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This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonic quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonic case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry-Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.

Introduction

Pioneered for Boolean random sets [START_REF] Matheron | Random sets and integral geometry[END_REF], extended latter to grey-level images (Serra, 1982) and more generally formulated in the framework of complete lattices (Serra, 1988;[START_REF] Heijmans | Morphological image operators[END_REF], mathematical morphology is a nonlinear image processing methodology useful for solving efficiently many image analysis tasks [START_REF] Soille | Morphological Image Analysis[END_REF]. Our motivation in this paper is to formulate morphological operators for scalar functions on curved spaces.

Let E be the Euclidean R d or discrete space Z d (support space) and let T be a set of grey-levels (space of values). It is assumed that T = R = R ∪ {-∞, +∞}. A grey-level image is represented by a function f : E → T , f ∈ F (E, T ), i.e., f maps each pixel x ∈ E into a grey-level value in T . Given a grey-level image, the two basic morphological mappings F (E, T ) → F (E, T ) are the dilation and the erosion given respectively by

δ b ( f )(x) = ( f ⊕ b)(x) = sup y∈E { f (y) + b(y -x)} , ε b ( f )(x) = ( f b)(x) = inf y∈E { f (y) -b(y + x)} ,
where b ∈ F (E, T ) is the structuring function which determines the effect of the operator. By allowing infinity values, the further convention for ambiguous expressions should be considered: f (y)+b(x-y) = -∞ when f (y) = -∞ or b(x-y) = -∞, This is an extended version of a paper that appeared at the 13th International Symposium of Mathematical Morphology held in May 27-29 in Uppsala, Sweden

Email addresses: jesus.angulo@mines-paristech.fr (Jesús Angulo), matsavf@nus.edu.sg (Santiago Velasco-Forero) and that f (y)-b(y+x) = +∞ when f (y) = +∞ or b(y+x) = -∞.
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We easily note that both are invariant under translations in the 15 spatial ("horizontal") space E and in the grey-level ("vertical") 16 space T , i.e., f (x) → f h,α (x) = f (xh) + α, x ∈ E and α ∈ R, (Serra, 1982;[START_REF] Heijmans | Morphological image operators[END_REF].
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The structuring function is usually a parametric multi-scale family [START_REF] Jackway | Scale-Space Properties of the Multiscale Morpholog-635 ical Dilation-Erosion[END_REF] b λ (x), where λ > 0 is the scale parameter such that b λ (x) = λb(x/λ) and which satisfies the semi-group property (b λ ⊕b µ )(x) = b λ+µ (x). It is well known in the state-of-the-art of Euclidean morphology that the canonic family of structuring functions is the quadratic (or parabolic) one [START_REF] Maragos | Slope Transforms: Theory and Application to Nonlinear Signal 663 Processing[END_REF][START_REF] Van Den Boomgaard | The morphological equivalent of Gaussian 609 scale-space[END_REF]

; i.e., b λ (x) = q λ (x) = - x 2 2λ .
The most commonly studied framework, which additionally presents better properties of invariance, is based on flat structuring functions, called structuring elements. More precisely, let B be a Boolean set defined at the origin, i.e., B ⊆ E or B ∈ P(E), which defines the "shape" of the structuring element, the associated structuring function is given by b

(x) = 0 if x ∈ B -∞ if x ∈ B c
where B c is the complement set of B in P(E). Hence, the flat 21 dilation and flat erosion can be computed respectively by the 22 moving local maxima and minima filters.

Aim of the paper. Let us consider now that the support space is not Euclidean, see Fig. 1(a). This is the case for instance if we deal with a smooth 3D surface, or more generally if the support space is a Riemannian manifold M. In all this paper, we consider that M is a finite dimensional compact manifold. Starting Related work. Generalizations of Euclidean translation-invariant morphology have followed three main directions. On the one hand, adaptive morphology [START_REF] Debayle | Spatially Adaptive Morphological Image Filter-626 ing using Intrinsic Structuring Elements[END_REF][START_REF] Lerallut | Image filtering using morphological 658 amoebas[END_REF][START_REF] Welk | Morphological amoebas are self-snakes[END_REF][START_REF] Verdú | Anisotropic morphological filters with 681 spatially-variant structuring elements based on image-dependent gradient 682 10 fields[END_REF][START_REF] Ćurić | Salience adaptive structuring 620 elements[END_REF][START_REF] Angulo | Morphological Bilateral Filtering[END_REF][START_REF] Landström | Adaptive morphology using tensor-based ellipti-650 cal structuring elements[END_REF][START_REF] Velasco-Forero | On Nonlocal Mathematical Morphology[END_REF], where the structuring function becomes dependent on the position or the input image itself. Section 6 explores the connections of our framework with such kind of approaches. On the second hand, group morphology [START_REF] Roerdink | Group morphology[END_REF], where the translation invariance is replaced by other group invariance (similarity, affine, spherical, projective, etc.). Related to that, we have also the morphology for binary manifolds [START_REF] Roerdink | Manifold shape: from differential geometry to mathemat-666 ical morphology[END_REF], whose relationship with our formulation is deeply studied in Section 5.

Finally, we should cite also the classical notion of geodesic dilation [START_REF] Lantuejoul | On the use of the geodesic metric in image analysis[END_REF] as the basic operator for (connective) geodesic reconstruction [START_REF] Soille | Morphological Image Analysis[END_REF], where the marker image is dilated according to the metric yielded by the reference image (see also Section 6).

Basics on Riemannian manifold geometry

Let us remind in this section some basics on differential geometry for Riemannian manifolds [START_REF] Berger | Differential Geometry: Manifolds, Curves, and Sur-607 faces[END_REF] For v ∈ T p M, let V be the unique parallel vector field along γ with V(a) = v. The map P γ : T p M → T q M determined by P γ (v) = V(b) is called parallel transport from p to q along γ, and P γ (v) the parallel translate of v along γ to q. Note that 79 parallel transport from p to q is path dependent: the difference 80 between two paths is a rotation around the normal to M at q.
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The Riemannian distance between two points p, q ∈ M, de-82 noted d(p, q), is defined as the minimum length over all possi-83 ble smooth curves between p and q. A geodesic γ : [0, 1] → M 84 connecting two points p, q ∈ M is the shortest path on M hav-85 ing elements p and q as endpoints. The geodesic curve γ(t) can 86 be specified in terms of a starting point p ∈ M and a tangent 

M → R, R = R ∪ {-∞, +∞}, so f ∈ F (M, R
) and for λ > 0 we define for every x ∈ M the canonic Riemannian dilation of f of scale parameter λ as

δ λ ( f )(x) = sup y∈M f (y) - 1 2λ d M (x, y) 2 (1)
and the canonic Riemannian erosion of f of parameter λ as

ε λ ( f )(x) = inf y∈M f (y) + 1 2λ d M (x, y) 2 (2)
An obvious property of the canonic Riemannian dilation and Proposition 2. For any two real-valued images defined on the same Riemannian manifold M, i.e., f, g : M → R, the pair (ε λ , δ λ ) is called the canonic Riemannian adjunction

δ λ ( f )(x) ≤ g(x) ⇔ f (x) ≤ ε λ (g)(x) (3) 
Hence, we have an adjunction if both images f and g are defined on the same Riemannian manifold M, or in other terms, when the same "quadratic geodesic structuring function":

q λ (x; y) = - 1 2λ d M (x, y) 2 , (4) 
is considered for pixel x → q λ (x; y), y ∈ M in both f and g. This result implies in particular that the canonic Riemannian dilation commutes with the supremum and the dual erosion with the infimum, i.e., for a given collection of images

f i ∈ F (M, R), i ∈ I, we have δ λ        i∈I f i        = i∈I δ λ ( f i ); ε λ        i∈I f i        = i∈I ε λ ( f i ).
In addition, using the classical result on adjunctions in complete 124 lattices [START_REF] Heijmans | Morphological image operators[END_REF], we state that the composition prod- 

γ λ ( f )(x) = sup z∈M inf y∈M f (y) + 1 2λ d M (z, y) 2 - 1 2λ d M (z, x) 2 , ( 5 
)
and properties for the canonic Riemannian operators.

ϕ λ ( f )(x) = inf z∈M sup y∈M f (y) - 1 2λ d M (z, y) 2 + 1 2λ d M (z, x) 2 . (6)
145 1. (Increaseness) If f (x) ≤ g(x), ∀x ∈ M then δ λ ( f )(x) ≤ 146 δ λ (g)(x) and ε λ ( f )(x) ≤ ε λ (g)(x), ∀x ∈ M and ∀λ > 0. 147 2. (Extensivity and anti-extensivity) δ λ ( f )(x) ≥ f (x) and 148 ε λ ( f )(x) ≤ f (x), ∀x ∈ M and ∀λ > 0. 149 3. (Ordering property) If 0 < λ 1 < λ 2 then δ λ 2 ( f )(x) ≥ 150 δ λ 1 ( f )(x) and ε λ 2 ( f )(x) ≤ ε λ 1 ( f )(x). 151 4. (Invariance under isometry) If T : M → M is an isometry 152 of M and if f is invariant under T , i.e., f (T z) = f (z)
153 for all z ∈ M, then the Riemannian dilation and erosion 154 are also invariant under T , i.e., δ λ ( f

)(T z) = δ λ ( f )(z) and 155 ε λ ( f )(T z) = ε λ ( f )(z)
, ∀z ∈ M and ∀λ > 0. In order to obtain the counterpart of flat isotropic Euclidean dilation and erosion, we replace the quadratic structuring function q λ (x, y) by a flat structuring function given by the geodesic ball of radius r centered at x, i.e.,

B r (x) = {y : d M (x, y) ≤ r}, r > 0. ( 7 
)
The corresponding flat isotropic Riemannian dilation and 163 erosion of size r are given by:

164 δ B r ( f )(x) = sup f (y) : y ∈ Br (x) , (8) ε B r ( f )(x) = inf { f (y) : y ∈ B r (x)} . ( 9 
)
where Br (x) is the transposed shape of ball B r (x). Correspond-165 ing flat isotropic Riemannian opening and closing are obtained 166 by composition of operators ( 8) and ( 9):

167 γ B r ( f ) = δ B r ε B r ( f ) ; ϕ B r ( f ) = ε B r δ B r ( f ) . ( 10 
)
All the properties formulated for canonic operators hold for flat 168 isotropic ones too. For practical applications, it should be noted 169 that flat operators typically lead to stronger filtering effects than 170 the quadratic ones.
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Riemannian granulometries:

scale-space properties of γ λ ( f ) and ϕ λ ( f )

For the canonic Riemannian opening and closing, we have also the classical properties which are naturally proved as a consequence of the adjunction, see [START_REF] Heijmans | Morphological image operators[END_REF].

Proposition 5. Let γ λ ( f ) and ϕ λ ( f ) be respectively the canonic Riemannian opening and closing of an image f ∈ F (M, R).

1. γ λ ( f ) and ϕ λ ( f ) are both increasing operators.

2. γ λ ( f ) is anti-extensive and ϕ λ ( f ) extensive with the following ordering relationships, i.e., for for 0 < λ 1 ≤ λ 2 , we have:

γ λ 2 ( f )(x) ≤ γ λ 1 ( f )(x) ≤ f (x) ≤ ϕ λ 1 ( f )(x) ≤ ϕ λ 2 ( f )(x); (11) 3. idempotency of both operators, γ λ (γ λ ( f )) = γ λ ( f ) and ϕ λ (ϕ λ ( f )) = ϕ λ ( f )
Property 3 on idempotency together with the increaseness defines a family of so-called algebraic openings/closings (Serra, 1988;[START_REF] Heijmans | Morphological image operators[END_REF] larger than the one associated to the composition of dilation/erosion. Idempotent and increasing operators are also known as ethmomorphisms by Kiselman (2007). Anti-extensivity and extensivity involves that γ λ is a anoiktomorphism and ϕ λ a cleistomorphism. One of the most classical results in morphological operators provided us an example of algebraic opening: given a collection of openings {γ i }, increasing, idempotent and anti-extensive operators for all i, the supremum of them sup i γ i is also an opening [START_REF] Matheron | Random sets and integral geometry[END_REF].

A dual result is obtained for the closing by changing the sup by the inf.

The class of openings (resp. closings) is neither closed under infimum (resp. opening) or a generic composition. There is however a semi-group property leading to a scale-space framework for opening/closing operators, known as granulometries.

The notion of granulometry in Euclidean morphology is summarized in the following results [START_REF] Matheron | Random sets and integral geometry[END_REF]Serra, 1988).

Theorem 6 [START_REF] Matheron | Random sets and integral geometry[END_REF], Serra (1988)). A parameterized family {γ λ } λ>0 of flat openings from F (E, T ) into F (E, T ) is a granulometry (or size ditritribution) when

γ λ 1 γ λ 2 = γ λ 2 γ λ 1 = γ sup(λ 1 ,λ 2 ) ; λ 1 , λ 2 > 0. ( 12 
)
Condition ( 12) is equivalent to both

γ λ 1 ≤ γ λ 2 ; λ 1 ≥ λ 2 > 0; (13) B λ 1 ⊆ B λ 2 ; λ 1 ≥ λ 2 > 0
where B λ is the invariance domain of the opening at scale λ;

i.e., the family of structuring elements Bs such that B = γ λ (B) (Serra, 1988).

By duality, we introduce antisize distributions as the families of closings {ϕ λ } λ>0 .

Axiom (12) shows how translation invariant flat openings are composed and highlights their semi-group structure. Equivalent condition (13) emphasizes the monotonicity of the granulometry with respect to λ: the opening becomes more and more active as λ increases. When dealing with Euclidean spaces, [START_REF] Matheron | Random sets and integral geometry[END_REF] introduced the notion of Euclidean granulometry as the size distribution being translationally invariant and compatible with homothetics, i.e., γ λ ( f (x)) = λγ 1 ( f (λ -1 x)), where f ∈ F (E, T ) is an Euclidean grey-level images. More precisely, a family of mappings γ λ is an Euclidean granulometry if and only if there exist a class B such that

γ λ ( f ) = B∈B µ≥λ γ µB ( f ).
Then the domain of invariance B λ are equal to λB, where B is the class closed under union, translation and homothetics ≥ 1, which is generated by B . If we reduce the class B to a single element B, the associated size distribution becomes

γ λ ( f ) = µ≥λ γ µB ( f ).
The following key result simplifies the situation. The size dis-206 tribution by a compact structuring element B is equivalent to

207 γ λ ( f ) = γ λB ( f ) if and only if B is convex. The extension 208
of granulometric theory to non-flat structuring functions was 209 deeply studied in [START_REF] Kraus | Gray-scale granulometries 648 compatible with spatial scalings[END_REF]. In particular, it was 
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Proposition 7. Given the set of Riemannian openings {ψ λ } λ>0 indexed according to the positive parameter λ, but not necessary ordered between them, the corresponding Riemannian granulometry on image f ∈ F (M, R) is the family of multiscale openings {Γ λ } λ>0 generated as

Γ λ ( f ) = µ≥λ ψ µ ( f )
such that the granulometric semi-group law holds for any pair of scales:

Γ λ 1 Γ λ 2 ( f ) = Γ λ 2 Γ λ 1 ( f ) = Γ sup(λ 1 ,λ 2 ) ( f ). ( 14 
)
In the particular case of canonic Riemannian openings, {γ λ } λ>0 ,
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we always have

γ λ 1 ≤ γ λ 2 if λ 1 ≥ λ 2 > 0. Hence, Γ λ ( f ) = γ λ 220
and consequently {γ λ } λ>0 is a granulometry. This is also valid is a convex set for any r at any x ∈ M. Obviously, the flat convex Riemannian granulometry γ B r r>0 is not translation invariant but we have that B r 1 (x) ⊆ B r 2 (x), for r 2 ≥ r 1 and for any

x ∈ M, which involves a natural sieving selection of features in the neighborhood of any point x.

A Riemannian distance function which is convex is not only useful for scale-space properties. As discussed just below, one has powerful results of regularization too.

3.4. Concavity of q λ (x; y) and Lipschitz image regularization using (ε λ , δ λ )

Lasry-Lions regularization [START_REF] Lasry | A remark on regularization in Hilbert spaces[END_REF]) is a theory of nonsmooth approximation for functions in Hilbert spaces using combinations of Euclidean dilation and erosion with quadratic structuring functions, which leads to the approximation of bounded lower or upper-semicontinuous functions with

Lipschitz continuous derivatives which approximate f , without assuming convexity of f . The approach was generalized in [START_REF] Attouch | Approximation and regularization of arbitray functions in 588 Hilbert spaces by the Lasry-Lions method[END_REF] to semicontinuous, non necessarily bounded, quadratically minorized/majorized functions defined on R n . More precisely, we have.

Theorem 8 [START_REF] Lasry | A remark on regularization in Hilbert spaces[END_REF], [START_REF] Attouch | Approximation and regularization of arbitray functions in 588 Hilbert spaces by the Lasry-Lions method[END_REF]).

For all 0 < µ < λ, let us define for a given image f the Lasry-Lions regularizers based on Euclidean dilation and erosion by a quadratic structuring function q λ as:

( f λ ) µ (x) = ( f q λ ) ⊕ q µ (x), ( f λ ) µ (x) = ( f ⊕ q λ ) q µ (x).
• Let f be a bounded uniformly continuous scalar functions in R n . Then the functions ( f λ ) µ and ( f λ ) µ converge uniformly to f when λ, µ → 0, and belong to the class C 1,1 b (R n ) (i.e., bounded continuously differentiable with a Lipschitz continuous gradient), namely

|∇( f λ ) µ (x) - ∇( f λ ) µ (y)| ≤ M λ,µ x -y and |∇( f λ ) µ (x) -∇( f λ ) µ (y)| ≤ M λ,µ x -y , where M λ,µ = (µ -1 , (λ -µ) -1 ). • Let f : E ⊆ R n → R ∪ {+∞} be a lower-semicontinuous function and g : E ⊆ R n → R ∪ {-∞} an upper- semicontinuous. We assume the growing conditions f (x) ≥ -c 2 (1 + x 2 ), c ≥ 0 (quadratically minorized), then g(x) ≤ c 2 (1 + x 2 ), c ≥ 0 (quadratically majorized). Then for 0 < µ < λ < c -1 and 0 < µ < λ < c -1 the regularizes ( f λ ) µ and (g λ ) µ are C 1,1 b (R n ) functions, whose gradient is Lipschitz continuous with constant max(µ -1 , (1 -λc) -1 c).
In addition they converge point-wise respectively to f and g when λ, µ → 0.

Hence, we can replace the bounded and uniformly continuous assumptions by rather general growing conditions. The idea is that given a quadratically majorized function g of parameter c , the quadratic dilation f ⊕ q λ with λ < c -1 produces a λ-weakly convex function. Then for any µ < λ (strictly smaller than the dilation scale), the corresponding quadratic erosion ( f ⊕ q λ ) q µ produces a function belongings to the class of bounded C 1 , with has Lipschitz continuous gradient. Note that the key element of this approximation is the transfer of the regularity of the 278 quadratic kernel associated to its concavity and smoothness of 279 q λ to the function f . 302

( f λ ) µ (x) = sup z∈M inf y∈M f (y) + 1 2λ d M (z, y) 2 - 1 2µ d M (z, x) 2 ( f λ ) µ (x) = inf z∈M sup y∈M f (y) - 1 2λ d M (z, y) 2 + 1 2µ d M (z, x) 2
We have ( f λ ) µ ≤ f and ( f λ ) µ ≥ f .
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• Let f be a bounded uniformly continuous image in Ω.

304

Then the images ( f λ ) µ and ( f λ ) µ belong to the class 305 C 1,1 b (Ω) and converges uniformly to f on Ω.
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• Assume that there exists c, c > 0, such that we have the following growing conditions for semicontinuous functions F (Ω, R):

f (x) ≥ - c 2 (1+d(x, x 0 ) 2 ), g(x) ≤ c 2 (1+d(x, x 0 ) 2 ), x 0 ∈ M.
Then, for all 0 < µ < λ < c -1 the pseudo-opened image 307 ( f λ ) µ and for all 0 < µ < λ < c -1 the pseudo-closed im-308 age (g λ ) µ are of class C Lasry-Lions regularization can be obtained in Riemannian manifolds. In particular the case of compact nonnegative curvature manifolds is relevant for optimal transport problems [START_REF] Villani | Optimal transport, old and new[END_REF].

Generalized Riemannian morphological operators

We have discussed the canonic case on Riemannian mathematical morphology associated to the structuring function given respectively by:

q λ (x,
δ b ( f )(x) = sup y∈M { f (y) + b(x, y)} , (15) 
ε b ( f )(x) = inf y∈M { f (y) -b(y, x)} . ( 16 
γ b ( f )(x) = sup z∈M inf y∈M { f (y) -b(y, z) + b(z, x)} , ( 17 
)
ϕ b ( f )(x) = inf z∈M sup y∈M { f (y) + b(z, y) -b(x, z)} . ( 18 
)
Remarkably, the symmetry of b is not a necessary condition for the adjunction. Examples of such asymmetric structuring functions have recently appeared in the context of stochastic morphology (Angulo and Velasco-Forero, 2013), non-local morphology (Velasco-Forero and Angulo, 2013) and saliency-based adaptive morphology [START_REF] Ćurić | Salience-Based Parabolic Structuring 623 Functions[END_REF].

In our framework, we propose a general form of any admissible Riemannian structuring function b(x, y), ∀x, y ∈ M, which should be decomposable into the sum of two terms: b(x, y) = αb sym (x, y) + βb asym (x, y), α, β ≥ 0.

(

) 19 
Symmetric structuring function. The symmetric term of the structuring function will be a scaled p-norm shaped function depending exclusively on the Riemannian distance, i.e., b sym (x, y) = b sym (y, x) = k λ,p (d M (x, y)) such that

k λ,p (η) = -C p η p p-1 λ 1 p-1 ; λ > 0, p > 1,
where the normalization factor is given by C p = (p -1)p -p p-1 .
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We note that with the shape parameter p = 2 we recover the 358 canonic quadratic structuring function. In fact, this general-359 ization of the quadratic structuring is inspired from the solu-360 tion of a generalized morphological PDE [START_REF] Lions | The Relation Between the Porous 660 Medium and the Eikonal Equations in Several Space Dimensions[END_REF]:

361 u t (t, x) + u x (t, x) p = 0, (t, x) ∈ (0, +∞) × E; u(0, x) = f (x), 362
x ∈ E, since the quadratic one is the solution of the classi-363 cal (Hamilton-Jacobi) morphological PDE [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Ja-599 cobi equations[END_REF] 364 [START_REF] Crandall | User's guide to viscosity solutions of sec-617 ond order partial differential equations[END_REF]: which is a conic shape, i.e., term on d M (x, y).

u t (t, x) + u x (t, x) 2 = 0.
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We note that if M is a Cartan-Hadamard manifold, the sym- 
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An alternative asymmetric function could be based on the 377 notion of Busemann function [START_REF] Ballmann | Manifolds of nonpositive curvature[END_REF]. Given 

b γ x,v (y) = lim t→∞ d M x, γ x,v (t) -d M y, γ x,v (t) = lim t→∞ t -d M y, γ x,v (t) . Since t -d M y, γ x,v (t) is bounded above by d M x, γ x,v ( 
0) and is monotone non-decreasing in t, the limit always exists. It fol- The idea behind the binary Riemannian morphology on smooth surfaces introduced in [START_REF] Roerdink | Manifold shape: from differential geometry to mathemat-666 ical morphology[END_REF] is to replace the translation invariance by the parallel transport (the transformations are referred to as "covariant" operations). Let M be a (geodesically complete) Riemannian manifold and P(M) denotes the set of all subsets of M. A binary image X on the manifold is just X ∈ P(M). Let A ⊂ M be the basic structuring, a subset which is defined on the tangent space at a given point ω of M by à = Log ω (A) ⊂ T ω M. Let γ = γ [p,q] be a path from p to q, then the operator τ γ (A) = Exp q P γ Log p (A) = B, transports the subset A of p to the set B of q. As the image of the set X under parallel translation from p to q will depend in general on which path is taken; the solution proposed in [START_REF] Roerdink | Manifold shape: from differential geometry to mathemat-666 ical morphology[END_REF], denoted by δ Roerdink A , is to consider all possible paths from p to q. The mapping δ Roerdink A : P(M) → P(M) given by 20) is a dilation of image X according to the structuring element A. Using the symmetry group morphology [START_REF] Roerdink | Group morphology[END_REF], this operator can be rewritten as

lows that |b γ x,v (y) -b γ x,v (z)| ≤ d M (y, z), i.e.,
b asym λ,v (x, y) = -(2λ) -1 b γ x,v (y) if sect. curvature of M ≥ 0 (2λ) -1 b γ x,v ( 
δ Roerdink A (X) = x∈M γ τ γ (A) = x∈M γ Exp x P γ [ω,x] Log ω (A), (
δ Roerdink A (X) = x∈M Exp x P γ [ω,x] Log ω ( Ā),
where Ā = s∈Σ sA, with Σ being the holonomy group around 

411 δS ω ( f )(x) = sup f (y) : y ∈ Exp x P γ geo [ω,x] Š ω , (21) 
εS ω ( f )(x) = inf f (y) : y ∈ Exp x P γ geo [ω,x] S ω . (22) 
Thus, in comparison to dilation (20), we prefer to consider in 412 our case that the parallel transport from ω to x is done exclu-413 sively along the geodesic path γ geo [ω,x] between ω and x, i.e., if S ω 414 is a line in ω then it will be also at x a line, but rotated.

415

This idea leads to a natural extension to the case where the fixed datum is an upper-semicontinuous structuring function b ω (v), defined in the Euclidean tangent space at ω, i.e., b ω : T ω M → [-∞, 0]. Let consider now the upper level sets (or cross-section) of b ω obtained by thresholding at a value l:

X l (b ω ) = {v ∈ T ω M : b ω (v) ≥ l} , ∀l ∈ [-∞, 0]. (23) 
The set of upper level sets constitutes a family of decreasing closed sets: l ≥ m ⇒ X l ⊆ X m and X l = ∩{X m , m < l}. Any function b ω (v) can be now viewed as a unique stack of its crosssections, which leads to the following reconstruction property:

b ω (v) = sup {l ∈ [-∞, 0] : v ∈ X l (b ω )} , ∀v ∈ T ω M. ( 24 
)
Using this representation, the corresponding Riemannian structuring function at ω is given by b ω (ω, y) = sup{l ∈ [-∞, 0] : z ∈ Exp ω X l (b ω )}. In the case of a different point x ∈ M, the crosssection should be transported to the tangent space of x before mapping back to M, i.e.,

b ω (x, y) = sup l ∈ [-∞, 0] : z ∈ Exp x P γ geo [ω,x] X l (b ω ) .
Finally, the b ω -transported Riemannian dilation and erosion of 416 image f are given respectively by xy = d space (x, y).

417 δb ω ( f )(x) = sup y∈M { f (y) + b ω (x, y)} , ( 25 
) εb ω ( f )(x) = inf y∈M { f (y) -b ω (y, x)} . ( 26 
By the way, we note also that definition of the Riemannian flat dilation and erosion of size r given in ( 8) and ( 9) are compatible with the formulation of the classical geodesic dilation and erosion [START_REF] Lantuejoul | On the use of the geodesic metric in image analysis[END_REF] of size r of image f (marker) constrained by the image g (reference or mask), δ g,λ ( f ) and ε g,λ ( f ), which underly the operators by reconstruction [START_REF] Soille | Morphological Image Analysis[END_REF], where the upper-level sets of the reference image g are considered as the manifold M where the geodesic distance is defined.

Adaptive (spatially-variant) operators

From [START_REF] Kimmel | Images as embedding maps and minimal 640 surfaces: movies, color, and volumetric medical images[END_REF], the idea of embedding a 2D grey-level image f ∈ F (R 2 , R), x = (x 1 , x 2 ), into a surface embedded in R 3 , i.e.,

f (x) → ξ x = (x 1 , x 2 , α f (x 1 , x 2 )), α > 0,
where α is a scaling parameter useful for controlling intensity distances, has become popular in differential geometry inspired image processing. This embedded Riemannian manifold M = R 2 ×R has a product metric of type ds 2 M = ds 2 space +αds 2 f , where ds 2 space = dx 2 1 + dx 2 2 and ds 2 f = d f 2 . The geodesic distance between two points ξ x , ξ y ∈ M is the length of the shortest path between the points, i.e., d M (ξ x , ξ y ) = min γ=γ [ξx ,ξy ] γ ds M .

As shown in [START_REF] Welk | Morphological amoebas are self-snakes[END_REF], this is essentially the framework behind the morphological amoebas [START_REF] Lerallut | Image filtering using morphological 658 amoebas[END_REF], which are flat spatially adaptive structuring functions centered in a point x, A λ (x), computed by thresholding the geodesic distance at radius λ > 0, i.e., A λ (x) = y ∈ E : d M (ξ x , ξ y ) < λ . In the discrete setting, the geodesic distance is given by

469 d M (ξ x , ξ y ) = min {ξ 1 =ξ x ,ξ 2 ,••• ,ξ N =ξ y } N i=1 α| f (x i ) -f (x i+1 )| + (x i 1 -x i+1 1 ) 2 + (x i 2 -x i+1 2 ) 2 . (27) 
We should remark that for x → y and assuming a smooth manifold, the geodesic distance is asymptotically equivalent to the corresponding distance in the Euclidean product space, i.e.,

d M (ξ x , ξ y ) 2 ≈ d space (x, y) 2 + α 2 | f (x) -f (y)| 2 , (28) 
which is the distance appearing in the bilateral structuring func-470 tions [START_REF] Angulo | Morphological Bilateral Filtering[END_REF]. We can also see that the salience maps Following the same assumption of positive intensities, we can also consider that a 2D image can be embedded into the hyperbolic space H 3 [START_REF] Cannon | Hyperbolic Geometry. Fla-615 vors of Geometry[END_REF]. More particularly the (Poincaré) upper half-space model is the domain

f = β f , β > 0 involves that 479 | f (x i ) -f (x i+1 )| = β| f (x i ) -f (x i+1 )|
H 3 = {(x 1 , x 2 , x 3 ) ∈ R 3 | x 3 > 0} with the Riemannian metric ds 2 H 3 = dx 2 1 +dx 2 2 +dx 2 3 x 2 3
. This space has constant negative sectional curvature. If we consider the image embedding f (x) → ξ x = (x 1 , x 2 , f (x 1 , x 2 )) ∈ H 3 , the Riemannian distance needed for morphological operators will be given by

d M (ξ x , ξ y ) = min γ ξx ,ξy N i=1 cosh -1       1 + (x i 1 -x i+1 1 ) 2 + (x i 2 -x i+1 2 ) 2 + ( f (x i ) -f (x i+1 )) 2 2 f (x i ) f (x i+1 )       . ( 29 
)
The geometry of this space is extremely rich in particular concerning the invariance and isometric symmetry. Hence, distance ( 29) is for instance invariant to translations ξ = (x 1 , x 2 , x 3 ) → ξ + α, α ∈ R, scaling ξ → βξ, β > 0. A specific theory on granulometric scale-space properties in this embedding can be intended. More precisely, given a 2D Euclidean image f (x) = f (x 1 , x 2 ) ∈ F (R 2 , R), the structure tensor representing the local orientation and edge information [START_REF] Förstner | A fast operator for detection and precise location of 629 distinct points, corners and centres of circular features[END_REF]) is obtained by Gaussian smoothing of the dyadic product ∇ f ∇ f T : S ( f )(x) = G σ * ∇ f (x 1 , x 2 )∇ f (x 1 , x 2 ) T = s x 1 x 1 (x 1 , x 2 ) s x 1 ,x 2 (x 1 , x 2 ) s x 1 x 2 (x 1 , x 2 ) s x 2 x 2 (x 1 , x 2 )

Embedding an

where ∇ f (x 1 , x 2 ) = ∂ f (x 1 ,x 2 )

∂x 1 , ∂ f (x 1 ,x 2 ) ∂x 2
T is the 2D spatial intensity gradient and G σ stands for a Gaussian smoothing with a standard deviation of σ. From a mathematical viewpoint, S ( f )(x) : E → SPD(2) is an image where at each pixel we have a symmetric positive (semi-)definite matrix 2 × 2.

The differential geometry in the manifold SPD(n) is very well-known [START_REF] Bhatia | Positive Definite Matrices[END_REF]. Namely, the metric is given by ds 2 S PD(n) = tr(M -1 dMM -1 dM) and the Riemannian distance is defined as By means of this embedding, we can compute anisotropic morphological operators following the flow coherence of image structures. This embedding is related to previous adaptive approaches such as [START_REF] Verdú | Anisotropic morphological filters with 681 spatially-variant structuring elements based on image-dependent gradient 682 10 fields[END_REF] and [START_REF] Landström | Adaptive morphology using tensor-based ellipti-650 cal structuring elements[END_REF]. 

d S PD(n) (M 1 , M 2 ) = log M -1/2 1 M 2 M -1/2 1 F , ∀M 
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  then δ b ( f h,α )(x) = δ b ( f )(xh) + α.The other morphological 18 operators, such as the opening and the closing, are obtained by 19 composition of dilation/erosion

  point of this work is based on a Riemannian sup/inf-convolution where the Euclidean distance in the canonic quadratic structuring function is replaced by the Riemannian distance (Section 3). Besides the definition of Riemannian dilation/erosion and Riemannian opening/closing, we explore their properties and in particular the associated granulometric scale-space. We also show how some theoretical results on Lasry-Lions regularization are useful for image Lipschitz regularization using quadratic Riemannian dilation/erosion. We then extend the canonic case to the most general framework of Riemannian dilation/erosion and subsequent operators in Section 4, by introducing the notion of admissible Riemannian structuring function. Section 5 introduces a different paradigm of morphological operators on Riemannian supported images, where the structuring function is an external datum which is parallel transported to each point on the manifold. We consider theoretically various useful case studies of image manifolds in Section 7, but due to the limited paper length, we only illustrate some cases of real-valued 3D surfaces.

  , see Fig. 1(b) for an explanatory diagram. The tangent space of the manifold M at a point p ∈ M, denoted by T p M, is the set of all vectors tangent to M at p. The first issue to consider is how to transport vectors from one point of M to another. Let p, q ∈ M and let γ : [a, b] → M be a parameterized curve (or path) from γ(a) = p to γ(b) = q.

  Figure 1: (a) Real-valued Riemannian image. (b) Riemannian manifold at tangent space a given point.

  87 vector (initial constant velocity) v ∈ T p M as it represents the 88 solution of Christoffel differential equation with boundary con-89 ditions γ(0) = p and γ(0) = v. The idea behind exponential 90 map Exp p is to parameterize a Riemannian manifold M, lo-91 cally near any p ∈ M, in terms of a mapping from the tangent 92 space T p M into a point in M. The exponential map is injective 93 on a zero-centered ball B in T p M of some non-zero (possibly 94 infinity) radius. Thus for a point q in the image of B under 95 Exp p there exists a unique vector v ∈ T p M corresponding to 96 a minimal length path under the exponential map from p to q. 97 Exponential maps may be associated to a manifold by the help 98 of geodesic curves. The exponential map Exp p : T p M → M 99 associated to any geodesic γ v emanating from p with tangent at 100 the origin v ∈ T p M is defined as Exp p (v) = γ v (1), where the 101 geodesic is given by γ v (t) = Exp p (tv). The geodesic has con-102 stant speed equal to dγ v /dt (t) = v , and thus the exponential 103 map preserves distances for the initial point: d(p, Exp p (v)) = 104 v . A Riemannian manifold is geodesically complete if and 105 only if the exponential map Exp p (v) is defined ∀p ∈ M and 106 ∀v ∈ T p M. The inverse operator, named logarithm map, 107 Exp -1 p = Log p maps a point of q ∈ M into to their associated 108 tangent vectors v ∈ T p M. The exponential map is in general 109 only invertible for a sufficient small neighbourhood of the ori-110 gin in T p M, although on some manifolds the inverse exists for 111 arbitrary neighbourhoods. For a point q in the domain of Log p 112the geodesic distance between p and q is given by d(p, q) = 113 Log p (q) .

  Let M a complete Riemannian manifold and d M : M × M → R + , (x, y) → d M (x, y), is the geodesic distance on M, for any image f :

125

  ucts of the pair (ε λ , δ λ ) lead to the adjoint opening and adjoint 126 closing if and only the field of geodesic structuring functions is 127 computed on a common manifold M. 128 Definition 3. Given an image f ∈ F (M, R), the canonic Riemannian opening and canonic Riemannian closing of scale parameter λ are respectively given by

156 5 .

 5 (Extrema preservation) We have sup δ λ ( f ) = sup f and 157 inf ε λ ( f ) = inf f , moreover if f is lower (resp. upper) 158 semicontinuous then every minimizer (resp. maximizer) of 159 ε λ ( f ) (resp. δ λ ( f )) is a minimizer (resp. maximizer) of f , Flat isotropic Riemannian dilation and erosion 162

  210 proven that one can build grey-level Euclidean granulometries 211 with one structuring function if and only if this function has a 212 convex compact domain and is constant there (flat function). 213 We can naturally extend Matheron axiomatic to the general 214 case of openings in Riemannian supported images. We start 215 by giving a result which is valid for families of openings {ψ λ } 216 (idempotent and anti-extensive operators) more general than the 217 canonic Riemannian openings.

  221for flat isotropic Riemannian openings. 222 The Riemannian case closest to Matheron's Euclidean gran-223 ulometries corresponds to the flat isotropic Riemannian open-224 ings γ B r associated to a concave quadratic geodesic structuring 225 function q λ (x, y). Or in other terms, the case of a Riemannian 226 manifold M where the Riemannian distance is always a con-227 vex function, since this fact involves that B r (x) as defined in (7) 228

280Lasry-

  Lions regularization has been recently generalized to 281 finite dimensional compact manifolds Bernard (2010); Bernard 282 and Zavidovique (2013), and consequently these results can be 283 used to show how Riemannian morphological operators are ap-284 propriate for image regularization. More precisely, let us focus 285 on the case where M is finite dimensional compact Cartan-286 Hadamard manifold, hence every two points can be connected 287 by a minimizing geodesic. We remind that a Cartan-Hada-288 mard manifold is a simply connected Riemannian manifold M 289 with sectional curvature K ≤ 0 (Lang, 1999). Let A be a 290 closed convex subset of M. Then the distance function to A, 291 x → d M (x, A), where d M (x, A) = inf {d M (x, y) : y ∈ A} is C 1 292 smooth on M \ A and, moreover, the square of the distance 293 function x → d M (x, A) 2 is C 1 smooth and convex on all of 294 M (Azagra and Ferrera, 2006). Consequently, if M is a Cartan-295 Hadamard manifold, the structuring function x → q(x, y), ∀y ∈ 296 M, is always a concave function; or equivalently, -q(x, y) is a 297 convex function. 298 Theorem 9. Let M be a compact finite dimensional Cartan-299 Hadamard manifold. Let Ω ⊂ M be a bounded set of M. Given 300 a image f ∈ F (Ω, R), for all 0 < µ < λ let us define the 301 Riemannian Lasry-Lions regularizers:

  y). Let consider now the most general family of Riemannian operators. We start by introducing the minimal properties that a Riemannian structuring function should verify. Definition 10. Let M be a Riemannian manifold. A mapping b : M × M → R defined for any pair of points in M is said an admissible Riemannian structuring function in M if and only if 1. b(x, y) ≤ 0, ∀x, y ∈ M (non-positivity); 2. b(x, x) = 0, ∀x ∈ M (maximality at the diagonal). Now, we can introduce the pair of dilation and erosion for any image f according to b. Definition 11. Given an admissible Riemannian structuring function b in a Riemannian manifold M, the Riemannian dilation and Riemannian erosion of an image f ∈ F (M, R) by b are given respectively by

)

  Note that this formulation has been considered recently in the framework of adaptive morphology[START_REF] Ćurić | Salience-Based Parabolic Structuring 623 Functions[END_REF]. Both are increasing operators which, by the maximality at the diagonal, preserves the extrema. By the nonpositivity, Riemannian dilation is extensive and erosion is antiextensive. In addition, we can easily check that the pair (ε b , δ b ) forms an adjunction as in Proposition 3. Consequently, their composition leads to the Riemannian opening and closing according to the admissible Riemannian structuring function b

  370 metric part b sym (x, y) is a concave function for any λ > 0 and 371 any p > 1. 372 Asymmetric structuring function. Relevant forms of the asymmetric term is an open issue on Riemannian morphology, which will probably allows to introduce more advanced morphological operators. For instance, we can fix a reference point o ∈ M and define, for x, y ∈ M, y o, the function b asym λ,o (x, y) = -1 2λ d M (x, y) 2 d M (y, o) 2 . The assignment x → b asym λ,o (x, y) involves a shape strongly de-373 formed near the reference point. One can also replace the ref-374 erence point by a set O ⊂ M, hence changing d M (y, o) by the 375 distance function d M (y, O).

378a

  point x ∈ M and a ray γ starting at x in the direction of 379 the tangent vector v, i.e., a unit-speed geodesic line γ : [0, ∞) 380 → M such that d M (γ(0), γ(t)) = t for all t ≥ 0, one defines its 381 Busemann function b γ x,v by the formula 382

  y) if sect. curvature of M < 0 obtained by Busemann functions allow to introduce a shape 384 which depends on the distance between the point x and a kind 385 of orthogonal projection of point y on the geodesic along the 386 direction v. Hence, it could be a way to introduce directional 387 b(x; y) which are defined by the 392 geodesic distance function on M. Let us consider now the case 393 where a prior (semi-continuous) structuring function b external 394 to M is given and it should be adapted to each point x ∈ M. 395 Our approach is inspired from Roerdink (1994) formulation of 396 dilation/erosion for binary images on smooth surfaces.397 5.1. Manifold morphology 398

  399the normal at ω. For instance, if à = Log ω (A) is a line segment 400 of length r starting at ω then Ā is a disk of radius r centered at 401 ω. 402 5.2. b ω -transported Riemannian dilation and erosion 403 Coming back to our framework of real-valued images on 404 a geodesically complete Riemannian manifold M. From our 405 viewpoint, it seems more appropriate to fix the reference struc-406 turing element as a Boolean set S on the tangent space at the 407 reference point ω ∈ M, i.e., S ω ⊂ T ω M. More precisely, let 408 S ω be a compact set which contains the origin of T ω M. We can 409 now formulate the S ω -transported flat Riemannian dilation and 410 erosion as

  ) Obviously, the case of a concave structuring function b ω is 418 particularly well defined since in such a case, its cross-sections 419 are convex sets. In addition, if M is a Cartan-Hadamard 420 manifold, the corresponding Riemannian structuring function 421 b ω (x, y) is also a concave function. 422 A typical useful case consists in taking at reference ω the structuring function: b ω (v) = -v T Qv 2 7 where Q is a d × d symmetric positive definite matrix, d being the dimension of manifold M. It corresponds just to a generalized quadratic function such that the eigenvectors of Q define the principal directions of the concentric ellipsoids and the eigenvalues their eccentricity. Therefore, we can introduce by means of Q an anisotropic/directional shape on b ω (x, y). We can easily check that Q = 1 λ I, I being the identity matrix of dimension d, corresponds just to the canonic Riemannian dilation and erosion (1) and (2). Without an explicit expression of the exponential map, we cannot compute straightforwardly the b ω -transported Riemannian dilation and erosion on a Riemannian manifold M. This is for instance the situation when is f is an image on a 3D smooth surface. Hence, in the case of applications to valued surfaces, manifold learning techniques as LOGMAP (Brun et al., 2005) can be used to numerically obtain the transported cross-sections on M. 6. Connections with classical Euclidean morphology 6.1. Spatially-invariant operators First of all, it is obvious that the Riemannian dilation/erosion naturally extends the quadratic Euclidean dilation/erosion for images F (R d , R) by considering that the intrinsic distance is the Euclidean one (or the discrete one for Z d ), i.e., d M (x, y) =

Figure 2 :

 2 Figure 2: Morphological processing of real valued 3D surface: (a) original image on a surface S ⊂ R 3 , f (x) ∈ F (S, R + ); (b) and (c) Riemannian dilation δ λ ( f )(x) with respectively λ = 4 and λ = 8; (d) and (e) Riemannian closing ϕ λ ( f )(x) with respectively λ = 4 and λ = 8; (f) and (g) residue between the original surface and the Riemannian closings ϕ λ ( f )(x)f (x), λ = 4 and λ = 8.

  and hence the shape of 480 the corresponding Riemannian structuring function for f and f 481 will be different. This lack of contrast invariance can be easily 482 solved by using a logarithmic metric in the intensities. Hence, if 483 we assume positive intensities, f (x) > 0, for all x ∈ M, we can 484 consider the distance d M (ξ x , ξ y ) = min γ ξx ,ξy N i=1 d space (x i , x i+1 )+ 485 α| log f (x i )log f (x i+1 )|. This metric can be connected to the 486 logarithmic image processing (LIP) model (Jourlin and Pinoli, 487 1988). This geometry can be also justified from a human per-488 ception viewpoint. The classical Weber-Fechner law states that 489 human sensation is proportional to the logarithm of the stim-490 ulus intensity. In the case of vision, the eye senses brightness 491 approximately according to the Weber-Fechner law over a moderate range.

  Euclidean image into the structure tensor manifold Besides the space×intensity embeddings discussed just above, we can consider other more alternative non-Euclidean geometric embedding of scalar images, using for instance the local structure.

  1 , M 2 ∈ SPD(n). Let consider now the embedding f (x) → ξ x = (x 1 , x 2 , αS ( f )(x 1 , x 2 )), α > 0, in the product manifold M = R 2 × SPD(2), which has the product metric ds 2 M = ds 2 space + αds 2 S PD(2). It is a (complete, not compact, negative sectional curved) Riemannian manifold of geodesic distance given by d M (ξ x , ξ y ) = min γ ξx ,ξyN i=1 d space (x i , x i+1 ) +α d S PD(n) (S ( f )(x i ), S ( f )(x i+1)), which is asymptotically equal to d M (ξ x , ξ y ) 2 ≈ d space (x, y) 2 + αd S PD(2) (S ( f )(x), S ( f )(y)) 2 .

Figure 3 :

 3 Figure 3: Morphological processing of real valued 3D surface of a face: (a) original image on a surface S ⊂ R 3 , f (x) ∈ F (S, R + ); (b) example of geodesic ball B r (x) at a given point x ∈ S; (d) and (e) Riemannian dilation δ λ ( f )(x) and Riemannian erosion ε λ ( f )(x) with λ = 0.5; (e) nonsmooth version of surface (added impulse noise); (f) filtered surface obtained by Lasry-Lions regularizers.
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Fig. 2

 2 Fig. 2 depicts examples of Riemannian dilation δ λ ( f ) and Rie-540
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  ( f ) = δ λ (ε λ ( f )), and ϕ λ ( f ) = ε λ (δ λ ( f )). We notice that

	129	This technical point is very important since in some image
	130	manifold embedding the Riemannian manifold support M of
	131	image f depends itself on f . If M does not depends on f , the
	132	canonic Riemannian opening and closing are respectively given
	by γ λ 133
	134	this issue was already considered by Roerdink (2009) for the
	135	case of adaptive neighbourhood morphology.
	136	Having the canonic Riemannian opening and closing, all the
	137	other morphological filters defined by composition of them are
		easily obtained.

138 3.1. Properties of δ λ ( f ) and ε λ ( f ) 139 Classical properties of Euclidean dilation and erosion have 140 also the equivalent for Riemannian manifold M, and they do 141 not dependent on the geometry of M. 142 Proposition 4. Let M be a Riemannian manifold, and let f, g ∈ 143 F (M, R) two real valued images M. We have the following 144

We have introduced in this paper a general theory for the 552 formulation of mathematical morphology operators for images 553 valued on Riemannian manifolds. We have defined the main