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ABSTRACT 

In order to simulate granular microstructures such as cementitious materials, a Boolean Poisson polyhedra model is 
implemented. 3D images are generated as vector images for derivation of faster algorithms. Different morphological measurements 
(specifically covariance of mosaic and Boolean models, and geometrical covariogram of primary grains), which theoretical 
expressions are known for such models, are used to validate the algorithm. 
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I. INTRODUCTION 
As it is not possible to investigate 

experimentally all types of concrete of EDF 
facilities, due to the large variability of such 
materials, modeling its behavior and hence its 
microstructure is necessary. To this purpose, this 
paper investigates the implementation of Boolean 
Poisson polyhedra models (see [3]). Such models 
could more be used more generally for other 
granular media. 

Our implementation of the algorithm, given 
in section III, generates vector images, which 
allows faster computations. This implementation 
is validated in section IV where various 
morphological measurements (covariance of 
mosaic and Boolean models, and geometrical 
covariogram of primary grains) are computed on 
simulations and compared to theoretical 
expressions which are known for such a model. 

II. POISSON POLYHEDRA MODEL 
Boolean models consist of the implantation 

of random primary grains located on Poisson 
points (see [2, 4]). Hence, the number of points on 
the image follows the Poisson distribution: 
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where N0 is the expectation distribution. Here, 
Poisson points are distributed uniformly on the 
image. 

For a Boolean Poisson polyhedra random 
model (a realistic model for cementitious 

materials), primary grains are made of Poisson 
polyhedra defined as follow. Each Poisson 
polyhedron is obtained from a Poisson tessellation 
of the image: Poisson planes with density λ are 
implanted on the image, i.e the number of planes 
hitting a sphere enclosing a cube with side L 
follows the Poisson distribution (1) with 

expectation .32 LN λπ= Poisson polyhedra are 

defined as the complementary set of this 
tessellation. Accordingly, a Poisson polyhedron is 
generated by randomly selecting (by number) one 
polyhedron among the polyhedra defined by the 
Poisson tessellation. In order to obtain a set of 
independent random Poisson polyhedra, each 
polyhedron is generated by a new realization of 
the space tessellation. 

According to the classical relation for 
Boolean models, the volume fraction p and the 
primary grains average volume K0 are linked by: 

           ,1 0Kep θ−−=            (2)  
θ being the intensity of the Poisson points process, 
and the average volume for Poisson polyhedra 
being given by (see [2]): 
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III. MODEL IMPLEMENTATION 

Space tessellation 
First, the space tessellation is generated by 

generating Np Poisson planes (Pi)i≤Np, Np following 
the Poisson distribution (1). Each plane Pi is 
defined by a normal vector ui and a distance ri. In 
order to obtain uniformly distributed planes and 
isotropic tessellations, ui follows a uniform 
distribution over the unit sphere, while ri is 



uniformly distributed between 0 and L√3/2 
(implantation of planes in the circumscribed 
sphere of the 3D image with side L). 
Polyhedra labeling 

Generating one Poisson polyhedron requires 
a labeling of the polyhedra obtained by the space 
tessellation, in order to select one polyhedron by 
number, not by volume (obtained for example by 
selecting the polyhedron containing one given 
point): each polyhedron needs to be specifically 
identified. Our algorithm generates vector images, 
i.e. defined analytically, in order to obtain faster 
realizations. Moreover, only polyhedra which are 
not cut by the edge of the image are labeled, to 
generate intact polyhedra. 

Each polyhedron is completely known by its 
position with respect to each plane Pi of Cartesian 
equation αix+βiy+γiz+δi=0. Accordingly, in our 
algorithm, a polyhedron is labeled with a list of 
signs (si)i≤Np such as si=1 (resp. si=-1) if 
αix1+βix2+γix3+δi>0 (resp. αix1+βix2+γix3+δi<0) 
for all x=(x1, x2, x3) included in the polyhedron. 

The algorithm iterates over straight lines 
(di,j)i≤Np,i<j≤Np in the image, corresponding to the 
pairs of plans (Pi, Pj)i≤Np,i<j≤Np, in order to iterate 
over the edges of all polyhedra. The intersection 
between a given line di,j and each plane (Pk)k≤Np 
allows to obtain a list of segments included in di,j. 
Each of these segments corresponds to the edge of 
four polyhedra which are then labeled with a list 
of signs (si)i≤Np, directly computed from the 
position of the segment with respect to the list of 
planes (Pi)i≤Np. Through this process, two lists of 
polyhedra known by their labels (si)i≤Np are 
updated. These two lists correspond to polyhedra 
entirely included in the image, and polyhedra cut 
by the edge of the image respectively. This second 
list is used to ensure that the first one only 
contains intact polyhedra. 

A 2D equivalent problem is represented in 
Fig. 1. In such a case, the iteration is carried out 
over Poisson lines and each segment of the line is 
an edge of two polygons. 
Miles-Lantuéjoul correction method 

The next step of the algorithm is to select by 

number one polyhedron from the labeling. As 
only polyhedra not cut by the edge of the image 
are taken into account while selecting a polyhedra 
on the 3D image, it is more likely to select small 
polyhedra than larger ones. 

 

 Figure 1: Polygons labeling in a 2D Poisson tessellation. 

Iterations are carried out over Poisson lines. When considering the 

line d, light gray polygons are added to the list of intact polygons, if 

they are not member of the list of polygons cut by the edge of the 

image; while dark gray polygons are added to this second list and 

removed from the list of intact polygons. 
Quantitatively, the probability for an object 

to have its bounding box B entirely included in a 
cube-shaped domain D is: 
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where L is the side of the domain D, and Lx, Ly, Lz 
are the dimension of B (see Fig. 2). 

 
Figure 2: Miles-Lantuéjoul correction: probability for an object 

to have its bounding box B entirely included in a domain D. 

To correct this bias, the selection of a 
polyhedron among a set of polyhedra involves 
weights ][/1 DBP ⊂  instead of equiprobability 
(see [4]). 
Binarization of a Boolean model 
realization 



The Boolean model is obtained by the 
implantation of Poisson polyhedra on a Poisson 
points process on the 3D image. Polyhedra are 
binarized using their position with respect to each 
plane, i.e. their label (si)i≤Np. In order to efficiently 
binarize the image, each polyhedron is binarized 
on its bounding box and only planes defining 
boundaries of the polyhedra are considered among 
the list of planes (Pk)k≤Np. Indeed, necessary data 
for such a computation were saved during the 
polyhedra labeling. Last, the convexity of 
polyhedra is used to get a faster binarization. 
Instead of testing all points of the bounding box 
grid, each straight line of the grid of equation 
(x=xi, y=yj)i,j is considered. Only points at the 
intersection of this line and the planes defining 
the polyhedron are tested: when two of these 
points are found to be on the boundaries of the 
polyhedron which is being binarized, all points of 
the grid between these two points are part of the 
polyhedron. 

IV. IMPLEMENTATION VALIDATION  
The aim of this section is to validate the 

implementation of the model given in section III 
using various morphological measurements which 
theoretical expressions are known for models 
using Poisson planes. 
Geometrical covariogram 

The geometrical covariogram is defined by: 
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(5) 
and is equal, for Poisson polyhedra, to: 
               ),exp()0()( hKhK πλ−=        
(6) K(0)=K0 being the average Poisson polyhedra 
volume (see Eq. 3), and λ being the Poisson planes 
intensity. 

The geometrical covariogram is evaluated for 
different values of the expected number of planes 
N = 80, 100, 150, 300 and for L=256. For each 
value, the geometrical covariogram is weighted by 

][/1 DBP ⊂  (see Eq. 4) as it is also done for 
polyhedra selection. When N=80, 100 (resp. 
N=150, 200, 300), the average geometrical 
covariogram is computed over 10000 (resp. 5000) 

realizations. The relative error with respect to 
theoretical value, for corrected geometrical 
covariograms with h=0 (i.e for average volume), 
is given in Tab. 1 and the geometrical 
covariogram for N=200 is given in Fig. 3.  

When N is low, the 3D space tessellation is 
not representative, and explains the observed error 
on the geometrical covariogram. Hence, a value of 
N=200 is chosen for Boolean model realizations. 
To generate realizations of models with an 
intensity λ corresponding to an other value of N, a 
scaling is carried out. 

Table 1: Relative error ε(Kcorr(0)) on corrected average Poisson 
polyhedra volume for different expected planes number N. 

N 80 100 150 200 300 

ε(Kcorr(0)) 73% 43% 14% 7% 6% 

 
Figure 3: Geometrical covariogram for N=200. Theoretical 

covariogram as well as computed and corrected covariograms are 

given. 
Poisson mosaic covariance 

A binary Poisson mosaic model is realized, 
i.e. a Poisson tessellation is generated, and each 
polyhedra is set to value 1 (or 0) with a 
probability p (or 1-p resp.). The theoretical 
covariance of such model (set A) is given by: 
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with r(h)=K(h)/K(0) the normalized geometrical 
covariogram of Poisson polyhedra. 

Since the algorithm generates vector images, 
the covariance is evaluated without binarization, 
which introduces a bias, directly on the analytical 
data on random points of the 3D image. 

For generated mosaic models with N=200 
and p=0.25 (see a 2D cut of such a model in Fig. 
4), the covariance is evaluated by taking 50000 



points with a step L/256 for h. This computation is 
carried out on twelve images (see Fig. 5, where 
theoretical and computed covariance are given). 
Boolean Poisson polyhedra covariance 

Last, for Boolean models, the covariance of 
the complementary set is given by: 
                ,)( )(2 hrqhQ −=                 
(8) 
with q=1-p (see Eq. 2 for the theoretical 
expression of p). 

 
Figure 4: 2D cut of a binary Poisson mosaic of size 2563 with 

p=0.25 and N=200. 

 
Figure 5: Theoretical and computed covariance of a Poisson 

polyhedra mosaic of parameters N = 200 and p = 0.25. The 

asymptotic value p2 is given as a straight line. 

A realization of a Boolean model is given in 
Fig. 6 where λ=0.045 and p=0.2, for a 3D image 
of size 5003. The covariance is measured on the 
binarized image and is given in Fig. 7, with the 
theoretical covariance. For smaller values of λ, the 
3D image obtained is not representative, and the 
computed covariance does not fit the theoretical 
covariance. 

 
Figure 6: 2D cut of a Boolean Poisson polyhedra model of 

size 5003 with λ=0.045 and p=0.2. 

 
Figure 7: Theoretical and computed covariance of the 

complementary set of a Boolean Poisson polyhedra model of size 

5003 with λ=0.045 and p=0.2. The asymptotic value p2 is given as 

a straight line. 

V. CONCLUSION 
The vector implementation of Poisson 

polyhedra has been validated using various 
morphological measurements which are computed 
on simulated models and compared with 
theoretical expressions. It provides a bank of 
random polyhedra that can be implemented at any 
scale. 

Such a model may be easily generalized to 
multiscale Boolean models to simulate cementitious 
material such as concrete. Their microstructure is 
known by morphological measurements carried out 
on segmented 3D real images obtained by 
microtomography (see [1]), and by experimental 
data such as granulometry. Then, the models 
parameters are numerically optimized using known 
analytical forms for the covariance, which allows 
for very fast computations of model samples, 
whereas the representative scales in the multiscale 
modeling are determined using the aggregates 
granulometry. 
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