Youssef Mesri 
email: youssef.mesri@ensmp.fr
  
Luisa Walidz E R G U Ine,H Ugues Digonnet 
  
Thierry Silva 
  
Coupez 
  
Dynamic Parallel Adaption for Three Dimensional Unstructured Meshes: Application to Interface Tracking

Introduction

The anisotropic mesh adaption techniques in the last decade haved r a m a t ically improved the numerical simulations accuracy ofc omplex problems.A no ptimal anisotropic mesh adaption consists in refiningandcoarseningthemesh, by using am e t r ict o specify stretchingd irections,i norder to accurately capture physical anisotropy such as shock waves, contact discontinuities,v ortexes, boundaryl ayers and free surfaces.Thus,w epropose in thisp ape r, an anisotropic a posteriori errore s t imatort h a tc ontrolst h ee r r or due to mesh discretization in all space directions.F romt h ea posteriori errora nalysis,w e obtain ano ptimal metric (optimal mesh) as a minimum ofa n error indicatorf u nction andf orag iven number ofe lements.T he optimal metric obtained isu s e dt o builda no ptimal mesh fort h eg ivenn umber ofe lements.F urthermore, solutionsf or the physical problems illustrated here are often more accurate on adapted meshes than those obtained on globally-refined meshes anda tam u c hlower cost.

The mesh adaption procedure consists in improving iteratively the couple mesh/solution until convergence.This iterativeprocess becomes more expensive whenw eh a ndlet h ec omplexi n dustrial three-dimensional problems.

In thisp a p e r ,w ep r opose a dynamicp a r a llel mesh adaption on unstructured mesh that isp owerful forc omputingu nsteady three-dimensional problems.I n thisc ontext,w ed e c ompose the original3dimensional mesh adaption problem into N s smaller subproblems which are solved (i.e., meshed) concurrently using P processors.

Unfortunately, the adaptivesolution ofunsteady problems causes load imbalance amongprocessors on aparallel machine.This is due to thefactthatthecomputationalintensityis not only time dependent, but alsov aries spatially over the problem domain. However, balancingdynamically the computationalload is very difficult.Itrequires reliablemeasurements ofprocessor workload andtheamount ofdatatransfer, as well as the minimization of interprocessorcommunication. For thisreason, weha vebuiltaparallel mesh partitioning/re-partitioningprocedure that ise xtended andc u s t omized for FEM computations [START_REF] Basermann | Dynamic load balancing of finite element applications with the DRAMA library[END_REF]. The partitioning/ re-partitioningschemeallowsalso to dynamically load balance the workload over heterogeneous architectures [START_REF] Mesri | Mesh Partitioning forParallel Computational Fluid Dynamics Applications On a Grid[END_REF].

Figure 1 depicts our framework forparallel adaptive flow computation. Itconsists ofaCFD solver and mesh adapter,with a partitioner that redistributes the computational mesh whenn ecessary. The mesh is first partitioned andm a p p e d amongtheavailableprocessors.The flow solver runsforseveraliterations, updatingsolution variables. Once a solution is obtained, the mesh adaption procedure is invoked.It targets a re-meshingbasedon the a posteriori errorestimatorcomputed fromt h eflow solution. The oldm e s hist h e nl o cally adapted, generating a newon eandf ollowed by the repartitioningprocedure tol o ad balance the new workload. Thisp a p e ris organized as follows: the first section detailst h enotationsa nd notionsthatwill be used in the sequel. The second section isdevoted to the main contribution ofthisp ape r, the generalization of Almeida'sanisotropicestimator [START_REF] Almeida | Adaptive finite element computational fluid dynamics using an anisotropic error estimator[END_REF] to multi-dimensional unstructured meshes (n ≥ 3). The secondmajorcontribution consists in the paralleli mplementation of the mesh adaption procedure, presented in Secti o n3 .I nS ection 4 wed e p ict numerical results which exhibit the advantage ofthecombined parallel mesh adaption algorithm andanisotropic errore s t imatort o handle accurately complex CFD problems.
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Notations and Notions

Given ap olygon Ω ∈ R d ,w ec onsider a set oft r iangulations {T h }.W eu s et h e standard subspace of approximation

V h = {v ∈ H 1 0 (Ω):v| T ∈P k (T )} (1) 
where P k (T ) denotes the space ofp olynomials ofd e g r e ek.W ea s s ociate, for each node n i , 1 ≤ i ≤N T h oft h et r iangulation, ab a s isf u nction ϕ i ∈ V h .F o r each i,w es e tS i = supp ϕ i . An a posteriori errore s t imatorf ort h ed ifference between ag iven function u ∈ W 2,p (Ω) andad iscrete function u h which isa n approximation of u ∈ Ω is presented as,

u -u h L p (Ω) ≤ C u -Πu L p (Ω) ≤ C T ∈T h H(u)(x) p L p (T ) 1 p , (2) 
where

Π : W 2,p (Ω) → V h ist h eC lément interpolation operator, H(u)(x)=D 2 u(x)(x -x T )(x -x T ), D 2 u(.)i saHessiano peratora nd x T is the barycenter oft h ee lement T .
The a posteriori errore s t imator isb a s e don processingt h ef u nction u h ∈ V h in order too btain a better approximation to the Hessiano f u.W eu s ea n approximation instead oft h ee xact Hessian matrix to estimate the L p -norm of the error e = uu h .

The process too btain a recovered Hessian matrix fromt h ef u nction u h is based on at e c h nique to recover the gradient. Zienkiewicz andZ h u [START_REF] Zienkiewicz | The superconvergent patch recovery and a posteriori error estimator. Part 1. The recovery technique[END_REF] used a recovered gradientto estimate the energynorm oftheerror ofthefinite element approximation (form ore information on recovering first derivatives, see also [START_REF] Zienkiewicz | The superconvergent patch recovery and a posteriori error estimator. Part 2. Error estimates and adaptivity[END_REF]). Furthermore,A l meida et al. [START_REF] Almeida | Adaptive finite element computational fluid dynamics using an anisotropic error estimator[END_REF] presented an upper bound oft h ee r r or uu h L p (Ω) that depends on the recovered Hessian and on the number of elements,

u -u h L p (Ω) ≤ C u -Πu L p (Ω) ≤ C T ∈T h H(u)(x) p L p (T ) 1 p ≤ C ′ N -α T h H R (u h )(x) L p (Ω) (3) 
where α ≥ 0 and N T h denotes the number ofe lements oft h em e s h . In our work,w eu s et h eL p -norm oft h er e c overed Hessian as an a posteriori errorestimator.T osimplify the notation, the recovered Hessian H R will be noted only H.

In what concernsre-meshing,our algorithm implies that aroundan arbitrary point P oft h em e s h ,w et r y to builde quilateral tetrahedrons in the metric defined by the local metric field M, accordingt o a local topological technique. Thism e t r ic isd e fined in R d by:

M(P )= 1 h 1 (P ) e 1 ⊗ e 1 + •••+ 1 h d (P ) e d ⊗ e d (4) 
where (e i ) i=1,d are the eigenvectors oftherecovered hessian H(u h (P )) and h i (P ) are the mesh sizes in the e i directions.

Anisotropic A Posteriori Error Estimator

We assume that the function u h ∈ V h isag ood approximation oft h ef u nction u.H ence,w eg e t

u -u h L p (Ω) ≈ C H(u h (x))(x -x 0 ) • (x -x 0 ) L p (Ω) (5) 
where H(u h )i st h er e c overed Hessian. Thiss h ows that the interpolation error in onep oint x such that |xx 0 | iss m a ll enough,i sg overned by the behavior oft h es e c ond order derivative in such point.T hus, the interpolation error is notd istributed in ani sotropic way aroundp oint x 0 ,i . e., the errord e p e nds on direction x-x 0 andtheHessian matrix value in thispoint, H(u h (x)). Therefore, we suggest as in [START_REF] Castro-Diaz | Anisotropic unstructured mesh adaptation for flow simulations[END_REF][START_REF] Almeida | Adaptive finite element computational fluid dynamics using an anisotropic error estimator[END_REF][START_REF] Dervieux | About theoretical and practical impact of mesh adaptations on approximation of functions and of solution of PDE[END_REF][START_REF] Alauzet | Multi-dimensional continuous metric for mesh adaptation[END_REF][START_REF] Lipnikov | Error bounds for controllable adaptive algorithms based on a Hessian recovery[END_REF][START_REF] Mesri | Continuous metric for computational fluid dynamics[END_REF] the use oftheexpression ( 5) as a directional local estimator.H o w ever, the Hessian matrix is notam e t r ic:i t is notp ositive definite.T herefore, the followingt e nsor is introduced

H = RΛR T (6) 
where R ist h eorthonormal matrix which corresponds to the eigenvectors

(e i ) i=1,d oft h eHessian matrix, while Λ = diag(|λ 1 |, ..., |λ d |)i st h ed iagonal matrix oft h ea b s olute values oft h ee igenvalues of H(u h (x)
). H can be also written as follows:

H = RΛR T = |λ 1 |e 1 ⊗ e 1 + •••+ |λ d |e d ⊗ e d (7) 
Given am e s hd iscretization T h of Ω,w ed e finet h ea nisotropice r r ore s t imator oft h ee lement T ∈T h by

η T = T H(u h (x 0 ))(x -x 0 ) • (x -x 0 ) p dT 1 p (8) 
andt h eg lobal estimator η by

η = T ∈T h η p T 1 p (9) 
where x 0 is the barycenter of T .

The definition of η T can be used to get the following upper bound.

η p T = T H(u h (x 0 ))(x -x 0 ) • (x -x 0 ) p dT (10) 
Substituting [START_REF] Basermann | Dynamic load balancing of finite element applications with the DRAMA library[END_REF]i n( 1 0 )w eg e t ,

η p T = T i=1,d |λ i (x 0 )|[e i (x 0 ) ⊗ e i (x 0 )](x -x 0 ) • (x -x 0 ) p dT = T i=1,d |λ i (x 0 )|[e i (x 0 ) • (x -x 0 )] 2 p dT
If we write xx 0 in the eigenvectors basis:

x -x 0 = i=1,d
x i e i where |x i |≤h i ,

the projection of x -x 0 on e i direction is [e i • (x -x 0 )] 2 = x 2 i ≤ h 2 i andt h e n, η p T ≤ T i=1,d |λ i (x 0 )|h 2 i p dT (11) 
We notice that ano ptimal mesh regardingas olution field u ist h eonet h a t isa ligned with thiss olution. Itm e a ns that the shape ofe a c he lement in the mesh is such that the local error in any direction attainst h es am evalue.T his is equivalentto thefactthatthelocal error in the principal directions ofcurvature isc onstantpe re lement i.e.

|λ 1 |h 1 = ••• = |λ d |h 2 d = cte. (12) 
Then, the stretching oft h ee lement T isd e fined as

s1T := h1 h2 = |λ2| |λ1| 1/2 ,siT := hi hi+1 = |λi+1| |λi| 1/2 ,s (d-1)T := h d-1 h d = |λ d | |λ d-1 | 1/2 (13)
where h i are sorted in the decreasing order,i.e.,

h 1 ≥ h 2 ≥ ••• ≥ h d . Combining (11) and (12)w eg e t η p T ≤|T | d|λ d (x 0 )|h 2 d p (14) 
where |T | ist h evolume ofe lement T . Finally, we obtain the following upper bound oft h elocal errore s t imator

η T ≤ d|T | 1 p |λ d (x 0 )|h 2 d ( 15 
)
Thiss h ows that the local estimator isb ounded by the maximum oft h es e c ond order derivative in the barycenter oftheelementtimes the square ofthelongitude in thisd irection. Wem a yi n troduce as the local estimatort h ea bove upper bounda nd isg iven by

η T = d|T | 1 p |λ d (x 0 )|h 2 d ( 16 
)
In the next section, wed e fineam inimization problem where the functionali s the error indicator.T he solution oft h isp r oblem ist h em e t r icu s e dt o construct ano ptimal adapted mesh.

Optimal Mesh as a Solution of an Optimization Problem

Let T h denote the current finite elementd iscretization oft h ed omain Ω, u h denotes the approximate solution associated to the mesh T h , h old (P ) describes the local mesh size at node P in the direction oft h em a ximum value oft h e directional second order derivativea tt h ep oint P .T hen, given the number of desired elements N T ′ h in the new adapted mesh, the optimal mesh adaptive procedure generates a new mesh, T ′ h , such that the new distribution h new (P ), fora ll P ∈T h minimizes the global estimatore r r or.H ence, the optimal mesh adaptivep r ocedure looks fora no ptimal mesh as a solution oft h ef ollowing constrained optimization problem

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Find h T = {h 1T , ••• ,h dT },T ∈T h that minimizes the cost function F (h T )= T ∈T h η T p under the constraint N T ′ h = C -1 0 T ∈T h T d i=1 1 h iT dT (17) 
where C 0 ist h evolume ofaregular tetrahedron. In the constraintequation, the number ofd e s ired elements is obtained as follows:

|Ω| = T ∈T h |T | M = N T ′ h C 0 = T ∈T h T det(M) dx = T ∈T h T d i=1 1 h iT dx. ( 18 
)
The optimization problem (17)was studied in the case oftwo dimensional meshes (d = 2)i n [START_REF] Almeida | Adaptive finite element computational fluid dynamics using an anisotropic error estimator[END_REF] .H ere,w eg e neralize the study to three dimensional unstructured meshes.T he main difficultyo ft h e3D analysis is, that there are differentd irections ofs t r e t c h ing,i no pposition to 2D case where there is only oned irection.

The followingt h e orem generalizes the anisotropice r r ore s t imatorp r oposed in [START_REF] Almeida | Adaptive finite element computational fluid dynamics using an anisotropic error estimator[END_REF] to three dimensional unstructured meshes.

Theorem 1. For d =3 , the optimization problem (17) has a unique solution and is given by

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ h 3T = β (2p+3) 3 C1T T C 2T dT 1 2(p+3) h 2T = s 2T h 3T h 1T = s 1T s 2T h 3T (19)
where

C1T =3 p C0s1T s 2 2T |λ3| p ,C 2T = C -1 0 1 s1T s 2 2T and β 1 2 3 (p+3) = N -1 T ′ h T ∈T h 1 T C2T dT 1 2 3 (p+3) T C2T 2p +3 3 C1T 1 2 3 (p+3) dT .
Proof. Let us consider the following optimization problem:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Find h T = {h 1T ,h 2T ,h 3T },T ∈T n such that minimizes the cost function F (h T )= T ∈T h |T | 3|λ 3 |h 2 3T p under the constraint N T ′ h = C -1 0 T ∈T h T 3 i=1 1 h iT dT (20) 
Let s 1T = h1T h2T and s 2T = h2T h3T be the two stretchingd irections oft h ee lement T in R 3 .T hen, we write h 1T and h 2T as a function of s 1T , s 2T and h 3T :

h 1T = s 1T s 2T h 3T ,h 2T = s 2T h 3T (21) 
The volume of a tetrahedron T on the metric space can be written as:

|T | M = |T | det(M) →|T | = |T | M det(M) -1 = C 0 h 1T h 2T h 3T . ( 22 
)
where

C 0 = √ 2 
12 ist h evolume ofar e g u lar tetrahedron. Thus,w i th the variable change (21), the 3D optimization problem becomes a 1D optimization problem such as the unique

value tol o o kf or is h 3T ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
Find h 3T ,T∈T n that minimizes the cost function

F (h 3T )=C 0 T ∈T h 3 p s 1T s 2 2T |λ 3 | p h 2p+3 3T dT under the constraint N T ′ h = C -1 0 T ∈T h T 1 s 1T s 2 2T 1 h 3 3T dT (23) Introducingt h ef ollowing notations C 1T =3 p C 0 s 1T s 2 2T |λ 3 | p ,C 2T = C -1 0 1 s 1T s 2 2T and γ T = 1 h 3 3T . (24) 
The minimization problem can be thenw ritten as follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
Find γ T ,T∈T n such that minimizes the cost function

F (γ T )= T ∈T h C 1T γ -2p+3 3 T dT under the constraint N T ′ h = T ∈T h T C 2T γ T dT (25) 
which ise quivalentt o the followingm in-max problem

min γT max β L(γ T ,β)=F (γ T ) -β N T ′ h - T ∈T h T C 2T γ T dT . ( 26 
)
The solution oft h ism in-max problem isg iven by

∂L ∂γ T =0⇒- 2p +3 3 C 1T γ -2 3 (p+3) T + β T C 2T dT =0 ( 27) ∂L ∂β =0 ⇒ N T ′ h - T ∈T h T C 2T γ T dT =0 . (28) 
From ( 27)w eg e t

γ T = 2p+3 3 C 1T β T C 2T 1 2 3 (p+3) . ( 29 
)
and substitutingt h ee xpression of γ T in (28)w e obtain

β 1 2 3 (p+3) = N -1 T ′ h T ∈T h 1 T C 2T 1 2 3 (p+3) T C 2T 2p +3 3 C 1T 1 2 3 (p+3) dT . (30)
From the definition oft h et h ird equation of ( 24)

h 3T = 1 γ T 1 3 = β (2p+3) 3 C 1T T C 2T dT 1 2(p+3) (31)
We finally get the optimalv alue of h 3T andt h e n h 1T and h 2T thanks to expression (21) .

Remark 1. Wec a n get the same prooff or d>3, andt h a tb y usingar e c u r r e nce argument.T he generalized form oft h et h e orem can be written as follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ h dT = β (2p+d) d C1T T C 2T dT 1 2(p+d) h iT = d-1 k=i s kT h dT , 1 ≤ i ≤ d -1 (32)
where

C 1T = C 0 d p d-1 i=1 s i iT |λ d | p ,C 2T = C -1 0 1 d-1 i=1 s i iT and β 1 2 d (p+d) = N -1 T ′ h T ∈T h 1 T C 2T 1 2 d (p+d) T C 2T 2p + d d C 1T 1 2 d (p+d) dT .
Weknow now the optimal distribution oftheelement'sshapesandthestretching directionst h a ta r eg iven by the eigenvectors oft h er e c overed Hessian as well as the optimal metrict h a twill be used to modify the backgroundm e s h .B o th are used as ani n put oft h em e s hg e neratort ool in order too btain a new( o ptimal) mesh.T he mesh generatoru s e dh e r ea nd its parallelization will be described in the following section.

Parallel Mesh Generation

In this section, wer e view ap a r a llel mesh generation and adaption procedure based on at opological mesh generator.Inthe first part (3.1) we describe briefly the sequential mesh generator MTCa ndt h e n( section 3.2)w e illustrate the strategy adopted to parallelize thism e s hg e nerator.

Mesh Generation

MTC isam e s hg e neratord e veloped byT hierry Coupez at the Ecoled e sMines de Paris, Center for MaterialF o rming,S o phia Antipolis.I t isb a s e don the idea toi mprove iteratively, ani n i tial unsatisfactory mesh byl o cali mprovements.

MTCm e s hg e neratorr e -meshes the initial mesh iteratively by a local mesh optimization technique.T hist e c h nique consists in local re-meshing ofc a vities formed by small clusters ofe lements in order toi n crease the "quality" oft h e elements oft h ec luster.I nthe re-meshingp r ocess, two principles are enforced:

• The minimal volume,w hich assures the conformityo ft h em e s h ,w i th no element overlaps:l et T i (C) denote the i-th set ofe lements T fillingt h elocal cavity. Followingt h em inimum volume principle wec h oose as ano ptimal (possibly notu nique) re-triangulation oft h ec a vity the ones a t isfying

T ∈Ti(C) |(Volume)(T ))|→min, ( 33 
)
where the minimization isd one over a small set i = {1,...,I} ofp ossiblet r iangulations T i (C)o fe lements (Fig. 2r ight) connectingt h enodes on the border oft h ec a vity, or other nodes like the cavity barycenter,w i th all boundary faces.

Fig. 2. Local mesh optimization process in MTC

• The geometrical quality Q(T ), which ise valuated fore a c he lement.I f the minimum of ( 33) is notu nique, thisc r iterion picks amonga ll admissible cavity re-triangulationstheone improvingthegeometricalqualityofthemesh byi mprovingt h equalityo ft h eworst element oft h et r iangulation.

Whilet h ef ormer criterion assures the conformityo ft h em e s h ,i ft h einitial mesh was conforming, the latter handles improvements ofe lements h a p e , size, connectivity, etc., depending on the quality function Q(T ). Usually, the quality function Q(T )isafunction ofthegeometryoftheelement T and the prescribed backgroundm e t r ic,w hich givet ogether a measure fort h ee lements ize andt h e elementf orm (aspect ratio). For further detailss e e [START_REF] Coupez | Génération de maillage et adaptation de maillage par optimisation locale[END_REF]. 

Parallel Mesh Adaption Procedure

The parallelism oft h em e s hg e nerator MTC isp e r f ormed by partitioning/ repartitioningt h einitial mesh into submeshes.T he individual submeshes are refined/derefined or adapted to an errore s t imatorb y usings e quentialM T C techniques.I no rder to achievem e s hc onformity andc orrectness, the interface faces between the submeshes shouldbesubdivided the same wayinall submeshes that share them to avoidthenon conformingpoints throughout the process.F or thisreason, wehavechosen to keep interfaces unchanged duringthelocal(inside each subdomain) re-meshinga ndt h e n to movet h einterface inside the domain in order to enablere-meshing in a next phase.Figure [START_REF] Coupez | Parallel meshing and remshing[END_REF] showsthisstrategy applied to as imple2 D mesh with 6 submeshes partitioned onto6processors.T he partitioning/re-partitioning ofam e s hisp e r f ormed in parallel usingag e neric graph partitioningthatisextended andcustomized for FEM computations.This software was developed as part oft h eDRAMA project [START_REF] Basermann | Dynamic load balancing of finite element applications with the DRAMA library[END_REF].

Numerical Results

Usingtheanisotropic adaption technique described in Section 2and 3, westudy the evolution oft h ee r r or regardingt h enumber ofm e s he lements on analytical functions,i ntwo andt h r e ed imensions.T he global a posteriori errore s t imator defined in [START_REF] Zienkiewicz | The superconvergent patch recovery and a posteriori error estimator. Part 1. The recovery technique[END_REF] isu s e dh e r et o construct ano ptimal mesh with respect to the L 2 errore s t imator.T he global errore s t imatorb e c omes then:

η = { T ∈Γ h (η T ) 2 } 1/2
(34)

2D Analytical Cases

Let us consider the followingf u nction

f (x, y)=tanh(100y -50 + 20sin(-4x + 4))), (x, y) ∈ Ω =[0, 1] × [0, 1] (35) 
Wer e p r e s e nt on Fig. 4 (left) the analytical function f defined on as quare of size [0, 1]×[0, 1]. The Hessianofthesolution isthen builtby means ofadouble L2 projection technique.With a number ofelements equal to 2000 the minimization process leads to a new size distribution andt h em e t r ict e nsorg e nerates a new adapted mesh described on Fig. 4 (right). The final anisotropicmeshobtained is aligned with the analytical solution. Wea r enow interested in the convergence oft h eL 2 global estimator regardingt h enumber ofe lements in the mesh.F o r thisf u nction, ac onvergence of order 2 is reached Fig. 5.

3D Analytical Case

Wec h oose now am ore complex functi o ni n3 Di no rder to check the efficiency of our adaption technique. 

[0, 1] × [0, 1] × [0, 1]
and, after the mesh adaption strategy, the resultingm e s h isd e p icted in Fig. 6 (right). The number ofe lements targeted is of 100000. As in 2D case, the mesh emphasizes well with the solution oft h ea nalytical function. Moreover,we overcome with success the difficultyoccurring in the corners. Indeed, the steep change ofd irections in the corner regionsma y be cause ofe lementd istortions.W ec a n show that,w i th thism ore complex analytical solution and in 3D, wealso reach a convergence of order 2 in what concernst h eL2e r r or (Fig. 7).

Dynamic Adaption Flows

In thisp a p e r ,w ea p p ly our mesh adaption technique to simulate complex multiphase problems involved in manufacturingp r ocesses like Water-Assisted Injection Molding (WAIM). The simulation of the process needs an accurate description oft h ewater evolution. The anisotropics t r a t e g y aims at improvingm u ltiphase flow computationsb y allowing a better description ofp h ysical parameters that characterize strongly heterogeneous flows.F l o wequationsa r e solved by considering heterogeneous incompressible Navier-Stokes equationscoupled with the heat equation. The water is supposed a newtonianfl uid whereas the polymer isc onsidered non newtonian: its viscosity described byW L Fand Carreau Yasuda laws, respectively, for the dependencyo nthe temperature field and on the shear rate.

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ρ ∂v ∂t + ρ∇v • v -∇•(2ηε(v)) + ∇p = ρg ∇•v =0 ρ =1 Ωwater ρ water +(1-1 Ωwater )ρ polymer η =1 Ωwater η water +(1-1 Ωwater )η polymer (37)
where ρ,η,v,p,g represent respectively the density, viscosity, velocity, pressure and gravityfi elds.W ed e note by ρ water , η water , ρ polymer , η polymer the density and viscosityo ft h ewater andt h ep olymer.T he Navier Stokes equationsa r es olved with a mixed finite elementf ormulation. Wec onsider a linear andc ontinuous velocity enriched spatial discretization (P1+/P1).

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ρC( ∂T ∂t + - → v • --→ ∇T ) -∇•(k --→ ∇T )=f on Ω×]0,tn[ T ( - → x,t)=T imposed on Ω×]0,tn[ T ( - → x,t= t0)=T0( - → x ) η(T, γ)( CarreauY asuda/W LF ) Computation of the thermodependent viscosity (38)
Wef ollow the polymer/aira nd water/polymer interfaces with two LevelS et functions [START_REF] Coupez | Réinitialisation convective et locale des fonctions Level Set pour le mouvement de surfaces et d' interfaces[END_REF]. The Navier Stokes equations will provide us the velocity and pressure fields andt h iss a m evelocity will transport the LevelS et functions whose zeroi so-values representt h einterfaces.T herefore, ag ood description of the interfaces depends on the accurate resolution oft h ec oupled problem.T he LevelS et strategy applied here isb a s e don a new approach that allowst o keep an unitary gradientfortheLevelSet function without regularizing itperiodically with anH amilton-Jacobi Equation [START_REF] Coupez | Réinitialisation convective et locale des fonctions Level Set pour le mouvement de surfaces et d' interfaces[END_REF].

2D dynamic adaption flows

Wea p p ly our adaptives t r a t e g yo n2D dynamic flows.W ea imt o simulate the WA I M process on a2D cavity. We impose at the entrance ofthecavity aconstant A zoom in the mesh Fig. 9 shows us the accuracyo f our method.

3D industrial Water Assisted Injection Molding case

The aim oft h is section ist o study the efficiencyo f our adaptives t r a t e g yo nan industrial3 DW A I Mprocess Fig. 10. So as to achieve our simulation wee xtend to3 Dspace the coupled system described on section 4.3. Few seconds before the water injection the cavityisalreadyfilled with the polymer.F orthiss pe c ific simulation the adaption strategyi sa p p lied on the water/polymer LevelS et function(and nota sin the 2D dynamicc a s eon the two LevelS et functions). The simulation isrunonto16processors and we fix aconstraint of 10 millions ofe lements.Acut oft h em e s ha llowst o depict the water tracking inside the cavity at differentt ime oft h es imulation Fig. 11. The mesh followsd ynamically the evolution oft h ewater.T he adaption process allowsan accurate description oft h ewater vein andac onsiderableg a in ofC PU time, since, far fromt h e water/polymer front, the size oft h ee lements increases.T herefore the number ofu nknowns of our system isd r a m a t ically reduced.

Conclusions

Weh a vep r e s e nted a dynamicp a r a llel mesh adaption procedure.I t isb a s e d on the definition ofa n anisotropic a posteriori errorestimator, the search ofthe optimal mesh (metric) that minimizes the errorestimatorand the use oftheserial mesh generator (MTC)inaparallel context.The parallelization strategy consists in balancingd ynamically the workflow by repartitioning the mesh after each re-meshing stage.The numerical 2D and 3D applicationsshow that the proposed anisotropice r r ore s t imatorg ives an accurate representation oft h ee xact error.

It was shown also, that the optimal adaptivem e s hp r ocedure provides a mesh refinementa nde lements t r e t c h ing which appropriately captures interfaces for industriali n j ection polymers problems.F i n ally, the anisotropic adapted meshes provide a highly accurate solutionsthatareoften better than those obtained on globally-refined meshes anda tam u c hlower cost.
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Fig. 4 .Fig. 5 .

 45 Fig. 4. Visualization of the function f (left) on the adapted mesh (right)

Fig. 6 .Fig. 7 .

 67 Fig. 6. Visualization of the function h (left) on the adapted mesh (right)

Fig. 8 .Fig. 9 .

 89 Fig. 8. Evolution of the polymer/air and water/polymer fronts during the water assisted injection process
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 1011 Fig. 10. Water Assisted Injection Molding Cavity