
HAL Id: hal-00881217
https://minesparis-psl.hal.science/hal-00881217v1

Submitted on 20 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation for Heterogeneous Computing: Automating
Analyses, Transformations and Decisions

Serge Guelton, François Irigoin, Ronan Keryell

To cite this version:
Serge Guelton, François Irigoin, Ronan Keryell. Compilation for Heterogeneous Computing: Au-
tomating Analyses, Transformations and Decisions. 2011. �hal-00881217�

https://minesparis-psl.hal.science/hal-00881217v1
https://hal.archives-ouvertes.fr

Compilation for Heterogeneous Computing:

Automating Analyses, Transformations and

Decisions

Serge Guelton1, François Irigoin2, and Ronan Keryell3

1 Institut Télécom, Télécom Bretagne, Info/HPCAS, Plouzané, France
2 MINES ParisTech, CRI, Fontainebleau, France

3 HPC Project, Meudon, France

Abstract. Hardware accelerators, such as fpga boards or gpu, are an
interesting alternative or a valuable complement to classic multi-core
processors for computational-intensive software. However it proves to be
both costly and difficult to use legacy applications with these new hetero-
geneous targets. In particular, existing compilers are generally targeted
toward code generation for sequential processors and lack the required
abstractions and transformations for automatic code generation and code
re-targeting for heterogeneous targets. The goal of this article is to intro-
duce a set of high-level code transformations based on an abstraction of
existing hardware architectures that make it possible to build compilers
specific to a target using a shared infrastructure. These transformations
have been used to build two completely automatic compilers for an fpga-
based embedded processor and an nvidia gpu. The latter is validated
on several representative digital signal processing kernels.

1 Introduction and Context

The two main approaches to accelerate software currently both involve
parallelism: classic multi-cores processors and hardware accelerators. The
latter trades a limited class of applications for a potentially more inter-
esting speedup per Euro and speedup per watt ratios. However, such
hardware accelerators suffer from typical limitations:
– developing cost of new applications;
– difficulty and cost of porting legacy code (entry cost);
– multiple sources as a consequence of target diversity;
– cost of switching from on architecture to another, i.e. cost of perfor-

mance or programming portability (exit cost).
In order to make a durable investment in an accelerator, it is essential to
free the user from these constraints: an automated approach is a natural
way to leave him with a single source code to maintain. The compiler is
in charge of generating architecture-specific code.
Besides, automatic and semi-automatic code generation techniques for
hardware accelerators have received a growing attention over the last
years, with the obvious goal of filling the gap between the increased per-
formance offered by graphics cards (gpu) and their lack of programma-
bility. The fact that 4 heterogeneous machines find themselves in the top

10 of the Top500 of November 2010, with the Tianhe-1a cluster using
Fermi gpus from nvidia ranking first, is a good illustration of this fo-
cus. nvidia proposes the cuda [16] language, an extension of the C89
language with a C++ flavour, and a compiler, nvcc, to generate code
targeted to their gpu. It certainly limits the number of targeted acceler-
ators, and requires a recoding of computational-intensive code sections.
A contrario OpenCL [12] offers an api and a language extending C99,
comparable to cuda, that provides a hardware abstraction to the expense
of a lower-level api. It ensures code portability but does not guarantee
performance portability yet. As an example, [11] shows on a set of kernels
that an OpenCL implementation can run from 10 to 40% slower than
the equivalent cuda code, including transfer time.
caps Entreprise [4] has developed the hmpp compiler which uses a
directive-based approach: all parameters required for code generation
must be provided, but additional optimizations are possible. In [14] au-
thors have similarly used the information from OpenMP directives as a
starting point for cuda code generation. pgi’s compiler [19] takes a sim-
ilar semi-automatic approach where the user flags computational kernels
by using also directives inserted in original code, but in a more auto-
matic way. Optionally, additional directives can be added to take over
from compiler analyses when they are not accurate enough. In that case,
the user benefits from an incremental approach.
In spite of several similarities on the host side, code generation for fpgas
has experienced diverging developments: the c2h compiler, from Altera,
or Mitrion-C [13] both take a subset of the C language to generate vhdl.
[6,7,1] give many insights into the potential optimizations to use in order
to improve the behavior of such tools.
In this context, it seems unrealistic to try to offer a single tool that takes
a unique source code as input, even with annotations, and generates as
many outputs as the number of targeted hardware. In this article, we
propose an approach based on the analysis of the various constraints
exerted on the input code by an architecture, e.g. the accelerator mem-
ory size or the number of processing elements (pe). Using the compiler
infrastructure as a toolbox, the compiler developer builds a compilation
chain so that all the constraints are satisfied by the refined code. A
hardware compiler, supplied by the hardware vendor, plays the part of
the back end. This binding between constraints and transformations en-
forces transformation reuse and provides a generic methodology to builds
a compiler for new heterogeneous targets at low expense.
To illustrate our proposal, the analyses and code transformations pre-
sented in this article are demonstrated on a running example, typical
from signal processing applications; a horizontal erosion, typically used
in image processing applications (see Figure 1). All transformations in-
troduced in this paper are implemented in the pips [9,10] source-to-source
compilation infrastructure. Exhibited code fragments are presented with-
out any post-processing other than cosmetic.
This document is organized as follows. Section 2 introduces our target
model. Section 3 proposes a statement computation intensity estimation
method. Section 4 describes the outlining step applied to extract kernel
code. Section 5 presents the data transfer generation algorithm and Sec-

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m]) {

f o r (i n t i=0;i<n;i++)

f o r (i n t j=0;j<m;j++)

i f (j==0) out[i][j]=MIN(in[i][j],in[i][j+1]);

e l s e i f (j==m-1) out[i][j]=MIN(in[i][j-1],in[i][j]);

e l s e out[i][j]= MIN(in[i][j-1],in[i][j],in[i][j+1]);

}

Fig. 1: Horizontal erosion code sample.

tion6 proposes a technique to take memory size constraints into account.
Experimental results are presented in Section 7.

2 Target Model

Both graphics cards or fpga boards are part of hybrid computers and use
a master-worker paradigm: the host processor offloads computational-
intensive functions to a remote accelerator using a call sequence similar
to load - work - store. This sequence is typical of hybrid computations
and the proposals of this paper are made on its basis.
Data transfers, loads and stores are performed using copy operators, or
dmas, which can be either synchronous or asynchronous, depending on
the target hardware. They can transfer n-dimensional blocks of data,
where n is also architecture dependant (e.g. n = 1 in cuda). Addition-
ally, some specific constraints can exist, such as data alignment or max-
imal transfer size. The memory size also impacts this sequence because
it is not possible to transfer more cumulative data than the amount of
memory available on the accelerator. The speedup can come from a spe-
cific implementation of some libraries, e.g. a ClearSpeed Advance board
accelerating the Intel Math Kernel library, or from a massive usage of
parallelism found in gpus or fpga. Table 2 summarizes some significant
constraints relevant to hybrid computing for two targets: the embedded
vector processor Ter@pix [3] from thales and a nvidia gpu Quadro
FX 2700M chosen in the lower end of the market to have a comparable
electrical consumption. Some additional constraints must be taken into

Quadro FX 2700M Ter@pix

Parallelism type ±simd simd

Bus bandwidth B (byte/s) 5G (pci) 1.2G (ddr 2)
Number of pe 48 128
dma dimension 1d 2d
dma size no constraint k × 128
Accelerator memory (bytes) 512 M (global ram) 1024
Instruction Set Architecture PTX Terasm

Fig. 2: Characteristics of Quadro and Ter@pix accelerators.

account. However they are too target-dependent and thus not valuable
candidate for hardware abstraction.

3 Computational Intensity Estimation

The first step to automatically generate accelerator code is to identify
the code fragments candidate for offloading. Depending on the mem-
ory - operation ratio and the accelerator kind, offloading can lead to a
speedup or a slowdown. Let tn be the execution time of a kernel carried
by statement S in a memory state σ modelled by Equation (1),

tn(S, σ) = τ0 +
V (S, σ)

B
+

ts(S, σ)

ath

(1)

where V (S, σ) is the memory footprint of statement S depending on
σ and B is the average memory bandwidth between the host and the
accelerator introduced in Table 2. τ0 is a warming up cost, e.g. a dma

initialization delay; ts(S, σ) is the sequential execution time of S in state
σ on the host side, depending on σ; and ath is the expected average
acceleration provided by the accelerator, dependent of the number of pe,
the parallelism type and the isa of both the host and the accelerator.
For the offloading to be relevant, the inequality tn(S, σ) < ts(S, σ) must
be satisfied, that is condition (2), which turns into (3), must be met. In
that case, the code can be profitably offloaded.

τ0 +
V (S, σ)

B
< ts(S, σ)×

ath − 1

ath

(2)

(
1

B
+

τ0

V (S, σ)
)×

ath

ath − 1
<

ts(S, σ)

V (S, σ)
(3)

An estimation of ts(S, σ) can be computed statically in many cases using
the execution model described in [20]. When applicable, this method
recursively associates a polynomial function of σ to each statement S

in state σ. An approximation of V (S, σ) can be obtained from convex
array region analysis [5]. It gives exact or over-approximated information
about the set of data read or written by S represented as a system of
linear inequalities. It is possible to compute the volume V (S, σ) of the
associated polyhedron as a polynomial [2].
Figure 3 shows the result of the implementation of these analyses in pips

for the code from Figure 1. ts(S, σ) = 20.25 × m × n + 4 × n + 3 and
V (S, σ) = 2 × m × n are found for the sequential time and memory
footprint respectively, the ratio of which tends to 10.125 when m → ∞
and n → ∞. The ratio ts(S,σ)

V (S,σ)
may not be statically known. In that case,

a test can be inserted to dynamically select the sequential or accelerated
code version, based on the runtime evaluation of its expression.
Table 4 demonstrates the usefulness of this analysis for automatic gpu

code generation. Using the same experimental parameters as in Sec-
tion 7.2, “gcc -O3” and “p4a --cuda” have been used to generate a cpu

and a gpu binary, respectively. Input code is a finite impulse response
filter kernel with hard coded window size, and thus the computational

// 20.25*m.n + 4*n + 3 (SUMMARY)

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m])

(a) Complexity Analysis

// <in[PHI1][PHI2]-R-MAY -{0<=PHI1 , PHI1+1<=n, 0<=PHI2 , 1<=

PHI2+m,

// PHI2 <=m, 1<=m}>

// <out[PHI1][PHI2]-W-MAY -{0<=PHI1 , PHI1+1<=n, 0<=PHI2 , PHI2

+1<=m}>

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m])

(b) Array Region Analysis

Fig. 3: Complexity and array region analyses on a horizontal erosion code.

Window size 1 2 4 8 16 32 64 128 256 512 1024

cpu time (s) 1.55 1.59 1.67 1.82 2.13 2.73 4.00 6.70 11.50 21.57 41.31

gpu time (s) 2.51 2.51 2.53 2.56 2.61 2.73 2.98 3.38 4.01 4.99 5.69

Fig. 4: cpu and gpu execution time for various fir window sizes.

intensity increases with the window size. In that case, the ts(S,σ)
V (S,σ)

ratio
is a constant. Until the window size reaches the value of 32, the trans-
fer time dominates gpu execution times. Afterwards, the computational
intensity is large enough to achieve some speedup. As a consequence,
choosing a good ath

B(ath−1)
makes it possible to select the loops that are

relevant for offloading and those that are not, which is only possible if
profiling information provide reasonable experimental values for ath and
B.

4 Function Outlining

Once computationally intensive code fragments have been identified, it is
necessary to turn the associated statements into function calls to separate
the host code from the accelerator code.
If the outlining process guarantees that outlined functions use neither
global variables nor return values, it is also a mean to isolate variables
local to the accelerators from those declared in the outlined functions and
those used to share data between the caller and the callee, i.e. between
the host and the accelerator.
The outlining process is based on Formula (4) adapted from [15]

ExternalV ars(S) = ReferencedV ars(S) (4)

−(DeclaredV ars(S) ∪ PrivateV ars(S)) (5)

where S is a statement; ExternalV ars is the set of variables passed
as parameters; ReferencedV ars(S) gathers all variables referenced by

S; DeclaredV ars(S) gathers all variables locally declared in S and
PrivateV ars(S) is the set of global variables that have been privatized
to S. ReferencedV ars and DeclaredV ars are built through a recursion
over the ir of S and PrivateV ars come as a result of a privatizing phase
such as [18].

During the outlining process, it is important to take into account type
dependencies, in particular those implied by variable-size arrays from
C99. Thus, the set ExternalV ars(S) must be increased by the set of all
variables required by the type definition of each variable it contains. A
function outlined in this manner is a suitable candidate for an OpenCL

kernel, because it is a self-contained function.

Figure 5 illustrates this process on the example from Figure 1, in which
the internal loop is outlined as a new function kernel.

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m]) {

f o r (i n t i = 0; i <= n-1; i += 1)

kernel(m, n, i, in, out);

}

vo i d kernel(i n t m, i n t n, i n t i, i n t in[n][m], i n t out[n][m])

{

f o r (i n t j = 0; j <= m-1; j += 1)

i f (j==0) out[i][j] = MIN(in[i][j], in[i][j+1]);

e l s e i f (j==m-1) out[i][j] = MIN(in[i][j-1], in[i][j]);

e l s e out[i][j] = MIN(in[i][j-1], in[i][j], in[i][j+1]);

}

Fig. 5: Outlining of an erosion kernel.

5 Data Transfer Generation

Once a kernel is found and outlined to a separate function, it is necessary
to generate data transfers and memory allocations to perform the remote
procedure call. To do so, a transformation called statement isolation

is introduced.

Given a statement S, it is possible to compute an estimate of the array
regions read or written by this statement for each array variable v ref-
erenced by S. These regions are denoted Rr(v) and Rw(v), respectively.
Depending on the accuracy of the analysis, these regions are either ex-
act, R=

r (v), or over-estimated, R�r (v). There is a strong binding between
these array regions and data transfers:

Transfers from the accelerator All data that may be written by S

must be copied back to the host from the accelerator:

TH←A(S) = {Rw(v) | v ∈ S} (6)

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m]) {

i n t (*out0)[n][m] = 0, (*in0)[n][m+1] = 0;

P4A_accel_malloc ((vo i d **) &in0 , s i z e o f (i n t)*n*(m+1));

P4A_accel_malloc ((vo i d **) &out0 , s i z e o f (i n t)*n*m);

P4A_copy_to_accel_2d(s i z e o f (i n t), n, m, n, m+1, 0, 0, &in

[0][0] , *in0);

P4A_copy_to_accel_2d(s i z e o f (i n t), n, m, n, m, 0, 0, &out

[0][0] , *out0);

f o r (i n t i = 0; i <= n-1; i += 1)

f o r (i n t j = 0; j <= m-1; j += 1)

i f (j==0) (*out0)[i][j] = MIN ((* in0)[i][j], (*in0)[i][j

+1]);

e l s e i f (j==m-1) (*out0)[i][j] = MIN ((*in0)[i][j-1], (*

in0)[i][j]);

e l s e (*out0)[i][j] = MIN ((*in0)[i][j-1] ,(* in0)[i][j],(*

in0)[i][j+1]);

P4A_copy_from_accel_2d(s i z e o f (i n t), n, m, n, m, 0, 0, &out

[0][0] , *out0);

P4A_accel_free(in0);

P4A_accel_free(out0);

}

Fig. 6: Code after statement isolation.

Transfers to the accelerator All data that may be read by S must
be copied from the host to the accelerator:

TH→A(S) = {Rr(v) | v ∈ S}

Indeed, all data for which we have no guarantee of write by S must
be copied in. Otherwise, uninitialized data may be transfered back
to the host without being initialized. So the extended formula is:

TH→A(S) = {Rr(v) | v ∈ S} ∪ {R�w(v) | v ∈ S ∧ ∄R=
w(v)} (7)

Based on Equations (6) and (7) it is possible to allocate new variables
on the accelerator, to generate copy operations from the old variables to
the newly allocated ones and to perform the required change of frame.
Figure 6 illustrates this transformation on the running example.
It presents the variable replacement, the data allocation and the 2D
data transfers; the latter are delegated to a runtime, in that case
Par4All’s [8]. Its interface is target-independent and the implemen-
tation is specialized depending on the targeted accelerator.

6 Memory Constraints

Many embedded accelerators have a limited memory size. If this size is
not sufficient to run the whole computation in a single pass, the latter
must be split in chunks: e.g. the Ter@pix accelerator is dedicated to

image processing but its memory cannot hold a full image (see Table 2),
so all the processing is done on tiles.
In order to fulfill this memory constraint, the iteration space of the
computational kernels must be tiled. Let us assume the kernel is in the
form of a perfectly nested loop S of depth n. In order to work out the
tiling parameters, a two-step process is used: n symbolic values denoted
p1, . . . , pn are introduced to represent the computational blocks and a
symbolic tiling, parameterized by these values, is performed. It gener-
ates n outer loops and n inner loops. The statement carrying the inner
loops is denoted Sinner and the memory state before its execution is
denoted σinner. The idea is to run the inner loops on the accelerator
once the pk are chosen so that the memory footprint of Sinner does not
exceed a threshold fixed by the hardware. To this end, the memory foot-
print V (Sinner, σinner) is computed and a solution for p1, . . . , pn satisfying
Condition (8) is searched.

V (Sinner, σinner) ≤ Vmax (8)

Vmax is the memory size of the considered accelerator. This gives an
inequality over the pk. Other constraints can be gathered from the accel-
erator model specified in Section 2: E.g. a vector accelerator will require
p1 to be set to the vector size.
Figure 7 shows the effect of a symbolic tiling and the result array region
analysis on the running example. As a result, the memory footprint of
Sinner is given as a function of p1, p2 in Equation (9).

V (Sinner, σinner) = 2× p1 × p2 (9)

In the case of Ter@pix, we must set p1 = 128, where 128 is the number
of processing elements, and Vmax = 1024 for each node. It gives a direct
expression for p2: p2 = 1024×128

128×2
= 512.

7 Applications

The transformations presented in the sections supra have been used to
build two compilers for two drastically different accelerators, a fpga-
based embedded processor specialized in signal processing developed by
thales, Ter@pix [3]; and an nvidia gpu. The former compiler is a re-
search project developed in the freia project funded by the French anr.
The latter is an open source product developed by the hpc Project com-
pany. Both compilers use the basic building blocks described in the above
sections for the host side code generation. They rely on specific trans-
formations to take other constraints into account and on the vendor
compiler for the actual binary code generation.

7.1 Ter@pix

This accelerator has been designed to process images from a camera at
run time. It can run signal processing and morphological mathematics

vo i d erode(i n t n, i n t m, i n t in[n][m], i n t out[n][m]) {

i n t p_1 , p_2;

f o r (i n t it = 0; it <= n-1-(p_1 -1); it += p_1)

f o r (i n t jt = 0; jt <= m-1-(p_2 -1); jt += p_2)

// <in[PHI1][PHI2]-R-MAY -{it <=PHI1 , PHI1+1<=it+p_1 , PHI1+1<=n

// jt <=PHI2+1, PHI2 <=jt+p_2 , 2jt+1<=PHI2+m, PHI2 <=m, 1<=p_2 ,

0<=m, 0<=n}>

// <out[PHI1][PHI2]-W-MAY -{it <=PHI1 , PHI1+1<=it+p_1 , PHI1+1<=

n

// jt <=PHI2 , PHI2+1<=jt+p_2 , PHI2+1<=m, 0<=m, 0<=n}>

f o r (i n t i = it; i <= MIN(it+p_1 , n-1+1) -1; i += 1)

f o r (i n t j = jt; j <= MIN(jt+p_2 , m-1+1) -1; j += 1)

i f (j==0) out[i][j] = MIN(in[i][j], in[i][j+1]);

e l s e i f (j==m-1) out[i][j] = MIN(in[i][j-1], in[i][

j]);

e l s e out[i][j] = MIN(in[i][j-1], in[i][j], in[i][j

+1]);

}

Fig. 7: Symbolic tiling of the outermost loop of an horizontal erosion.

kernels, called microcodes, combined in various ways. Current devel-
opment work-flow involves the manual writing of the microcodes in a
specific assembly language for the accelerator side, and the chaining of
the host-side calls in C. The basic operations are classified as follows:
point-to-point operators – sum of images, maximum of images, etc; sten-
cil operators such as erosion, dilatation and convolution; reducing oper-
ators like average power; and those involving an indirection, for instance
an histogram.
A compiler prototype called terapyps has been developed for this target,
using the chaining of outlining, symbolic tiling and statement isolation
described in this article. It handles the first two classes of microcodes.
Reducing operators are currently implemented using typical reduction
parallelization to come down to the first cases. Microcodes involving an
indirection cannot be handled by the array region analysis and, for this
reason, they are not covered by this approach.
There is no hardware compiler for this target, therefore the assembly
code generation has been implemented as part of the original compiler.
Both host-side and accelerator-side code generation are handled.
However, most experimentation efforts have focused on the gpu compiler
presented in the next section, so experimental results in terms of speedup
compared to manual implementation are not available yet.

7.2 GPU

Although approaches such as cuda and OpenCL make it easier to de-
velop on gpu, they are far from being automatic. The Open Source
Par4All [8] compiler, a C-to-cuda compiler, has been developed by hpc

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e
x
e
c
u

ti
o
n

 t
im

e
 (

s
)

input size

on GPU

on CPU

(a) Convolution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

e
x
e
c
u

ti
o
n

 t
im

e
(s

)

input size

on GPU

on CPU

(b) fir

Fig. 8: Median execution time on a gpu for image processing kernels.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

e
x
e
c
u

ti
o
n

 t
im

e
 (

s
)

input size

on GPU

on CPU

(a) N-Discrete Time Fourier Transform

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

e
x
e
c
u

ti
o
n

 t
im

e
 (

s
)

input size

on GPU

on CPU

(b) Correlation

Fig. 9: Median execution time on a gpu for dsp kernels.

Project using the transformations described in this article for the host
side, and gpu-specific transformations for the accelerator side. Those
transformations go beyond the scope of this article and will not be fur-
ther detailed. The interested reader can however consult the publicly
available 1K lines of code of the p4a processor for a deeper insight. Sym-
bolic tiling is not integrated yet into the tool, because it is less needed for
gpu cards for which the global memory is far larger than Ter@pix’s. The
tool validation suite includes the following image processing kernels: a
convolution, with a window size of 5, and a finite impulse response filter,
with a window size of n

1000
. The erosion code did not pass the computa-

tion intensity test on the considered machine. Execution times are given
in Figure 8.

Measurements have been made using a desktop station hosting a 64-
bit Debian/testing with gcc 4.3.5 and a 2-core 2.4 GHz Intel Core2
cpus. The cuda 3.2 compiler is used and the generated code is exe-
cuted on a Quadro FX 2700M card. Sources are compiled using the
command p4a --cuda input_file.c -o binary . Compilation is fully
automatic. The development version of Par4All is used, linked with
the development version of pips. The whole run is measured, i.e. timings

include gpu initialization, data transfers, kernel calls, etc. The median
over 100 runs is taken. Figure 9 shows additional results for digital sig-
nal processing kernels extracted from [17] and available on the website
http://www.ece.rutgers.edu/~orfanidi/intro2sp: a N-Discrete Time
Fourier Transform and a sample cross correlation.
These results are promising and show that an automatic approach to gpu

code generation is possible. Results get even better with a newer card
with better computation and memory performances. The main advan-
tage of our approach is the source-level compatibility, without directive
support.

8 Conclusion

The contributions of this article are the definitions of four transforma-
tions corresponding to that many hardware constraints on the original
source code, candidate to hybrid computing. Computational intensity

estimation is used to take into account the trade-off between execution
time and transfer time; outlining isolates a statement in a new function;
statement isolation sets up a separate memory space for the kernel;
and symbolic tiling coupled to memory footprint computation

handles accelerator memory size limitation.
These transformations have been used to build two automatic compil-
ers for the C language, terapyps and p4a, for an fpga-based embedded
processor and nvidia gpu, respectively. The p4a [8] compiler has been
validated on various signal processing kernels and other scientific appli-
cations, demonstrating that an automatic approach is feasible.
On-going work includes interprocedural data transfer optimizations and
generation of asynchronous transfers to mask transfer times. In partic-
ular, the impact of this technique with local analyses such as computa-
tional intensity estimation and memory footprint computation is a chal-
lenging issue. The model used by computational intensity estimation
could also be refined to take into account comparisons with multi-cores
in addition to single-core.

Acknowledgement

This work has been funded by the French anr and is part of the freia

project. The authors would like to thank Béatrice Creusillet and Pierre
Jouvelot for their valuable comments. We acknowledge the pips and
Par4All teams for all the accomplished work.

References

1. Alias, C., Darte, A., Plesco, A.: Optimizing DDR-SDRAM communi-
cations at C-level for automatically-generated hardware accelerators
an experience with the Altera C2H HLS tool. In: ASAP. pp. 329–332
(2010)

http://www.ece.rutgers.edu/~orfanidi/intro2sp

2. Barvinok, A.I.: A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed. In: FOCS. pp. 566–
572 (1993)

3. Bonnot, P., Lemonnier, F., Edelin, G., Gaillat, G., Ruch, O., Gauget,
P.: Definition and SIMD implementation of a multi-processing ar-
chitecture approach on FPGA. In: Design Automation and Test in
Europe (DATE’2008). pp. 610–615 (Dec 2008)

4. CAPS Entreprise: HMPP workbench. http://www.

caps-entreprise.com/hmpp.html

5. Creusillet, B., Irigoin, F.: Interprocedural array region analyses. Int.
J. Parallel Program. 24(6), 513–546 (1996)

6. Genest, G., Chamberlain, R., Bruce, R.J.: Programming an FPGA-
based super computer using a C-to-VHDL compiler: DIME-C. In:
AHS. pp. 280–286 (2007)

7. Guo, Z., Najjar, W., Buyukkurt, B.: Efficient hardware code gen-
eration for FPGAs. ACM Trans. Archit. Code Optim. 5(1), 1–26
(2008)

8. HPC Project: Par4All initiative. http://www.par4all.org
9. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical interprocedural par-

allelization: An overview of the PIPS project. In: International Con-
ference on Supercomputing, Cologne (june 1991)

10. Irigoin, F., Silber-Chaussumier, F., Keryell, R., Guelton, S.: PIPS
Tutorial at PPoPP 2010. http://pips4u.org/doc/tutorial

11. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison
of CUDA and OpenCL. CoRR abs/1005.2581 (2010)

12. Khronos OpenCL Working Group: The OpenCL Specification, ver-
sion 1.1 (september 2010)

13. Kindratenko, V.V., Brunner, R.J., Myers, A.D.: Mitrion-C applica-
tion development on SGI Altix 350/RC100. In: FCCM. pp. 239–250
(2007)

14. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In: PPoPP
’09. pp. 101–110 (2009)

15. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-
source outlining to support whole program empirical optimization.
In: International Workshop on Languages and Compilers for Parallel
Computing (LCPC) (Oct 2009)

16. NVIDIA: NVIDIA CUDA Reference Manual 3.2. http://www.

nvidia.com/object/cuda_develop.html (Jan 2011)
17. Orfanidis, S.J.: Introduction to signal processing. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1995)
18. Tu, P., Padua, D.A.: Automatic array privatization. In: Compiler

Optimizations for Scalable Parallel Systems Languages. pp. 247–284
(2001)

19. Wolfe, M.: Implementing the PGI accelerator model. In: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units (GPGPU’10). pp. 43–50 (2010), http://doi.acm.
org/10.1145/1735688.1735697

20. Zhou, L.: Complexity estimation in the PIPS parallel programming
environment. In: CONPAR. pp. 845–846 (1992)

http://www.caps-entreprise.com/hmpp.html
http://www.caps-entreprise.com/hmpp.html
http://www.par4all.org
http://pips4u.org/doc/tutorial
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://doi.acm.org/10.1145/1735688.1735697
http://doi.acm.org/10.1145/1735688.1735697

	Compilation for Heterogeneous Computing: Automating Analyses, Transformations and Decisions

