loops unesit

we notek[a/h] the function obtained fronk by replacing the
value at Index: with a?.

To sum up, a program execution poiptis a pair (h,k) €
P = N* x K that represents a particular “run-time position”
in a program by combining both a syntactic informatién,and
a dynamic onek, for proper localization. Intuitively, eacth, k)
occurs only once in a given execution trace (the orderedesegu
of all states).

The only requirement on points is that they be lexicogragdhjic
ordered, with the infix relatiorc € P x P — Bool such that
(h1,k1)< (h,k) = (ki<k V (k1 = k A hi< h)); the order
relationship< on iteration functiong is straightforwardly defined
over their ordered domains.

3.2 Semantics

As usual, the denotational semanticslef operates upon func-
tions f on lattices or CPOs [34]; all the domains we use thus have a
1 minimum element. The definition domain ffi.e., the set of val-
ues on which it is defined, is given &om f = {z | f(z) # L}.

The semantics of expressions uses state§” = Ide —+ P —
V', a state yields for any identifier and execution point its Bum
value inV, a here unspecified numerical domain for values. The
use of points gives our semantics its collecting status;oimes
sense, our semantics specifies traces of execution. Thensesna

2Following a general convention, we notfy/z| (Aa.yifa
z, fa otherwise) and f[z/y/x] (Aa.Ab.z if a z Ab
y, fab otherwise) the functions that exterfcat a given values.

Z[] € Expr — P — T — V expresses that dmp expression,
given a point and a state, denotes a valu¥ ifwe useiny as the
injection function of syntactic constants ¥ :

I[N]pt = inv(N)
IlIlpt = R<p(tl)
I[Eo ® Er]pt = ZI[Eo]pt ® Z[E1]pt

where the only unusual aspect of this definifida the use of
R<.f = f(max<; Dom f), the reaching definition on a given
function f. To obtain the current value of a given identifier, one
needs to find in the state the last program point at whibbs been
updated, prior the current since we use a collecting semantics,
we need to “search” the states to find this last definition.

To specify the semantics of statements, we need to introduce
augmented states € U = K x T, called “rolling states”, that
combine iteration space functions and states. The semsaotic
statementg[] € Stmt— N* — U — U yields the rolling state
obtained after executing the given statement at the givegram
Dewey number, given an incoming state= (k, ¢):

I[I := E]h(k,t) (k, t[ZIET(h, K)t/ (R, k) /1))
I[[So;sl]]h IIIS1]]h.2 OI[[So]]h.l

These definitions are rather straightforward extensions wadi-
tional standard semantics to a collecting one. For an as&igh

we add a new binding of Identifief at Point(h, k) to the value

of E. A sequence simply composes the transformers associated to
So and S; at their respective points.1 andh.2. And, as usual,

we specify the semantics ofwhile loop as the least fixed point
fix(W}) of the W}, functional defined as:

Z[while E do S end]h(k, t) = fix(W3)(k[0/h], t)

Wi = Aw. A\u.
w(k;L+7t/)7 if IIIE]](h17k)t7
U, otherwise.

where(k’,t') = Z[S]h.1 and(k,t) = u

where, as a shorthand,, ; is the same a&, except that the value
at Indexh is incremented by one (similarly, we latter use_, with
a decrement by one).

Beginning with an iteration vector set to 0 for Indéxif the
value of the guarding expressidii is true, we iterate thevhile
loop with a state updated by the loop body, while incremetiire
iteration space vector, since an additional loop iteratiaa taken
place. If the loop test is false, we simply consider the lospaa
no-op.

3.3 Example

To illustrate our results, we use a single example runninguidh-
out this paper; we provide in Figure 1 this very simple progra
written in a concrete syntax thp, together with its semantics, i.e.,
its outgoing state when evaluated from an empty incomintg sta
Since we implemented all the denotational specificationsiged

in this paper in GNU Common Lisp, interested readers areonstc
to try longer examples using this prototype [22].

In this example, if we assume that the whole program is at
Dewey number 1, then the first statement is labelled 1.1 whée
rest of the sequence (after the first semi-column) is at 12 T
whole labelling then proceeds recursively from there. Sithere
is only one loop, the iteration space function domain hag onk
element, at Dewey number 1.2.2. Thus, for instance, aftetdap
iterations, the value off is 14, and this will cause the loop to

3 For any ordered sef, we notemax . S the maximum element & that
is less thanc (or L if no such element exists).



I:=17;
J = 0;
S | while J < 10 do
o=+ 1;
end
lIMlL
I —(11,1)—>7
" (1.21,1L)—0
’ J - (1.2.2.1,(1.22 —-0)) —» 7
(1.2.2.1,(1.22 - 1)) —» 14

Figure 1. Syntax and semantics for dmp program: (k,t) =
Z[S]1L.

terminate. The collecting nature of the semantics is exiieqgl
here by the fact that we keep track of all values assigheddb ea
variable throughout the whole computation.

4. SSA

If the definition ofImp given above is rather straightforward, the
treatment ofSSA given below is new. We motivate in this section
the need for such a fresh approachS®A and specify its syntax
and semantics.

4.1 Functional SSA

In the standard5SA terminology [12, 29], theSSA intermedi-
ate representation of an imperative program is a graph etisef
chains inSSA form. Nodes in the graph are basic blocks possibly
ending with a test, and each assignment targets a uniquableri

¢ nodes occur at merge points of the control flow graph to restor
the proper values from the renamed variables accordingetseh
mantics of the original imperative constructs (i.e., toresent the
proper evolution of variables in loop and conditional statats).
As an example, Figure 2 provides the graph-b&&®A representa-
tion for our running example given in Figure 1.

Iz = (31, J)
if (J, < 10)

[J3:=J24+ 1y

Figure 2. ClassicalSSA graph.

This original representation &SA suffers from one drawback:
variable names defined in loops are accessible from anyvetfiiene
the loop. For instance, one could, and indeed sometimestdoes
get the exit value of Variablg, write “X := J_2" in a basic
block that follows the starred exit arc of the while graphthlgh
operationally valid, such accesses clearly lack structsiree all
accesses td from the SSA representation need to go deep into
the graph structure. Moreover, multiple exit arcs can beoalpm
when dealing withSSA graph operations such as insertion and
deletion of edges.

The current versions d&CC, beginning with Version 4.0, use
“loop close” ¢ nodes [14] that are inserted immediately after the
loop for each variable used outside of the loop. This enstivats
every edge of th&SA graph points to a variable defined at most
one loop level deeper, avoiding complicate8lA graph rewiring

after code transformations. The “loop closed” version & S8A
graph for our running example can be seen in Figure 3.

I,:=7
Ji1:=0

Ja 1= ¢(J1, J3) }
if (J2 < 10)

&J [9+:= 02 }

Figure 3. Loop closedSSA graph.

Even though this representation is admittedly more stradtthan
the original one, maintaining a proper control-flow graphtbe
side of theseSSA expressions is still required, if only to grant
access to the exit boolean expressions that label whilesloop

In this paper, we suggest to go one step further by recognizin
that one can replace this whole graph-based approach witb-a p
gramming language-based paradigm. In this new “functis6a”
form, the¢ assignments are capturing all the control characteristics
of programs, making usual control-flow primitives conseylyere-
dundant. The corresponding functiorf&A code for our running
example is given in the upper part of Figure 4 (see next stibssc
for a formal explanation of our syntax and semantics).

The definition of this self-contained, functional format §5A
is one of the new ideas we introduce in this paper. This progra
ming language approach provides a more formal view of the defi
nition of SSA, its conversion processes and their correctness; stan-
dard yet powerful proof techniques developed in the realprof
gramming language theory can, as shown below, be more yeadil
applied here than when using graph-based representations.

4.2 Syntax

A program in functionalSSA form is a set of assignments of
SSA expressiongr € SSA to SSA identifiersI;, € Ideh These
expressions are defined as follows:

E e SSA =
N | Iy | Fo @ Eq | |OOph(E(),E1) | C|Oseh(E(),E1)

which extend the basic imperative definitions Efpr with two
types of¢ expressionstoop andclose terms.¢ nodes that merge
expressions declared at different loop depths are chiltgd, nodes
and have a recursive semantics.clase;, node collects the final
value that comes either from the lo@por from before the loop
h, when the loop trip count, related to the first argument, i®ze
Since we stated that imperative control flow primitives dtdmot
be part of ouISSA representation, we intendedly annotataodes
with a label informatior that ensures that tH&SA syntax is self-
contained and expressive enough to be equivalent to any atiye
program syntax, as we show in the rest of this paper.

More traditional¢-nodes, also called “conditiondl* in GCC,
are absent from our co®SA syntax since they would only be re-
quired to handle imperative conditional statements, whiithout
loss of generality are, as mentioned above, absent fromytitays
of Imp; these nodes would be handled by a proper combination of
loop andclose nodes.

Note that identifierd}, in an SSA expression are also labeled
with a Dewey number. Since every assignmeririp is located at a
uniqueh, we use, in thémp-to-SSA conversion process described
below, this number to uniquely tag identifiers in order tougas
that no identifiers in an imperative program will ever be agied
twice once converted t8SA form, thus enforcing its static single
assignment property.



The set of assignments representing8A program is denoted
in our framework as a finite function € ¥ = Ideh — SSA
mapping each identifier to its defining expression.

4.3 Semantics

Since in anSSA programo all expressions in its image domain
recursively refer, via identifiers, to the samgthe semantics of
uses an environment € H = ldeh - K — V, defined as a
fixed point of the environment extension functiéh € (ldeh x
SSA) — p — p, which iterates over the domain ef. The
semantics function fd8SA expressiong[] has then typ&'SA —
H — K — V,; it associates to a given expression in such a
recursively constructed environment and with an iteraspace
function its value.

The semantics of aBSA programo is thus the finite function
Ro defined as follows:

Ro = fix( || RU,ol)
R(I,E)p = pAkE[E]pk/I]

whereR is used, via the fixed point operator, to build a recursive
environmentp in which all identifiers/, when given an iteration
function k, are bound to the value of the expressiBn= oI that
defines them ir. The evaluation of such an expression is defined
below:

E[N]pk = inv(N)
Ellpk = plk
E[Eo ® Eilpk = E[Eo]pk @ E[E1]pk

E[Bo] ok, if kh =0,

&[loop,, (Eo, E1)]pk E[E1] pkn—, otherwise.

{

E][closer (Eo, E1)]pk =
E[Er]pklmin{z | ~E[Eolpk[x/h]}/h]
Constants such a& are denoted by themselves. We already ex-
plained how the semantics of identifiers relies on the réeeiss
built environmentp. Operator-based expressions are straightfor-
wardly defined by induction.

loop,, nodes, by their very iterative nature, are designed to rep-
resent the values of variables successively modified in iatjpe
loop bodies, whileclose;, nodes compute the final value of such
induction variables in loops guarded by test expressiolage to
Ey. Of course, when a loop is infinite, there is no iteration that
its the loop, i.e., there is nbsuch that-E[ Ey ] pk, and thus the set
{z | ~E[Eo]pk[z/h]} is empty. In such a cassyin () corresponds
to L.

4.4 Example

We informally illustrate in Figure 4 the semanticsS§A using an
SSA programe intended to be similar to tHenp program provided
in Figure 1.

Since by definitiorBSA uses single assignments, we need to use
a different identifier (i.e., subscript) for each assigntriera given
identifier (see for instanc® in thelmp program. Of course, all val-
ues are functions mapping iteration vectors to a constarmédrge
the two paths reaching ilmp the loop body, we use Bop ex-
pression to combine the initial value #find its successive iterated
values within the loop. Aclose expression “closes” the iterative
function associated td, to retrieve its final value, obtained when
the test expression evaluatedatse in this case, this yields 14, if
evaluated iRo.

7

0

loopy (J1, J3)

Jo + Ip

close; (J2 < 10, J3)

|®r

I — A\k.7

J1 — Ak.0

Ji(k)forkl1=0

J3(k1—)forkl >0

J3 — )\k‘.Jz(k;) + Il(k‘)

J4 — Ak J2(k[min{z | —J2(k[z/1]) < 10}/1]) = Ak.14

Jo —))\k‘.{

Figure 4. Syntax and semantics gfexpressionsp = Ro.

5. Conversion oflmp to SSA

We are now ready to specify how imperative constructs flom
can be translated 8SA expressions. We use a non-standard deno-
tational framework to specify formally this transformatiprocess.

5.1 Specification

As any denotational specification, our transformation fioms use
states. These statés = (u,0) € 7 = M x X have two
componentsy € M = Ide — N* — ldeh maps imperative
identifiers toSSA identifiers, yielding their late §SA names (these
can vary since a given identifiércan be used in more than olmep
assignment statement);e > = Ideh— SS A simply collects the
SSA definitions associated to each identifier in the imagé/of

The translation semanticy]] € Expr - N* — M — SSA
for imperative expressions yields t8&A code corresponding to
an imperative expression:

C[NJhg = N
Cllhw = Ren(pl)
C[[EO ) El]]hu = C[[Eo]]hu ) C[[E1]]hu

As in the standard semantics flaiip, we need to find the reaching
definition of identifiers, although this time, since this isanpile-
time translation process, we only look at thetacticorder corre-
sponding to Dewey numbers.

The translation semantics of imperative statemafff <
Stmt - N* — T — 7T maps conversion states to updated
conversion states. The cases for assignments and sequemeces
straightforward:

C[So; S1]h
C[I := E]h(p,0)

C[S1]h-2 o C[So]h.1
(ulIn/h/I), o [C[E]hp/In])

since, for sequences, conversion states are simply pregghdzor
assignmentsy is extended by associating to the imperative identi-
fier I the newSSA namel}, to which the convertefSA right hand
side expression is bound én thus enriching th&SA program with

a new binding forT},.



As expected, most of the work is performedaihile loops:

Clwhile E do S end]h(u, o) = 62 with
0o = (H[I}LO/hO/I]IGDom 3]
ofloop),(R<n(pd), L)/ In.0lre Dom u),
6, = C[S]h.160,
02 = (1 [Tn2/h-2/I]1€Dom py 5
o1loop, (Ren(pl), Ren2(pi1))/In.0l1€ Dom s
[closer, (C[E]h-11, In.0)/In.2) 1€ Dom uy)

where we notd; = (u,;, 0;). We also used the notatigiy /z|zcs
to represent the extension 6fto all valuesz in S with y.

As usual, the conversion process is, by induction, applied o
the loop bodyS located ath.1. Yet, this cannot be performed in
the original conversion stafg:, o), since any imperative variable
could be further modified in the loop body, creating a new iigd
which would be visible at the next iteration. To deal withsthi
issue, a new Dewey number is introducéd), precedingh.1, via
which all variables are bound teop nodes (note that only tHgSA
expressions corresponding to the control flow coming inéddlop
can be expressed at that point). It is now appropriate toerbnv
the loop body in this updated conversion state; all refexerto
variables will be tdoop nodes, as expected.

Similarly, after the converted loop body, a new Dewey number
h.2, following k.1, is introduced to bind all variables ttose nodes
that represent their values when the loop exitsl(af the loop is
infinite, as we will see). All references to any identifier ertbe
loop is performed are references to thelkse expressions located
at 1.2, which follows, by definition of the lexicographic order on
points, all other points present in the loop body.

At this time, we are able to provide the entire definition for
loop expressions bound at levielo; in particular the proper second
subexpression within eadhop corresponds to the value of each
identifier after one loop iteration.

5.2 Example

We find in Figure 5 the result of thenp-to-SSA conversion al-
gorithm on our running exampl€[S]1.L. TheSSA codeo, i.e., a

mapping ofSSA identifiers taSSA expressions, represented here as

atabulated list, is taken verbatim from the output of our GGlun-
mon Lisp prototype. The current binding for the imperatideri-
tifier T in p is I_12212, andJ_12212 for J (we represent Dewey
numbers inSSA identifiers as suffixes preceded bythe dots are
removed for readability purposes).

As expected, thiSSA program is similar to the one in Figure 4,
up to the renaming of thBSA identifiers. Botht andJ are bound

to close expressions with the same test expression that involves the

value ofJ_12210, a loop expression that evaluates to 0 for the first
iteration and to the sum af+I translated ir6SA form for the sub-
sequent ones. Note how the value of the loop invadasimanaged
by the loop expressioh_12210 which evaluates to 7 for the first
iteration, and keeps its value afterwards; a sin§8é code opti-
mizatiorf would replace this binding i with (I_12210, I_11),
equivalent modulo termination to the constant binding iguire 4.

As advertised earlier, all control-flow information has hee
removed from thelmp program, thus yielding a “pure”, self-
containedSSA form, without any need for additional, on-the-side
control-flow data structure.

4Proving the correctness of this optimization could be penad using the
denotational semantics 86A provided in this paper. More generally, the
need for optimization ir5SA-generated code is discussed in Section 8.

I o~

end

lcm]u

1.12212, close.1221(J_12210<10, I_.12210)
J_12212, close_1221(J_12210<10, J_12210)
1.12210, loop-1221(I_11, I_12210)

o | J-12210, loop-1221(J_121, J.122111)
J_122111, J_12210+I.12210

J121, O

I11, 7

Figure 5. Conversion fromimp to SSA: (p1,0) = C[S]1L.

5.3 SSA Conversion Consistency

We are finally equipped with all the material required to essr
our first main theorem. Our goal is to prove that our conversio
process maintains the memory states consistency betweémih
perative anbSA representations. This relationship is expressed in
the following definition:

DerINITION 1 (Consistency)A conversion statd = (u,o0) is
consistentwith the memory state at pointp = (h,k), noted
P(9,t,p), iff

VI € Dom t,Z[I]pt = E[C[I]hu](Ro)k (1)

which specifies that, for any identifier, its value at a givempin
the standard semantics is the same as its value 3Aesemantics
when applied to its translat&sf A equivalent (see Figure 6).

Expr 0™, 554
I[[]](h’k)tl JS[[]](RU)IC
veV veV

Figure 6. Consistency property?((u, o), t, (h, k)).

This consistency requirement on identifiers can be strizight
wardly extended to arbitrary expressions:

LEMMA 1 (Consistency of Expression Conversio@iven that
P(0,t,p) withp = (h, k), and an expressiolt € Expr,
I[E]pt = E[C[E]hp](Ro)k )

This directly leads to our main theorem, which ensures the
semantic correctness of the conversion process from irtipera
constructs tGSA expressions:

THEOREM1 (Consistency of Statement Conversio@jven any
statementS and for all 0, ¢,p = (h, k) that verify P(60, ¢, p), then
Pt (h+, k")) holds with
o' C[S]ro
(K1) Z[S1h(k, t)

This theorem basically states that if the consistency ptyppe
satisfied for any point before a statement, then it is alsdiedr
for the statement that syntactically follows it.

We are left with the simple issue of checking that state nsi
tency is satisfied for the initial states.



LEMMA 2. P(L, 1, (1, Ah.0)) holds.

Aspecta in Loop environmentk, usingo to find the definitions of
the freeSSA variables that are required to evalu&telt is defined,

The final theorem wraps things up by showing that after evalu- ¢5; arithmetic expression bindings, as follows:

ating anSSA-converted program from a consistent initial state, we
end up in a state that is consistent. Note that this remaiesaven
if the whole program loops.

THEOREMZ2. Given S € Stmt, withd = C[S]1L and (k,t) =
Z[S]1(Ah.0, L), the propertyP(0, ¢, (2, k)) holds.

PROOF Trivial using Lemma 2 and Theorem 1. a

6. Conversion ofSSA to Imp

If the functional characteristics &SA makes it particularly well
suited to program optimizations (see e.g., [25]), for suatinoized
programs to run one has to find a way to get back to the imperativ
paradigm required by most current computer architectvés.
provide in this section an algorithm that translate$8A program

to its Imp equivalent, and explicit its correctness.

6.1 Specification

An SSA programo specifies a binding of identifiers to expressions.
Thus, getting an imperative version for such a program arsdion
discovering thdmp code required to compute the value of each
“useful” identifier. In the framework of compiler middle-és we
envision in this paper, these will in fact be the identifiezguired

to compute the result of imperative programs that were lases
into o. Our SSA-to-Imp core translation functio[] takes thus
as first argument one of these bindings, i.e., an identifiand an
SSA expressionZ, and returns thémp code required to compute
“I:=FE"

SinceSSA expressions include loop constructs which, per se,
do not directly correspond to actuabp code (i.e., enclosinglose
expressions are required to specify loop bounds), we inted
“loop environment” functions to keep track of pieceslofp code
that eventually will be used to generate the whole impeggtio-
gram. The domain of a loop environment is a set of “loop agject
which are tuples: = (h,b) € A, with h a Dewey number and
b €Y = {head, body, iter,env} a symbol.

A loop environments € L = A — (Stmt4 P(Ide x Y))
maps such aspects to the statements associated to eitheaither,
the body or the iteration step of the loop designated by thedye
numberh. A loop characterized by its Dewey numbercan thus
be seen as the following pattern:

k(h, head) ;

while <testexpression
k(h, body) ;
k(h,iter) ;

end

Beyond these “structural” aspectsalso maps “environment”
aspects (with the symbainv) to the sets of identifiers defined
in Loop h; these sets are key in both the specification of the
conversion process and the correctness proof. We use tywerhel
functions to maintain loop environments:

up[I, SJax upenv[]a(k[ka; S/al)
upenv[I] (R, b) K k[k(h,env) U {(1,b)}/(h,env)]

whereup[] extends with the statemeist the code of Aspect
which computes the value éfwhile also updating the environment
of Loop h with the newly defined identifier, via a call tgen[].

The out of SSA conversion specification i©[] € (ldeh x
SSA) - ¥ - A - L — L. The termO[I, E]oak is
an extended loop environment in which thep code required to
assign the imperative equivalent Bfto I is added to the code of

O[I, N]o = up[I,I := NJ,
O[I, I'lear = up[I, I := I']ako, with

[ O[I'yoI'loa(upen[I']ak), if I' ¢ domeny (k)
Ko =1 &, otherwise,

O[I, Eo ® ErJoak = up[l, I := Iy ® I1]ak1, with
K1 = (O[[Il, El]]aa o OIII(), Eo]]O'a)K

wherel, andI; denote fresh imperative variables, atwen, (k) =
71U (h.emvye Dom « (h, €0v)) s the set of identifiefsof all the
environment aspects af

The case for constants is simple: we update the code for the co
responding aspect with the obvious assignment. This krease
occurs again when dealing with identifier assignments ifidfn-
ing identifier I’ is already present in the environment. Otherwise,
one needs, before assigningltao collect the code for the expres-
siono I’ that defined’; this is done in a loop environment properly
updated to reflect the fact that, since we are currently defittie
code forI’, there is no need to recurselifever occurs again in the
subsequent recursive calls@].

Finally, the case for an operator uses straightforwardreaga
calls.

We focus now on “control-level” expressionsS8A:

O[l1,loop,,(Eo, E1)]oak = up[L, I := I1](h, iter)k1, with
k1 = (O[l1, Er]o(h,body) o O[I, Eo]o(h, head))k,
O[l,closen(Eo, E1)]oax = up[l, W; I := I1]ak1,with
W = k1(h, head); while Iy do k1 (h, body); k1 (h, iter) end
k1 = (O[11,loop,, (E1, E1)]oa o O[lo,loop, (Eo, Fo)]oa)k

As already alluded to, there is no stand-alone code genkfate
aloop expression; the aspect argumeantwhere this code is sup-
posed to be added, is thus not used. Instead, one needsrifoutiést
parts of the corresponding code in the various aspects of koo
impacted by thdoop,, expressionE, goes into the header arth

in the body. Note that the expressiéh defining the new valué;
of I may possibly refer to the old value éfobtained at the end of
the previous loop iteratiori, gets its new valud; in the code for
the iteration asped:, iter) of the loop.

The code gathered ilop expressions is actually used when
aclose expression is encountered. The values of the loop test and
body are bound td, and ;. We use loop expressions to compute
these values both in the header and the body of the loop; kbaege
expressions are required since we may or may not enter tipe loo
body and yet be able to provide a meaningful exit value todisé r
of the program. The final value dfis obtained by an assignment of
I, after the inclusion of Cod®&; this all-important code collects
all code fragments relevant to the header, body and iteratip of
Loop h and stored in the loop environmeft

6.2 Example

To get a better grasp of the way our conversion executabla-spe
fication works, we provide in Figure 7 the “out-of-SSHp code
for the original runnindsSA example given in Figure 4. This code
is taken from the output of our GNU Common Lisp prototype,
when requesting that the value of be stored in the fresh variable
RESULT (see Theorem 4 for details?[RESULT, J4]o (0, head) L.

571 is the first projector for pairs, here naturally extendedets sf pairs.



N
N

+| J2 — loop1 (J1, J3)
—
—

close; (J2 < 10, J3)

O[]o(0, head) L

J1 = 0;
J2 := 31
10.33062 :
11.33062 :
1033060 := I0_33062<I1_33062;
11.33060 := J2;

while 10_33060 do

10.33068 := J2;

I1 :=7;

11.33068 := I1;

J3 := 10.33068+I1.33068;

S| 1133064 := 313;

10.33073 := J2;

11.33073 := 10;

I1.33061 := I0.33073<I1_33073;
11.33076 := J2;

J2 := 11.33064;

J2;
10;

1033060 := I1.33061;
11.33060 := I1.33076;
end
J4 := I1.33060;
RESULT := J4;
Figure 7. Conversion from SSA to Imp: S =

(O[RESULT, J4]o (0, head)_L)(0, head).

In our Lisp implementation, fresh identifier names requiogd
the specification are implemented by calls to Liggasym, using
I0 andI1 as string prefixes when called for by the specification.

Beside the obvious need for the straightforward code op&mi
tions that we discuss in Section 8, it is easy to recognize fitwe

where S™ is a shorthand for the sequense...; S, whereS is
copiedn times.(Q basically states that the values of all identifiers
I in Loop environmenk are identical whether they are considered
as (1)SSA expressions i, using any loop iteration functioh,
or (2) Imp expressions, using the state one obtains after executing,
from the initial state(k, ¢), the head andéh iterations of the loop
body and iteration codes for Lodp

Our second major theorem builds on this property by ensuring
that all code extensions w introduced by calls t@[] maintain
this equivalence relation betwe86A andImp codes.

THEOREM3 (Out of SSA Expression Consistencyliven Q(o,
k), foranyl ¢ domen(x), E € SSA, Dewey numbeh and struc-
tural symbolb, thenQ(¢”, ') holds with

k' = O[I,E]o(h,b)k

o = ool[E'/I,

B loopr(E, I), if b= head,
- loopx (I, E), if b= body

whereo’ andx’ take into account the new information introduced
by the call toO[]. The addition tox of the code for I := E” in

the structural aspech, b) of Loop h requires, to maintain consis-
tency, that a new binding be addeddo This new binding maps
the defined variablé to anSSA expression that takes into account
where thelmp code has been included, i.e., either in the header
or the body of the loop located at Dewey numberThis is what
theSSA loop,, expressions are precisely used for. Note that we ex-
tend the definition o& to arbitrary expressions by straightforward
structural induction.

As can be seen by the very definition of the Consistency Prop-
erty, any loop environment with no environment aspectssrd-
main is consistent with angSA definition: all code required to
compile anSSA binding (1, E) will be regenerated from scratch if
need be. The following lemma is thus obvious:

code provided the basic control and data structures we were e LEMMA 3. For any SSA codeo, Q(a, L).

pecting. The various loop aspects - header, body and ieratire
also obvious to spot. Interestingly, except for the idestifibound

We are now equipped to express our final theorem. To generate
appropriatelmp code from arSSA binding function, we need to

to SSA loop expressions, the imperative code also uses single as-gpecify the variablel the value of which we are interested in.

signment.

One slight but key difference between this code and the-origi

nal imperative version in Figure 1 we were implicitly expagtto
obtain is the position of the constant assignmenitoThe O]
conversion process proceeds in a demand-driven mannerjrthu
troducing the assignment foonly where it is actually needed. This
is akin to the notion of “program slicing”, an issue we addris
Section 7.

6.3

As is the case for thénp to SSA conversion process, we need to
ensure that our reverse translation specification is cotdsavever,
recalling that som&SA expressions such as loops do not individ-
ually directly lead to executable code, we need to take a whaie
indirect route to express our correctness requiremeneeddwe
use whole programs to define the consistency property batinee
perative ancbSA codes.

Imp Conversion Consistency

DEFINITION 2 (Out of SSA Consistency)An SSA definitiono is
consistentwith a loop environmenk, noted Q(o, ), iff for all
(h, env) € Dom &, Iteration Functionk and State, one has:

VI € k(h, env), E[I](Ro)k = Z[I](h+, k')t
with
(K, t') = Z[x(h, head); (k(h, body); k(h, iter)) "] h(k, t)

For the middle end of a compiler that us8SA as its internal
intermediary representation of imperative programs, tides for

all the live variables at the end of tth@p program from which the
SSA code is derived need to be concatenated. Wejeo collect

in the head aspect of a “fake” top-level Loop 0 the correspund
Imp code. Since the loop Dewey number O is never used in user
code, we simply have:

THEOREMA4. Giveno € X and an identifierl in the domain of.
If Iy is a fresh variable, then the code to compute the valuisf
(0, head), wherex = O[lo, I]o (0, head) L.

PROOEF Trivial using Lemma 3 and Theorem 3. O

7. Discussion

Even though the initial purpose of our work is to provide a firm
foundation to the use &SA in modern compilers, our results also
yield interesting practical and theoretical insights oa tomputa-
tional power ofSSA.

7.1 Program Slicing

Program slicing is an optimization technique that extrafts a
given program source, the subset of its instructions theateaquired
to compute a particular facet of the program under analgdis, the
value of one of its variables at a given program point (segff27a



quick overview of this field). There are numerous appliaagifor
program slicing, ranging from debugging to program optatians
to parallelization.

Most approaches to compute a given slice of a program build
upon the usually graph-based data structure used to repritee
program control-flow, e.g. the Program Dependence Graph [8]
and perform a backward analysis of its edges to gather all the
instructions required to compute a given variable.

The dual translation processes from andS®A for impera-
tive programs presented above offer a different means thriee
same goal, without using graph algorithms. Indeed, $t-to-
Imp specification is implicitly based on the concept of slicésces
O[I,Ioak installs, at Aspect: of «, a slice for Variablel ex-
tracted from the imperative prografhif o = C[S]1.L and! is not
already present ir. Beside its simplicity, one added advantage of
our approach is that it provides an immediate inductiveamness
proof for program slicing.

Somewhat informally, one could say tHE8A “slices” Imp. In
the conversion phase frohmp to SSA, the control-flow informa-
tion contained in the imperative language constructs, sscthe
sequence of statements or loop nesting, disappears. Toisna-
tion is consumed by the compiler when generati$oh\ code: as
Figure 6 shows, the Dewsdy information is not used in th8SA
semantic functior€[]. Conversely, in the conversion tenp, the
Dewey h information is synthesized from the minimal set of de-
pendence relations implicitly contained in tB8A form.

Notice that the compiler témp is free to implement different
run-time strategies for generating the imperative languiagor-
mation for sequences; the duplication of computation®ihtced
by our O[] specification directly leads to code parallelization, in
fact one of the many uses of program slicing.

7.2 The Essence c8SA

All the existing definitions of th&SA form in the literature are in-
fluenced by the early papers [11, 12] and considef8® as a data
structure on top of some intermediate representation, @gtrol-

formalism. We provide below a rewriting[] of SSA bindings to
recursive function definitions.

First, to eachSSA identifier I, we associate a functiof(z),
and translate an§SA expression involving neithdoop nor close
node$ as function calls:

K[N]Jz = N
Kz = I(x)
IC[[E() ) El]]:E = @(S[[Eo]]x,g[[El]]x)

wherez is anm-uple (z1, . .., z,) of syntactic integer variables;
m is the number of different Dewey numbers that occutpisp,,
andclosey, expressions, inr. To eachh is allocated a slot in; with

a slight abuse of notation, we udo also denote the index inof
this slot.

Then, to collect partial recursive function definitions resr
sponding to aisSA programo, we simply gather all the definitions
for each bindinglJ, ¢ p,,, » KII, o I]z, usingz, , as a shorthand
forthex,, zp41, ..., 2q—1, x4 tuple:

K:H[7 |00ph(E0, El)]]m =
{1(@1,h-1,0,Zn41,m) = K[Eo](#1,n-1,0, Tni1,m),
Izih-1,2+ 1, 2h1m) = K[EA](@1,0-1, 2, Thg1,m)
K[I, closen(Fo, E1)]z =
{min;(z1,h—1, Tht1,m) =
(1y-K[Eo](#1,n-1,Y, Th+1,m) = 0),
I(z) = K[E1](z1,n—1,minr (@1,h—1, Thtim), Thtl,m) §
K[I, Elx = {I(z) = K[E]x}
wherey is Kleene's minimization operator. We also assumed that
boolean values are coded as integéatséis 0). Informally, for
loop expressions, we simply rewrite the two cases corresponding
to their standard semantics. Fdose expressions, we add an an-

cillary function that computes the minimum value (if any)tbé
loop counter corresponding to the number of iterationsireduo

flow graphs augmented with a stream of commands belonging to compute the final value, and plug it into the final expression.

some imperative language, in other words, a decoration poto
some existing compiler infrastructure. In contrast, oyvepds the
first to give a complete, independent definition of 8&A form,
promoting theSSA to the rank of a full-fledged language. An im-
portant aspect 06SA is exposed this waySSA is a declarative
language, which, as such and contrarily to what its name timgh
ply, has nothing to do with the concept of assignments, eonoti
only pertinent in imperative languages. This declarat@gire ex-
plains why it is a language particularly well-suited to dpgag
and implementing program optimizations.

Looking now at the conversion process, the mathematicadwor
ing of the SSA Conversion Consistency Property (1) underlines
one of its key aspects. While only occurs on the left hand side
of the consistency equality, the syntactic locatioand the itera-
tion space functiork are uncoupled in the right-hand side expres-
sion. Thus, via th&SA conversion process, the standard seman-
tics for expression gets staged, informally getting “cigdy from
Expr— (N* x K) - T - VtoExpr—- N* - K - T =V,
this is also visible on Figure 6, where the pdit k) is used on the
left arrow, whileh andk occur separately on the top and right ar-
rows. This perspective change is rather profound, sinaeibuples
syntactic sequencing from run time iteration space sedongnc

7.3 Recursive Partial Functions Theory

There exists a formal computing model that is particularkilw
suited to describing iteration behaviors, namely Kleerké&ory
of partial recursive functions [34]. In fact, the versionS§A we
introduce in this paper appears to be a syntactic variantc a

As an example of this transformation to partial recursivecfu
tions, we provide in Figure 8 the translation of our runnixgre-
ple into partial recursive functions. For increased reditabwe
renamed variables to use shorter indices.

Figure 8. Partial recursive functions example.

Our conversion process frolmp to SSA can thus be seen as a
way of converting an\RAM program [21] to a set of Kleene’s par-
tial recursive functions. This and the existence of the §6#-to-
Imp translation provide a new proof of Turing’s Equivalence dhe
rem between these two computational models, previousigailp
proven using simulation [21].

6without loss of generality, we assume tiaodes only occur as top-level
expression constructors.



8. Future Work

Our first goal with this paper is to provide a foundation foecp
fying the denotational semantics @ A. This has important future
implications since this formalization of tH&SA language is the
missing stone needed to see other formal frameworks foranog
analysis, such as abstract interpretation [9, 10], exeta8SA. It
will be interesting to see whether our results lead to nevghs
for program analysis. For instance, regarding abstraerpneta-
tion, one intriguing issue is complexity, since most usealsftract
interpretation are based on classical iterative data flohrigues
applied to control-flow graphs which introduce an overheaih-c
pared to static analysis algorithms working directly on 88A

form [11]. Our approach may be a venue for improvements m thi

direction.
The second intent of this paper is to investigate the ralatigp

betweerSSA and the imperative programming paradigm. The two

non-standard semantics, nameélf] and O[], that translate pro-

grams from one style to the other focus on semantic equigalen

and not efficiency, as is evident from Figure 7. In additiorobe
vious optimizations such as increasing temporary varighlse or
performing constant folding and partial evaluation, ouprapch
could benefit from code duplication removal. This is a sexizu
sue mostly on uniprocessors, since the lack of code shasingic
the contrary be a blessing when dealing with parallel aechiires.
In fact, as mentioned above, our approach offers all theradgas
of program slicing, which is conducive to a high degree ofapar
lelism.

One limitation of our results is that they mainly deal witmeo
trol issues. On the one hand, this is wB&# is mostly about. But,

SSA is the central control-flow intermediate representatian fo
mat used in the middle ends of modern compilers sucB@S or
Intel CC that target multiple source languages. Yet, there is sur-
prisingly very limited work studying the formal propertie§ this
central data representation technique. Since our resudisre the
correctness of the translation process of all imperatiogi@ms to

SSA and back, they pave the way to additional research from the

programming language community, for instance for statadyasis,
optimization or parallelization purposes, which wouldedity tar-
get SSA instead of specific source languages. Ust$p as the
language of interest for code manipulation and optimizatiould
ensure the portability of the resulting algorithms (seef@8]some
examples) to all programming languages supportedGRY or
other similar compilers. This applies to both imperativeobject-
oriented programming languages (such as C, Fortran, Cva,qfa
Ada viaGCC) or functional ones (such as Erlang via HiPE [28]).
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Appendix

PROOF OFCONSISTENCY OFSTATEMENT CONVERSIONTHEO-
REM. By induction on the structure &tmf assumingP (6, ¢, p):

o for the assignment/ := EJ:

(W,o") = Cl = EJho = (ulln/h/1), o [C[E]hp/ 1)),
(K',t) I[I := E]h(k,t) = (k, t[Z[E]pt/p/1])
Z[I]p+t’

= Rept (t/I) (I[[]])

= I[E]pt "

= E[C[EJhu](Ro)k (Lemma 1)

= E[C[E]hu](Ra" )k (extension ob”)

= &[0’ I](Ro" )k ("

= EMn](R(In, o' In)(Ra"))k (R)

=€ | ] RUID(Re)E  (fixed point)

= E[IL])(Ro" )k R)

= E[W'Th](Ro )k )

= E[Ran+ (W D)(Ra")k (R<)

= E[C]h+u](Ro")k cm

The extension ta’ is possible because it does not modify
the reaching definitionsR,. So the property holds fof,
but it also trivially holds for anyl’ # I,I’ € Dom t. So,
P, t', (h+, k")) holds.

o for the sequencfSo; S1]:

Since there are no new bindings betweéeandh.1, R, =
R_(n.1,k) and thusP(0,t, (h.1, k)) holds.

By induction, using the result of the theorem &, with
01 = C[So]h.16, and (k1,t1) = Z[So]h.1(k,t), the prop-
erty P(01,t1, (h.14, k1)) holds.



Since h.1+ = h.2, by induction, using the result of the
theorem onS:, with 62 = C[S1]h.20:1, and (k2,t2) =

T[S1]h.2(k1, t1), the propertyP (8, ta, (h.2+, k2)) holds. I (k1 k[z/ R}t

So, the property? (02, t2, (h+, k2)) holds, sincér.2+ = h+. = B pta/ny (te1) a0
for the loop[while E do S end]: = Bewran—r/n (ta]) (R<)
The recursive semantics ferhile loops suggests to use fixed = Z[1)(h-2, klz — 1/h])t )
point induction ([34], p.213), but this would require us &fide = E[C[I]h-2p1] (Ro2)k[x — 1/h] (P2_,)
new properties and functionals operating(ént, p) as a whole, — £IR DI(RoDklz — 1/h c
while changing the definition aP to handle ordinals. We prefer [R<na(i DI(Roz)kle —1/h] €D
to keep a simpler profile here, and give a somewhat ad-hoc but = Elloopy, (R<n (i), Ren2(pr 1))|(Ro2)k[z/h] (loopy,)
more intuitive proof. = Elo21n.0](Ro2)klx/h] (02)
We will need a couple of lemmas to help us build the proof. As = E[In.o](Ro2)k[z/h) Em
a shorthand, we no#&; = (u;,0;). — E[u, [h.0)(Ro2)k[z/h] (1))

= E[R<na(m D] (Ro2)klx/h] (R<)
LEMMA 4. Witht = o, Py = P(612, to, (h.1,k[0/h])) holds. = E[C[I]h-1p,](Ro2)k[z/h) ©m
This !emma states that I? is true at loop entry, ther_l it remain_s This concludes the proof of Lemma 5. a
t(r;;e J}g[s" /?ﬁfore the loop body of the first iteration, at point We are now ready to tackle the different cases that can occur

1, k[0/4)).

during evaluation. These three cases are:

1. when the loop is not executed, that is when the exit condi-

PROOF. VI € Dom t: tion is false before entering the loop body: we know that

TN (h-1, KO/R])E hat PG 1 (- 13) holds, a8 < 0 that extend@e,
= Re(nakio/n (H) @m t = t' as defined by the exit of thenhile in Z[], and
= Rep(t) () k[0/h] = K
= I[I]pt M Z](p+)t
= E[Cl]hu])(Ro)k (P(0,t, h, k) = Rept(t]) @m
=E[R<n(pl)](Ro)k €m = Rep(t) ®)
= E[R<n(p])](Ro)k[0/R)] (first iteration) =ZI[I]pt m
= E[R<n(pI)](Ro0)k[0/h] (extension taro) = E[C[IThu](Ro)k (P)
= &[loop,, (R<n(pl), L)]|(Roo)k[0/h]  (loop,) = E[ClI]hu](Ro)K’ (k[0/R] = &)
= EJooln.o](Roo)k[0/h] (o0) = E[R<n(pD)](Ro)K <m
= E[In.0](Roo)k[0/R] €m = E[Ren(pD](Ro2)k (extensionrs)
= E[uoIh.0](Roo)k[0/R] (ko) = &[loop,, (Ren(pul), Ren2(py 1)) (Ro2)k (loop,)
= E[R<n.1(poD)](Roo)k[0/R] (R<) = E[o2Ino](Roa2)k’ (02)
= €[ClI]n1pe](Roo)k[0/R] cm = E[In.o] (Ro2)K’ (R)
= &[closen (C[E]h.1py, In.o)](Ro2)k’ (closer)
So, P(6o, t, (h.1,k[0/h])) holds. The extension dfy to 012 = E[oaln2](Ro2)k (02)
concludes the proof of Lemma 4. O = E[In2](Ro2)k' (R)
= E[p Ih.2](Ro2)k’ (ko)
LEMMA 5. Let (ko ta) = Z[S]h.1(ke—1]z — 1/h], ta_1). = E[R<n+ (D] (Ro2)K (R<)
GivenP,_1 = P(b12,ts—1, (h.1,k[x — 1/h])) for somex > = E[C[ITh+,](Ro2)K cm

1, thenP, = P(b12,ts, (h.1, kz[z/R])) holds.

2. when the loop is executed a finite number of times, that is
when the loop body is executed at least onceidet- 0
be the first iteration on which the loop condition becomes

This second lemma ensures thafifis true at iterationr — 1,
then it stays the same at iteratien after evaluating the loop
body. Note that the issue of whether we will indeed enter the

. o . false:
loop again or exit it altogether is no factor here.
w = min{z | ~Z[E](h.1, k[z/h])tz}
PROOF. By induction, applying the theorem t§, we know = min{z | ~E[C[E]h.1u,](Ro2)k[z/h]} (Lemma 1)

that the property??_, = P (012, t., (h.2, k[x — 1/A])) holds,
sinceh.1+ = h.2, andf,2 = C[S]h.1612, asC]] is idempo-
tent. We thus only need now to “go around” to the top of the By Lemmas 4 and 5, using induction ¢h we know that
loop: PS = P(612,tw, (h.2, klw — 1/A])) holds. We prove be-



low that P(6', t.,, (h+, k")) also holds (as a shorthand, we
notek™ = k[n/h]):

I (p+)te

= R<p+ (th) (I[[]])
= R<(h2,kw1)(tw1) (R<)
= Z[1](h.2, K~ )t., @m
= g[elh2p ) (Roz)k ! (P
= E[Ren2(p D] (Ro2)k ™ cm
= Efloop,, (R<n(pnl), Ren.2(p1 1)) (Ro2)k” (loopy,)
= Elo2In.0](Ro2)k” (02)

= E[Ino](Ro2)k” (R)

= E[closen (C[EJh-1py, In.0)](Ro2)k (closer)
= Elo2ln2](Ro2)k (02)

= E[In2](Ro2)k (R)

= EpaIh.2](Ro2)k (ko)

= E[R<nt (poD)](Ro2)k (R<)
= E[C[I]h+p,](Ro2)k cm

Finally, using Kleene’s Fixed Point Theorem [34], we can
relate the least fixed point f{X;,) used to define the stan-
dard semantics akhile loops and the successive iterations
W (L) of the loop body:

t fix (W) (k[0/R], t)
Tim Wi (L)(k[0/n], )
1—> 00
= Wi (L)(K[0/h],1)

= ty

and soP(¢',t', (h+, k")) holds.
3. when the loop is infinite:

(k' ') = limjyoo Wi (L) (k[0/4],8) = (L, L). Thus:
1) (p+) L
=1 @l
= E[closey, (C[EJh-1py, In.0)]|(Ro2)k (minf) = 1)
= Elo21n2](Ro2)k (02)
= E[In.2](Ro2)k (R)
= £, Th.2) (Roa)k (12)
= E[Rant (po D)) (Ro2)k (R<)
= E[ClIh+po] (Ro2)k cm

So,P(0',t', (h+, k")) holds.

Thus completing the proof of our main theorem, and ensutieg t
consistency of the whol8SA conversion process. |

PROOF OFOUT OF SSA EXPRESSIONCONSISTENCY.
We use the following lemmas in the proof, which deal with the
impact of theup[] helper function on the Consistency Property .

LEMMA 6 (Consistency ofip[] for Aspecta = (h, head)). Assume
an execution poinp = (h, k), a statet, a variable! and a “sim-
ple” expressionE (a constant, variable o of simple expres-
sions). IfQ(o, k), I ¢ domen(k), I doesn't occur inE and all
variables ofE are unbound ihUn = {(h, body), (h, iter)}, then
Q(c’,x") holds with:

o' = oo [loopn(E,I)/I)
&' = up[I,I:=E](h,head)s

Proof: The Out ofSSA Consistency Property is obvious for all
variables, bufl. Let

(Ko, to) = Z[r(h, head); (k(h, body); r(h, iter))*"[h(k, t)
(K',t') = [ (h, head); (' (h, body); &’ (h, iter))*" ] h(k, t)
Then,
EMN(RaNK
= (Ro")Ik )
= (R(I,loop, (E, I))(Ro' )Tk (e

= ((Ra")[Az.E[loop,, (E, D](Ro" )z /1)) Ik (R)

= E[loop,, (E, N](Ra")k (apply tol andk)
=(1)

= E[E](Ro)k (1 unused ink)
= Z[E](h+, ko)to 2

= Z[I])(h+, k')t 3)

(1) = E[E)(Ro")k for kh = 0, by very definition of
E[]. Sinceo’ = o o [loop,(E,1)/1], for kh > 0 one gets
the same value by induction ath, using the definition o]
(EMIN(Ro')kn-), i.e. the fact that the value dfis defined when
kh = 0 and not modified in the subsequent iterations.

(2) by definition of Z[], structural induction or¥E using
the lemma hypothesis and the fact that the syntactic tramslaf
simple expression® from SSA to Imp is the identity.

(3) sincex’(h, head) = k(h, head); I := E and the state-
ments inx’ (h, body) and inx’ (h, iter) do not contain assignments
to I or variables ofE. d

LEMMA 7 (Consistency ofip[] for Aspecta = (h, body)). Similar
to Lemma 6, with

Un = {(h,iter)}
o' = oo [loopn(I, E)/I]
&' = up[I,I:=E](h,body)x

Proof similar to the one for Lemma 6, except that:

(1) = E[I(Ro")k for kh = 0, by very definition of€[];
the value off is L (undefined) in botk€[] andZ[] (since the loop
body is not executed). Fdrh > 0, (1) =E[E](Ro’)kn— , using
the definition of£[]. Sinces’ = o o [loop, (I, E)/I], the value
of I is, at every iteratiorkh > 0, the one of E; only the last
value matters (sincé ¢ domen,(k), the code ins’(h, iter) does
not contain assignments 19.

(3) sincex’(h, body) = k(h, body); I := FE and the code
in k" (h, iter) does not contain assignmentsltor variables ofs.0]

7 A variable I is unbound in Uriff for all (h, b) € Un, (I,b) & x(h,env).



LEMMA 8 (Consistency ofip[] for Aspecta = (h, iter)). Similar
to Lemma 7, with no constraints drand

Un=1
&' = up[I,I:=E](h,iter)x

Proof similar to the one for Lemma 7, with
(3) &/ (h,iter) = K(h,iter); I := E and the assignment to
I is the last in the loop body. a
Assuming Q(o, ), the proof of the main theorem looks at
O[I, E]oak, wherel ¢ domen (k). It uses a double induction
on (1) the number of identifiers in the domain @fpresent in
domeny () @and (2) the structure of tH&SA expression:

e for N, Q(o’, ') holds, by Lemmas 6 and 7.

efor I'.I' € domen(k), Q(co’, k') holds, by Lemmas 6 and
7. Indeed, analyzing the defining cases fOf], all calls
up[l, I := I'loax wherel’ € domen (r) are such that only
includes a calO[I’, .. .Joaoko Wherea = ag or a = (h, iter)
andao = (h, body). In both cases]’ is unbound irn.

o for I', I' ¢ domeny(x), Q(0’, x’) holds with
ko = O[I', oI'|oa(upen[I'Jax)

Q(o, k)
= Q(O’o,/ﬁo) (l)
= Q(d', ") o)

(1) by induction onlDom o — domeny(x)|, With oo = o 0
[loop,, (o', I')/I']. Note that even thougH € domeny (upenv[I']ak),
the use of the conclusion of Theorem 3 is valid, since we use
for E the expressiomr’ that defined”’.

(2) by Lemma 6, fora = (h, head), as above. One then
gets:

o' = (oo [loop,, (I, I')/T']) o [loop,, (I', 1) /1]
a o [loopy, (loopy, (o I', T'), I) /1]

a o [loop, (aI',I)/1]

= o o [loop, (I', I)/I]

€
as requested. The proof foh, body) uses Lemma 7.
o for Eo @ E1, Q(o’, k') holds:
ko = Ollo, Eo]oak
k1 = O[l1, E1]oako
o o [loop,,(Eo, Io)/1o]
oo o [loopy, (E1, I1)/11]

go

g1

Q(O’7 lﬁ:) = Q(Uo, Ko)

(induction onEy)
= Q(o1, k1) (induction onE4)

=Q( k)

(*) using, fora = (h, head), Lemma 6 withE = I, & I4,
yielding ¢’ o1 o [loop,(Io @ I1,I)/I]. By definition of
oo and o1, this can be successively rewritten a§ = o o
lloopy, (Io @ loop,, (E1, 11), 1)/1] = o © [loop,, (loop, (Eo, Io) @
loop,, (E1,11),I)/1I]. By distributivity of loop over @, one gets
o' = o o [loop,(loop,(Eo ® Ev,I1 & Ip),I)/I], which is
o o [loop, (Eo ® E1,I)/I], by definition of the semantics dfop;
this is the expected formula fer’ required to complete the proof.
Similarly, the proof fora = (h, body) uses Lemma 7.

e for loop,,, (Eo, E1), Q(o’, &) holds:

ko = O[I, Eg]o(h1, head)x
K1 = Oﬂll, El]]O'(hl, bOdy)lﬁ:o
a9 = o o [loop,,, (Eo, I)/I]

g1 =00 ©° [lOOph1 (II7E1)/[1]

Q(o, k) = Q(o0, ko)

(induction onEjy)
= Q(o1, K1) (induction onE1)
=Q,r)
(*) using Lemma 8 withE’ = I, one gets, by definition of
o1 ando and semantics dbop:
o' =010 [Ioophl(l,ll)/l]
=000 [Iooph1 (I, loopy,, (I1, E1)) /1]
=o0o [Iooph1 (Ioophl(EO7 I), Ioophl(ll7 Ev))/I]
=o0o [Ioophl(Eo,El)/[]
Note that the proof is independent @f
o for closey,, (Fo, F1), Q(o’, ') holds:
ko = O[lo, loop,,, (Eo, Ep)]oak
k1 = O, loopy,, (En, E1)]oako
k' =up[l,W;I := L]ak1
a0 = o o [loop,, (loop,,, (Fo, Eo), o)/ Io]
o1 = 0y o [loop,,(loop,, (E1, E1), I1)/I1]

Q(o, k) = Q(o0, ko)

(induction on loopFy)

= Q(o1, K1) (induction on loopE:)
= Qo' k") ()

(*) In the absence ofiV, for a = (h,head), using
Lemma 6, the induction would yield a consistent state with
o' = o o [loop,(loop,,, (E1, E1),I)/I]. Fora = (h,body),
one would get a similar result, with the loop expression and
swapped. For any aspeétywould be bound i’ to a loop that
iterates ovel;; I is always equal td; . A similar result exists
for Ip and Ey.

The statement W located Aty , if its execution terminates in
the rolling state(k’, ¢') after starting in(k, ¢), is, by definition
of Z[], semantically equivalent to

k1(h1, head); (k1 (h1, body); k1 (h1, iter))®,
where
w = min{x | “Z[lo](h1.1, k[x/h1])tz},

wheret, denotes the state afteriterations of the loop, with

to = t. Note that, sinc€)(x1, o1), the values of all variables of
domeny (1), after executing the unrolled loop, are independent
of hy andt

By continuity, if W doesn't terminate, theg is the minimum
of the empty set, i.e4-0o, and we can keep the same definition
and semantic equivalence.

Thus, from any starting rolling staték,¢), the sequence
W I := I located ah imposes that the valug[ 71 ] ((k.1)+, k)¢’
of I, latter assigned té, is determined in a statg’, ¢') that is
equivalent to the one mentioned in Definition 2 with; = w
iterations of LoopW, located ath.1. Since the Out oSSA
Consistency property using the rolling stétgw/h4], t.,) en-
sures that, forl::

ZL]((h.1)+, k/)t/ = E[L](Ro1)k|w/hi]



and similarly for7y:
w = min{z | “Z[Lo]((h.1).1, k[z/h1])tz }
= min{z | ~E[Io] (Rov)kz/h]},
the value off1, and hencd, is thus, in the presence of W:
E[L])(Rov)kmin{z | =E[Io](Ro1)k[z/h1]}/h4],
i.e., E[E'](Ro1)k, with E' = closep, (Io, I1), which yields,
by definition of £[] and substitutions using;:
closen, (loopy, (loopy,, (Eo, Eo), Io), loop,,(loop;,, (E1, E1), 1))

For the theorem to be true, we need to have = ¢ o
[loop,, (closen, (Fo, E1),I)/I]. This requires us to show that
E' andloop,, (closen, (Eo, E1), I) are equal.

For kh # 0, bothSSA expressions evaluate tb. Whenkh =

0, E' is equivalent talosey, (loop,,  (Eo, Eo), loop,, (E1, E1)),
while the second iglosey, (Fo, E1); they need to be shown
equivalent. The semantics &Ff is

Elloop,,, (E1, 1) k[min{z | ~E[loop,, (Eo, Eo)lklz/m]}/h1).
If the minimum, w, is 0, then&[loop,, (E1, E1)]k[w/h1] =
E[EA]k[w/ha]. A similar reasoning works fdbop,, (o, Eo)-
The value ofE” is thus the same as the onedtifse, (Eo, E1).

If w is not 0, then the semantics BF is

E[E1]k[min{z | ~E[Eo]k[z — 1/h1]} — 1/h4].
Definingy = « — 1, one can rewrite this as:
E[Er]kmin{y + 1| =E[Eo]kly/h]} —1/hl,

which, by distributingt1 overmin, is the same aS[E1 | k[w/h1].
The value of E’ is thus here also the same as the one of
closep, (Fo, E1). O



