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ABSTRACT

The El Teniente mine is famous not only as one of the largestrkponphyry-copper ore
bodes but also, among geolotsisfor its typical breccia pip@mamed ‘“Braden”, an almost
vertical poorly mineralized cone, locatatithe center of the mine and surrounded by early-
stage mineralizations. As the edge of the pipe constitutes the lirthieadeposit and of the
mining operation, estimatg it accuratelyis important.

For the ten thousand samples coded by a pipe indicator, four approachespased:

Two-dimensional: among all the data, only the samples on the surface are used and the
elevation of the pipe surface is estimated as a function of the noathihgasting coordinates.

Binary: the samples are coded 0 or 1, and the probabiliyeing in the pipe is estimated in
three-dimensional space.

Intermediate: in the three-dimensional space, the points on the surfaitgllyircoded 0 or 1,
are replaced by 0.5 and the studied variable can then take three valugsar@ 1.

Non-stationary: techniques of Intrinsic Random Functions of oréteare applied on the
previous variable.
In this article, the four methods are described.

The quality of the results is evaluated by cross validation and compardt geologist
approach.

The article concludes with a discussion of the relevance of using statiortamgtess in such a
fundamentally non-stationary context.
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INTRODUCTION

As described by Skewes et al. (2D@hd Maksaev et al. (2004), El Teniente is a complex
multistage coppe€u-Mo ore-body with many overlapping intrusions and mineralizing tsven
over a period of 8 million years, which creates an anomatigpssit in terms of sizeit
contains more than 94 million metric tons (Mt) of fine copper. Theéecesf the deposit is
composedf a late-stage diatreme known as the Braden Pipe, which is 1,20Qmaneter at
the surface and close to 600 m at a depth of 1,800m. The piperig puperalized and
surrounded by different kinds of mineralized geological units. Knovliegexact location of
the pipe surface is important, as it constitutes the internal limit of theitlepos

The objective is to estimate theation of the pipedge using 4,000 drill holes segmented into
more than 90,00, 6 m-long, samples labeled 0 when outside the pipe and 1 wheée. iRsur
approaches are proposed. They are evaluated by cross validation aratecbiopa geologist
mapping of the same data modeled by hand in East-West vertical sections elnplde&
associated with the main infrastructures: undercut, production and hauldge leve

METHODOLOGY
Two-dimensional approach (Z asafunction of x and y)

For a given drill hole, the transitions from 0 to 1 (entering the pip&par 1 to 0 (leaving it)
are studied, situations which can occur more than once when theotliision the borderline
of the pipe and crosses it. This yields around 900 values of ZBigy)1).
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Figure 1 - Left: Location of the points on the surface; right: Elevation of these points

When only these borderline samples are used, the pipe estimatiofortrensnto a two-
dimensional interpolation of the elevation Z(x,y) that must not contaiticdtgs Pairs of
measurements separated by less than one meter have been remonets ahoice easily
improvable. The amourtf data pointss reduced to around 800. The sampling variogram was
calculated as defined by Matheron (1962 is isotropic up to 150m and modeled by a linear
function of the distance plus a nugget effect (Fig.The estimation is conducted by kriging
(Matheron, 1963) using a unique neighborhood.
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Figure 2 — Left: sampling variogram of the surface points (4 directions up to 500m); right:
the model for thefirst 150 m (nugget + linear)

Binary approach (0 or 1)

The total numbeof 90,000 data labeled by 0 or 1 is used. 18% are composed by 1)(Fig. 3
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Figure 3 — Projections of the data used for the three-dimensional approach. Dark is 1,
greyisO

Letlpipe(X,y,Z)be the function sampled in this way. Its average and variance have a
probabilistic interpretation (Rivoirard 1994

E[Lp.(X,y,2)]=P( K.y Z)e pipe )=| 1)
VARI[L,,..(x ¥, 2)] =p(1-p)< 0.2¢ (2)

The indicator variogram as defined by Serra (1982) represents the prygbabéitpair of
points, separated by a distargeo cross the pipe surface:

%) =P(&+h,y+h z+h, )e pipe,ky z E pipe, 3)
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Its average behavior is isotropic for distances of less than 25@ac(iit is impossible to detect
any anisotropy for such bodies, see beltiscussiofi). The model is the sum of a nugget
effect and a 0.7 power model (Fig. 4). The estimation is carriethyolttiging with a moving
neighborhood (diameter 250m).
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Figure 4 — Points: The sampling variogram of the pipe indicator; continuousline: The
model

This approach gives a result lying between 0 amdriost casesRivoirard (1984) and
Matheron (1986) have shown that some values negative or greaterdhamfpear, produced
by negative kriging weights. Therefore, a normalization of the etsgt@the interval [0, 1] is
applied.

While this result is interpreted as a probabitifypelonging to the pipe, the question is: What is
the value above which one must consider being inside the pipe? As thgigisdad mining
engineers need to map the pipe surface, they must know whereathstarts and ends. A
probability does not give this result.

To answer this question, let us consider a kriging neighborhoopased of two points located
at the same distance from the kriged point, one being inside thgetpgother one outside. In
the absence of anisotropy it seems reasonable to assume that in avertggettpoint lies on
the pipe border, and in that case kriging precisely gives an estim@tb. dfherefore we will
consider 0.5 (or 50% probability) as the key value above which wiasigle the pipe

Intermediate approach (0, 0.5 or 1)

In the two-dimensional approach, around 900 points close to faeswvere analyzed as
functions ofx andy. Now these points receive the value 0.5 (instead of the original Otor 1)
reinforce their transition state. The variable under study can then takevéilues: 0, 0.5 and 1.
The resulting variogram is similar to that of the previous case butsima# reduction of the
nugget effect.

Non-stationary approach
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The Intrinsic Random Function of order k-method (Mathero3l%vas tested on the same
dataset (values 0, 0.5 and 1). The automatic structure recognitictuicgbby Delfiner (1976)

at the scale of the neighborhood used previou&Ehih diametey yields a degree one for the
drift, a result consistent with the local approximation of the pipe surface fdgne But the

automatically inferred linear variogram reveals a much steeper slopealitdistances, ten

times greater than the previous three-dimensional variogram {Fig. 5
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0.05 ':J // \ u
1: ;.-:‘—""‘r;::- Stationary approach
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Figure 5— Dotted line: the sampling variogram of the data used in theinter mediate

approach; dashed line: the linear variogram automatically inferred by the IRF-k process

RESULTS

Visual comparisons
The different approaches yield two types of results:
The elevation of the pipe surface (two-dimensional approach);

[ ]

e The probabilityof belonging to the pipe (other approaches).
Figure 6 (left) shows the elevation estimation given by the twedswnal approach, and
Figure 6 (right), the estimated blocks that have a probability greatef th&hinary approach)

The upper part of the two-dimensional elevation shows unrealistic atgwetianges; the same
is true for the bump at the bottom of the three-dimensional blockereTare very few
conditioning samples in these regions and the estimator extrapolatdsmfiee $hese effects

are however outside the interval [1,800m, 2,700m] of interesting elagatio
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Figure 6 — Left: Elevation of the two-dimensional estimate; right: Blocks with a

probability greater than 0.5

Figure 7 presents horizontal and vertical cross-sections of diffesgémtages compared to the
geologist model. The contour lines for the binary and intermediate ag@® correspond to the
probability 0.5 The curves are so close that one must zoom in on the(&iga8). In Figure 8
the crosses represent the points of the pipe surface set to 0.5 arah@ee how theattract”

the surface.

Figure 9 presents horizontal and vertical cross-sections of the nonatatiestimate in
comparison with the stationary one (binary or intermediate merged at#iey. Many artifacts
appear at the bottom and the top of the pipe, they are due to the phevioentioned
extrapolation effect, amplified here by the drift.
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Figure 7 — Cross sections of the different approaches
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Figure 9 — Stationary versus non-stationary (binary, inter mediate)

If one disregards the extrapolation problemhe first conclusion is that all the estimators are
close to each other and close to the geological model. The second conoiugiems the two-
dimensional approach: only 1% of the data produces an acceptable pipe shape

Crossvalidations

There are two types of results (elevation and probabilities) so therewar types of
verifications:

e Among the 800 borderline samples ugsedhe two-dimensionahpproach (Fig.1), 100 are
hidden and estimadeusing the remaining 700. The error is calculated and its histogram
analyzed.

e For the other approaches (binary, intermediate, non-stationary), thebpitgbof being in
the pipe is estimatedn the same borderline sarepl (obviously hidden during the
estimation), including the duplicates remowedhe two-dimensional approach (total of 919
samples)The estimation is expected to be as close as possible to 0.5.
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The two-dimensional kriging generated important errors of up @n6&igurel0 shows the
scatter diagram between the true values and estimates, as well as the lot#igessorors
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Figure 10 — Cross validation of two-dimensional results. Left: Scatter diagram between
the estimator (horizontal axis) and the true measurement (vertical axis); right: Data
pointsinvolved. Big dots are hidden and estimated using small dots. Points1to4 are

analyzed in the text

Let us analyze four of the points, labeled 1 to 4 on Fig. 10:

e Point 1 corresponds ta&levation greatethan 2700malthough located close to the center
of the pipe where there are mainly low elevaticfts®e consequence is that kriging, which
gives large weights to the clatesurrounding points, underestimates the truth. Pbiist
probably located at the top of the pipe where the cone stops and lseaorakmost flat or
even hollow relief.

e Point 2 has the same problem: it is isolated, close to the center, withedetraion equal to
2,000m wherasone finds around points with elevations of 1,600m.

e For point 3, the reverse occurs: this point is close to the center oiphenjith a true
elevation close to 1,400m, probalalgorrect measurement considering the general behavior
of the pipe. But this point is isolated and the ctbsamples correspond to elevations
higher than 1,400 m, which conditions the overestimation;

e Point 4 belongs to the external margin of the data, where there areléngiions (around
2,700m), higher than the true one at this point (2,40Qik& point 1, point 4 is certainly a
pointonthe surface where the relief decreases.

These four points, among others, explain some abrupt changes pipthshape (Fig. 7, left)
and the crude underestimation of the bottom of the pipe when comparbet@stimates (Fig.
7, right).
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In kriging, one assumes the data to be homogeneous in each areaeaoldésmootly when
moving in space. In this case, when moving to the center of thaidpa decrease in elevation
is expected and the points titad not follow this implicit law become under or overestimated
outliers.

Now consider the three-dimensional approaches. Fidurepresents the histograms of
estimationin binary, intermediate and non-stationary approaches agpliga: surface points.
As expected, the estimations are centered orR&placing some ones and zeros by 0.5 halves
the standard deviation (now 0.02). The non-stationary approachceodoe same standard
deviation. For the border line samples and if we neglect the artifact ¢iRiyk at the top and
bottom of the pipe, the stationary and non-stationary methods are equivhkm applied to
the data incorporating the 0.5 values. This definitively representspainvement.
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Figure 11 — Histogram of estimationsfor pipe surface points

DISCUSSION

There are pros and cons for each method:

¢ The two-dimensional approach is simple and requires less dateelidphcates need to be
managed andt is very sensitive to outliers as there are few data poifimially, the
resulting estimator looks dde to the geological drawings in the useful interval [1,800m,
2,700m]. The use of a unique neighborhood is certainly onee gauthis proximity as it
generates a smooth estimataus reproducing the conservative approach often followed by
geologists.

e The three-dimensional approaehuse all the data, can generate more detaild the
introduction of the label 0.5 increases the accuracy of the estimation.

e The non-stationary techniques produce dangerous artifacts at the wifattggndomain and
do not improve the results close to the pipe surface, so we do natrrenal this approach
here.

Finally, it seems better to work in three dimensions with stationagyngriapplied to the data
composed of 0, 1 and 0.5.
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But a fundamental question remains: Is it legitimate to use stationanyideek in such a
context? The two-dimensional variogram is linear (Fig. 2) wheitesisould be parabolic at
short distances due to the drift (Matheron, 1969).

In fact, this variogramdoes not characterize any spatial structure; it is just the result of a
calculation applied to a particular object. Consider Figure 12 where the itwemsional
estimate is mapped (and considered tehbétruth”) and imagine a pair of points separated by
a distanceh, north-south oriented, which moves all over the domain. For each thai
difference between the elevations is squared and averaged throtlghdomain to obtain the
sampling variogram at the distarize

e When the pairs are in the “A” areas, they cross the contour lines and measure important
elevation gradients, making the variogram parabolic.

e When the pairs are in tH&8” areas, they are approximately parallel to the contour lines
(same elevation) and do not detect important variations, giving antaterasvalue to the
variogram.

The final result is a mixture of these situations and a linear behavidistances of less than
200m.
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Figure 12 — Map of the pipe and domains where the N-Svariogram reveals a drift
(A) or donot reveal it (B)

In three-dimensions, the situation is different because theilmation of a pair of points to the
variogram is bounded by 0.5, and only the pairs that cressutiace bring a nonzero value to
the calculation. But the problem is that the variogram may dependvofah@utside the pipe
the zero sample values are and fail in capturing any structure.

Does this mean that these methods cannot be used in such circumstaadb#tk\What they
can (the results are satisfactory) and it is perhaps not necessary to tfadlcexperimental
variogram It can be chosen according to the shape it gives to the pipe, plagingple of
“shape function”, a situation intermediate betweea fully objective estimation and hand
drawing while keeping the property of exactly fitting the data.
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