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Abstract

This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold.
The starting point consists in replacing the Euclidean distance in the canonic quadratic structuring function by the Riemannian dis-
tance used for the adjoint dilation/erosion. We then extend the canonic case to a most general framework of Riemannian operators
based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian oper-
ators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition
of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We generalize also
some results on Lasry–Lions regularization for non-smooth images on Cartan–Hadamard manifolds. Theoretical connections with
previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various
useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing
real-valued 3D surfaces.

Keywords: mathematical morphology, manifold nonlinear image processing, Riemannian images, Riemannian image embedding,
Riemannian structuring function, morphological processing of surfaces

1. Introduction

Pioneered for Boolean random sets (Matheron, 1975), ex-
tended latter to grey-level images (Serra, 1982) and more gen-
erally formulated in the framework of complete lattices (Serra,
1988; Heijmans, 1994), mathematical morphology is a nonlin-
ear image processing methodology useful for solving efficiently
many image analysis tasks (Soille, 1999). Our motivation in
this paper is to formulate morphological operators for scalar
functions on curved spaces.

Let E be the Euclidean Rd or discrete space Zd (support
space) and let T be a set of grey-levels (space of values). It is
assumed that T = R = R ∪ {−∞,+∞}. A grey-level image is
represented by a function f : E → T , f ∈ F (E,T ), i.e., f maps
each pixel x ∈ E into a grey-level value in T . Given a grey-
level image, the two basic morphological mappings F (E,T )→
F (E,T ) are the dilation and the erosion given respectively by{

δb( f )(x) = ( f ⊕ b)(x) = supy∈E { f (y) + b(y − x)} ,
εb( f )(x) = ( f 	 b)(x) = infy∈E { f (y) − b(y + x)} ,

where b ∈ F (E,T ) is the structuring function which deter-
mines the effect of the operator. By allowing infinity values, the
further convention for ambiguous expressions should be con-
sidered: f (y)+b(x−y) = −∞when f (y) = −∞ or b(x−y) = −∞,
and that f (y)−b(y+x) = +∞when f (y) = +∞ or b(y+x) = −∞.
We easily note that both are invariant under translations in the
spatial (“horizontal”) space E and in the grey-level (“vertical”)
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space T , i.e., f (x) 7→ fh,α(x) = f (x − h) + α, x ∈ E and α ∈ R,
then δb( fh,α)(x) = δb( f )(x − h) + α. The other morphological
operators, such as the opening and the closing, are obtained by
composition of dilation/erosion (Serra, 1982; Heijmans, 1994).

The structuring function is usually a parametric multi-scale
family (Jackway and Deriche, 1996) bλ(x), where λ > 0 is the
scale parameter such that bλ(x) = λb(x/λ) and which satisfies
the semi-group property (bλ⊕bµ)(x) = bλ+µ(x). It is well known
in the state-of-the-art of Euclidean morphology that the canonic
family of structuring functions is the quadratic (or parabolic)
one (Maragos, 1995; van den Boomgaard and Dorst, 1997); i.e.,

bλ(x) = qλ(x) = −
‖x‖2

2λ
.

The most commonly studied framework, which additionally pre-
sents better properties of invariance, is based on flat structuring
functions, called structuring elements. More precisely, let B be
a Boolean set defined at the origin, i.e., B ⊆ E or B ∈ P(E),
which defines the “shape” of the structuring element, the asso-
ciated structuring function is given by

b(x) =

{
0 if x ∈ B
−∞ if x ∈ Bc

where Bc is the complement set of B in P(E). Hence, the flat
dilation and flat erosion can be computed respectively by the
moving local maxima and minima filters.

Aim of the paper. Let us consider now that the support space is
not Euclidean, see Fig. 1(a). This is the case for instance if we
deal with a smooth 3D surface, or more generally if the support
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space is a Riemannian manifold. The present work was inspired
by the idea of Riemannian inf-convolution introduced in (Aza-
gra and Ferrera, 2006), which replaced the Euclidean distance
in the canonic quadratic structuring function by the Rieman-
nian distance. We adopt exactly the same starting point for the
formulation of dilation/erosion in Riemannian manifolds (Sec-
tion 3). Besides the definition of Riemannian dilation/erosion
and Riemannian opening/closing, we explore their properties
and in particular the associated granulometric scale-space. We
also generalize some theoretical results on Lasry–Lions regu-
larization, with an original result for Cartan–Hadamard man-
ifolds. We then extend the canonic case to the most general
framework of Riemannian dilation/erosion and subsequent op-
erators in Section 4, by introducing the notion of admissible
Riemannian structuring function. Section 5 introduces a differ-
ent paradigm of morphological operators on Riemannian sup-
ported images, where the structuring function is an external da-
tum which is parallel transported to each point on the manifold.
We consider theoretically various useful case studies of image
manifolds in Section 7, but due to the limited paper length, we
only illustrate some cases of real-valued 3D surfaces.

This paper is an extended and completed version of the
ISMM’13 conference paper (Angulo and Velasco-Forero, 2013);
however, again by limited length, we have skipped the proofs
of all the theoretical results, some of them available on (Angulo
and Velasco-Forero, 2013).

Related work. Generalizations of Euclidean translation-inva-
riant morphology have followed three main directions. On the
one hand, adaptive morphology (Debayle and Pinoli, 2005; Ler-
allut et al., 2007; Welk et al., 2011; Verdú et al., 2011; Ćurić et
al., 2012; Angulo, 2013; Landström and Thurley, 2013; Velasco-
Forero and Angulo, 2013), where the structuring function be-
comes dependent on the position or the input image itself. Sec-
tion 6 explores the connections of our framework with such
kind of approaches. On the second hand, group morphology
(Roerdink, 2000), where the translation invariance is replaced
by other group invariance (similarity, affine, spherical, projec-
tive, etc.). Related to that, we have also the morphology for bi-
nary manifolds (Roerdink, 1994), whose relationship with our
formulation is deeply studied in Section 5. Finally, we should
cite also the classical notion of geodesic dilation (Lantuejoul
and Beucher, 1981) as the basic operator for (connective) geo-
desic reconstruction (Soille, 1999), where the marker image is
dilated according to the metric yielded by the reference image
(see also Section 6).

2. Basics on Riemannian manifold geometry

Let us remind in this section some basics on differential ge-
ometry for Riemannian manifolds (Berger and Gostiaux, 1987),
see Fig. 1(b) for a explanatory diagram.

The tangent space of the manifold M at a point p ∈ M,
denoted by TpM, is the set of all vectors tangent to M at p.
The first issue to consider is how to transport vectors from one
point ofM to another. Let p, q ∈ M and let γ : [a, b] →M be
a parameterized curve (or path) from γ(a) = p to γ(b) = q. For

(a)

(b)

Figure 1: (a) Real-valued Riemannian image. (b) Riemannian manifold at tan-
gent space a given point.

v ∈ TpM, let V be the unique parallel vector field along γ with
V(a) = v. The map Pγ : TpM→ TqM determined by Pγ(v) =

V(b) is called parallel transport from p to q along γ, and Pγ(v)
the parallel translate of v along γ to q. Note that parallel trans-
port from p to q is path dependent: the difference between two
paths is a rotation around the normal toM at q. The Rieman-
nian distance between two points p, q ∈ M, denoted d(p, q), is
defined as the minimum length over all possible smooth curves
between p and q. A geodesic γ : [0, 1] → M connecting two
points p, q ∈ M is the shortest path on M having elements p
and q as endpoints. The geodesic curve γ(t) can be specified in
terms of a starting point p ∈ M and a tangent vector (initial con-
stant velocity) v ∈ TpM as it represents the solution of Christof-
fel differential equation with boundary conditions γ(0) = p and
γ̇(0) = v. The idea behind exponential map Expp is to param-
eterize a Riemannian manifoldM, locally near any p ∈ M, in
terms of a mapping from the tangent space TpM into a point in
M. The exponential map is injective on a zero-centered ball B
in TpM of some non-zero (possibly infinity) radius. Thus for
a point q in the image of B under Expp there exists a unique
vector v ∈ TpM corresponding to a minimal length path under
the exponential map from p to q. Exponential maps may be
associated to a manifold by the help of geodesic curves. The
exponential map Expp : TpM→M associated to any geodesic
γv emanating from p with tangent at the origin v ∈ TpM is
defined as Expp(v) = γv(1), where the geodesic is given by
γv(t) = Expp(tv). The geodesic has constant speed equal to
‖dγv/dt‖(t) = ‖v‖, and thus the exponential map preserves dis-
tances for the initial point: d(p,Expp(v)) = ‖v‖. A Riemannian
manifold is geodesically complete if and only if the exponential
map Expp(v) is defined ∀p ∈ M and ∀v ∈ TpM. The inverse
operator, named logarithm map, Exp−1

p = Logp maps a point
of q ∈ M into to their associated tangent vectors v ∈ TpM.
The exponential map is in general only invertible for a sufficient
small neighbourhood of the origin in TpM, although on some
manifolds the inverse exists for arbitrary neighbourhoods. For
a point q in the domain of Logp the geodesic distance between
p and q is given by d(p, q) = ‖Logp(q)‖.
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3. Canonic Riemannian dilation and erosion

Let us start by a formal definition of the two basic canonic
morphological operators for images supported on a Riemannian
manifold.

Definition 1. LetM a complete Riemannian manifold and dM :
M × M → R+, (x, y) 7→ dM(x, y), is the geodesic distance
on M, for any image f : M → R, R = R ∪ {−∞,+∞}, so
f ∈ F (M,R) and for λ > 0 we define for every x ∈ M the
canonic Riemannian dilation of f of scale parameter λ as

δλ( f )(x) = sup
y∈M

{
f (y) −

1
2λ

dM(x, y)2
}

(1)

and the canonic Riemannian erosion of f of parameter λ as

ελ( f )(x) = inf
y∈M

{
f (y) +

1
2λ

dM(x, y)2
}

(2)

An obvious property of the canonic Riemannian dilation
and erosion is the duality by the involution f (x) 7→ { f (x) =

− f (x), i.e., δλ( f ) = {ελ({ f ). As in classical Euclidean mor-
phology, the adjunction relationship is fundamental for the con-
struction of the rest of morphological operators.

Proposition 2. For any two real-valued images defined on the
same Riemannian manifold M, i.e., f , g : M → R, the pair
(ελ, δλ) is called the canonic Riemannian adjunction

δλ( f )(x) ≤ g(x)⇔ f (x) ≤ ελ(g)(x) (3)

Hence, we have an adjunction if both images f and g are
defined on the same Riemannian manifoldM, or in other terms,
when the same “quadratic geodesic structuring function”:

qλ(x; y) = −
1

2λ
dM(x, y)2, (4)

is considered for pixel x 7→ qλ(x; y), y ∈ M in both f and
g. This result implies in particular that the canonic Rieman-
nian dilation commutes with the supremum and the dual ero-
sion with the infimum, i.e., for a given collection of images
fi ∈ F (M,R), i ∈ I, we have

δλ

∨
i∈I

fi

 =
∨
i∈I

δλ( fi); ελ

∧
i∈I

fi

 =
∧
i∈I

ελ( fi).

In addition, using the classical result on adjunctions in complete
lattices (Heijmans, 1994), we state that the composition prod-
ucts of the pair (ελ, δλ) lead to the adjoint opening and adjoint
closing if and only the field of geodesic structuring functions is
computed on a common manifoldM.

Definition 3. Given an image f ∈ F (M,R), the canonic Rie-
mannian opening and canonic Riemannian closing of scale pa-
rameter λ are respectively given by

γλ( f )(x) = sup
z∈M

inf
y∈M

{
f (y) +

1
2λ

dM(z, y)2 −
1

2λ
dM(z, x)2

}
, (5)

and

ϕλ( f )(x) = inf
z∈M

sup
y∈M

{
f (y) −

1
2λ

dM(z, y)2 +
1

2λ
dM(z, x)2

}
. (6)

This technical point is very important since in some image
manifold embedding the Riemannian manifold support M of
image f depends itself on f . IfM does not depends on f , the
canonic Riemannian opening and closing are respectively given
by γλ( f ) = δλ (ελ( f )), and ϕλ( f ) = ελ (δλ( f )). We notice that
this issue was already considered by Roerdink (2009) for the
case of adaptive neighbourhood morphology.

Having the canonic Riemannian opening and closing, all the
other morphological filters defined by composition of them are
easily obtained.

3.1. Properties of δλ( f ) and ελ( f )
Classical properties of Euclidean dilation and erosion have

also the equivalent for Riemannian manifold M, and they do
not dependent on the geometry ofM.

Proposition 4. LetM be a Riemannian manifold, and let f , g ∈
F (M,R) two real valued images M. We have the following
properties for the canonic Riemannian operators.

1. (Increaseness) If f (x) ≤ g(x), ∀x ∈ M then δλ( f )(x) ≤
δλ(g)(x) and ελ( f )(x) ≤ ελ(g)(x), ∀x ∈ M and ∀λ > 0.

2. (Extensivity and anti-extensivity) δλ( f )(x) ≥ f (x) and
ελ( f )(x) ≤ f (x), ∀x ∈ M and ∀λ > 0.

3. (Ordering property) If 0 < λ1 < λ2 then δλ2 ( f )(x) ≥
δλ1 ( f )(x) and ελ2 ( f )(x) ≤ ελ1 ( f )(x).

4. (Invariance under isometry) If T :M→M is an isome-
try ofM and if f is invariant under T , i.e., f (Tz) = f (z)
for all z ∈ M, then the Riemannian dilation and erosion
are also invariant under T , i.e., δλ( f )(Tz) = δλ( f )(z) and
ελ( f )(Tz) = ελ( f )(z), ∀z ∈ M and ∀λ > 0.

5. (Extrema preservation) We have sup δλ( f ) = sup f and
inf ελ( f ) = inf f , moreover if f is lower (resp. upper)
semicontinuous then every minimizer (resp. maximizer)
of ελ( f ) (resp. δλ( f )) is a minimizer (resp. maximizer) of
f , and conversely.

3.2. Flat isotropic Riemannian dilation and erosion
In order to obtain the counterpart of flat isotropic Euclidean

dilation and erosion, we replace the quadratic structuring func-
tion qλ(x, y) by a flat structuring function given by the geodesic
ball of radius r centered at x, i.e.,

Br(x) = {y : dM(x, y) ≤ r}, r > 0. (7)

The corresponding flat isotropic Riemannian dilation and
erosion of size r are given by:

δBr ( f )(x) = sup
{
f (y) : y ∈ B̌r(x)

}
, (8)

εBr ( f )(x) = inf { f (y) : y ∈ Br(x)} . (9)

where B̌r(x) is the transposed shape of ball Br(x). Correspond-
ing flat isotropic Riemannian opening and closing are obtained
by composition of operators (8) and (9):

γBr ( f ) = δBr

(
εBr ( f )

)
; ϕBr ( f ) = εBr

(
δBr ( f )

)
. (10)

All the properties formulated for canonic operators hold for flat
isotropic ones too. For practical applications, it should be noted
that flat operators typically lead to stronger filtering effects than
the quadratic ones.
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3.3. Riemannian granulometries:
scale-space properties of γλ( f ) and ϕλ( f )

For the canonic Riemannian opening and closing, we have
also the classical properties which are naturally proved as a con-
sequence of the adjunction, see (Heijmans, 1994).

Proposition 5. Let γλ( f ) and ϕλ( f ) be respectively the canonic
Riemannian opening and closing of an image f ∈ F (M,R).

1. γλ( f ) and ϕλ( f ) are both increasing operators.
2. γλ( f ) is anti-extensive and ϕλ( f ) extensive with the fol-

lowing ordering relationships, i.e., for for 0 < λ1 ≤ λ2,
we have:

γλ2 ( f )(x) ≤ γλ1 ( f )(x) ≤ f (x) ≤ ϕλ1 ( f )(x) ≤ ϕλ2 ( f )(x);
(11)

3. idempotency of both operators, γλ (γλ( f )) = γλ( f ) and
ϕλ (ϕλ( f )) = ϕλ( f )

Property 3 on idempotency together with the increaseness
defines a family of so-called algebraic openings/closings (Serra,
1988; Heijmans, 1994) larger than the one associated to the
composition of dilation/erosion. Idempotent and increasing op-
erators are also known as ethmomorphisms by Kiselman (2007).
Anti-extensivity and extensivity involves that γλ is a anoikto-
morphism and ϕλ a cleistomorphism. One of the most classical
results in morphological operators provided us an example of
algebraic opening: given a collection of openings {γi}, increas-
ing, idempotent and anti-extensive operators for all i, the supre-
mum of them supi γi is also an opening (Matheron, 1975). A
dual result is obtained for the closing by changing the sup by
the inf.

The class of openings (resp. closings) is neither closed un-
der infimum (resp. opening) or a generic composition. There is
however a semi-group property leading to a scale-space frame-
work for opening/closing operators, known as granulometries.
The notion of granulometry in Euclidean morphology is sum-
marized in the following results (Matheron, 1975; Serra, 1988).

Theorem 6 (Matheron (1975), Serra (1988)). A parameterized
family {γλ}λ>0 of flat openings from F (E,T ) into F (E,T ) is a
granulometry (or size ditritribution) when

γλ1γλ2 = γλ2γλ1 = γsup(λ1,λ2); λ1, λ2 > 0. (12)

Condition (12) is equivalent to both

γλ1 ≤ γλ2 ; λ1 ≥ λ2 > 0; (13)

Bλ1 ⊆ Bλ2 ; λ1 ≥ λ2 > 0

where Bλ is the invariance domain of the opening at scale λ;
i.e., the family of structuring elements Bs such that B = γλ(B)
(Serra, 1988).

By duality, we introduce antisize distributions as the families of
closings {ϕλ}λ>0.

Axiom (12) shows how translation invariant flat openings
are composed and highlights their semi-group structure. Equiv-
alent condition (13) emphasizes the monotonicity of the granu-
lometry with respect to λ: the opening becomes more and more

active as λ increases. When dealing with Euclidean spaces,
Matheron (1975) introduced the notion of Euclidean granulom-
etry as the size distribution being translationally invariant and
compatible with homothetics, i.e., γλ( f (x)) = λγ1( f (λ−1x)),
where f ∈ F (E,T ) is an Euclidean grey-level images. More
precisely, a family of mappings γλ is an Euclidean granulome-
try if and only if there exist a class B′ such that

γλ( f ) =
∨
B∈B′

∨
µ≥λ

γµB( f ).

Then the domain of invariance Bλ are equal to λB, where B is
the class closed under union, translation and homothetics ≥ 1,
which is generated by B′. If we reduce the class B′ to a single
element B, the associated size distribution becomes

γλ( f ) =
∨
µ≥λ

γµB( f ).

The following key result simplifies the situation. The size dis-
tribution by a compact structuring element B is equivalent to
γλ( f ) = γλB( f ) if and only if B is convex. The extension
of granulometric theory to non-flat structuring functions was
deeply studied in (Kraus et al., 1993). In particular, it was
proven that one can build grey-level Euclidean granulometries
with one structuring function if and only if this function has a
convex compact domain and is constant there (flat function).

We can naturally extend Matheron axiomatic to the general
case of openings in Riemannian supported images. We start
by giving a result which is valid for families of openings {ψλ}
(idempotent and anti-extensive operators) more general than the
canonic Riemannian openings.

Proposition 7. Given the set of Riemannian openings {ψλ}λ>0
indexed according to the positive parameter λ, but not nec-
essary ordered between them, the corresponding Riemannian
granulometry on image f ∈ F (M,R) is the family of multi-
scale openings {Γλ}λ>0 generated as

Γλ( f ) =
∨
µ≥λ

ψµ( f )

such that the granulometric semi-group law holds for any pair
of scales:

Γλ1

(
Γλ2 ( f )

)
= Γλ2

(
Γλ1 ( f )

)
= Γsup(λ1,λ2)( f ). (14)

In the particular case of canonic Riemannian openings, {γλ}λ>0,
we always have γλ1 ≤ γλ2 if λ1 ≥ λ2 > 0. Hence, Γλ( f ) = γλ
and consequently {γλ}λ>0 is a granulometry. This is also valid
for flat isotropic Riemannian openings.

The Riemannian case closest to Matheron’s Euclidean gran-
ulometries corresponds to the flat isotropic Riemannian open-
ings γBr associated to a concave quadratic geodesic structuring
function qλ(x, y). Or in other terms, the case of a Riemannian
manifold M where the Riemannian distance is always a con-
vex function, since this fact involves that Br(x) as defined in (7)
is a convex set for any r at any x ∈ M. Obviously, the flat
convex Riemannian granulometry

{
γBr

}
r>0 is not translation in-

variant but we have that Br1 (x) ⊆ Br2 (x), for r2 ≥ r1 and for any
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x ∈ M, which involves a natural sieving selection of features in
the neighborhood of any point x.

A Riemannian distance function which is convex is not only
useful for scale-space properties. As discussed just below, one
has powerful results of regularization too.

3.4. Concavity of qλ(x; y) and Lipschitz image regularization
using (ελ, δλ)

In the field of convex analysis, Moreau–Yosida regulariza-
tion (Moreau, 1967) consists in computing a regularized version
of a scalar function defined on a vector space, by means of an
Euclidean erosion using quadratic structuring function.

As discussed in (Azagra and Ferrera, 2006), the results of
Moreau–Yosida regularization are extended to functions on a
Cartan–Hadamard manifold. We remind that a Cartan–Hada-
mard manifold is a simply connected Riemannian manifoldM
with sectional curvature K ≤ 0 (Lang, 1999). In fact, an as-
sumption of non-positive curvature of M is necessary in or-
der that dM be uniformly locally convex around the diagonal
M×M.

LetM be a finite dimensional Cartan–Hadamard manifold,
hence every two points can be connected by a minimizing geodesic.
Let A be a closed convex subset ofM. Then the distance func-
tion to A, x 7→ dM(x, A), where dM(x, A) = inf {dM(x, y) : y ∈ A}
is C1 smooth on M \ A and, moreover, the square of the dis-
tance function x 7→ dM(x, A)2 is C1 smooth and convex on all of
M (Azagra and Ferrera, 2006). Consequently, ifM is a Cartan–
Hadamard manifold, the structuring function x 7→ q(x, y), ∀y ∈
M, is always a concave function; or equivalently, −q(x, y) is a
convex function.

In this context, we have the following result (Azagra and
Ferrera, 2006).

Theorem 8 (Azagra and Ferrera(2006)). LetM be a Cartan–
Hadamard manifold. Let f : M → R ∪ {+∞} be a lower-
semicontinuous convex function. Then, the functions fλ :M→
R, defined by (the canonic Riemannian erosion)

fλ(x) = ελ( f )(x) = inf
y∈M
{ f (y) − qλ(x, y)}

are convex and 1-Lipschitz continuous for all λ > 0. If f is uni-
formly continuous on bounded set, fλ converges to f uniformly
on bounded sets.

As a generalization of the use of Moreau–Yosida regulariza-
tion, the Lasry–Lions regularization (Lasry and Lions, 1986) is
a theory of nonsmooth approximation for functions in Hilbert
spaces using combinations of Euclidean dilation and erosion
with quadratic structuring functions, which leads to the approx-
imation of lower or upper-semicontinuous functions by Lips-
chitz continuous functions, without assuming convexity of f .
We propose the following result which generalizes the case of
convex functions in Cartan–Hadamard manifolds studied by Aza-
gra and Ferrera (2006) using the results for Hilbert spaces by At-
touch and Aze (1993) for the Lasry–Lions regularization.

Theorem 9. LetM be a Riemannian manifold simply connected
and with sectional curvature K ≤ 0. Given two images f , g ∈

F (M,R), for all 0 < µ < λ let us define the Lasry–Lions regu-
larizers:

( fλ)µ(x) = sup
z∈M

inf
y∈M

{
f (y) +

1
2λ

dM(z, y)2 −
1

2µ
dM(z, x)2

}
(gλ)µ(x) = inf

z∈M
sup
y∈M

{
g(y) −

1
2λ

dM(z, y)2 +
1

2µ
dM(z, x)2

}
We have ( fλ)µ ≤ f and (gλ)µ ≥ g. Assume that there exists
c, d > 0, such that we have the following growing conditions:

f (x) ≥ −
c
2

(1 + d(x, x0)2), g(x) ≤
d
2

(1 + d(x, x0)2), x0 ∈ M.

Then, for all 0 < µ < λ < 1
c the pseudo-opened image ( fλ)µ

is a C1 function, for all 0 < µ < λ < 1
d the pseudo-closed

image (gλ)µ is a C1 function, whose gradient is Lipschitz con-
tinuous with constant max(1/µ, 1/(λ − µ)). The image ( fλ)µ is
a µ−1-weakly convex function and a (λ − µ)−1-weakly concave
function.

In addition, if f is a lower (resp. g is a upper) semicontinu-
ous function, the pseudo-opening of f (resp. pseudo-closing of
g) converges uniformly to f (resp. g); i.e., limλ,µ→0( fλ)µ(x) =

f (x) and limλ,µ→0(gλ)µ(x) = g(x).

As we can see, the convexity/concavity of the function f in
Theorem 8 has been replaced by some geodesically quadrati-
cally minorized f (x) ≥ − c

2 (1 + d(x, x0)2) and majorized g(x) ≤
d
2 (1 + d(x, x0)2) assumptions. The idea is that given a quadrat-
ically majorized function g inM of parameter d, the quadratic
dilation δλ with λ < c−1 produces a kind of λ-weakly convex
function. Then for any µ < λ (strictly smaller than the dilation
scale), the corresponding quadratic erosion εµ produces a func-
tion belongings to the class of bounded C1, with a Lipschitz
continuous gradient.

We notice that this theoretically valid only for manifolds of
nonpositive sectional curvature; the canonic example of nega-
tive curvature manifold is the hyperboloid; conversely, the typi-
cal case of positively curved Riemannian manifold is the sphere,
i.e., there are closed convex sets C of arbitrarily small diame-
ter in S2 such that x 7→ d(x,C) is not convex on any neigh-
borhood of C. Practical interest for quadratic “morphological
lipschitzation” of surfaces or images valued on surfaces should
be explored in ongoing work.

4. Generalized Riemannian morphological operators

We have discussed the canonic case on Riemannian mathe-
matical morphology associated to the structuring function qλ(x, y).
Let consider now the most general family of Riemannian oper-
ators. We start by introducing the minimal properties that a
Riemannian structuring function should verify.

Definition 10. Let M be a Riemannian manifold. A mapping
b :M×M→ R defined for any pair of points inM is said an
admissible Riemannian structuring function inM if and only if

1. b(x, y) ≤ 0, ∀x, y ∈ M (non-positivity);
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2. b(x, x) = 0, ∀x ∈ M (maximality at the diagonal).

Now, we can introduce the pair of dilation and erosion for any
image f according to b.

Definition 11. Given an admissible Riemannian structuring func-
tion b in a Riemannian manifold M, the Riemannian dilation
and Riemannian erosion of an image f ∈ F (M,R) by b are
given respectively by

δb( f )(x) = sup
y∈M
{ f (y) + b(x, y)} , (15)

εb( f )(x) = inf
y∈M
{ f (y) − b(y, x)} . (16)

Note that this formulation has been considered recently in the
framework of adaptive morphology (Ćurić and Luengo-Hendriks,
2013). Both are increasing operators which, by the maximality
at the diagonal, preserves the extrema. By the non-positivity,
Riemannian dilation is extensive and erosion is anti-extensive.
In addition, we can easily check that the pair (εb, δb) forms an
adjunction as in Proposition 3. Consequently, their composi-
tion leads to the Riemannian opening and closing according to
the admissible Riemannian structuring function b given respec-
tively by:

γb( f )(x) = sup
z∈M

inf
y∈M
{ f (y) − b(y, z) + b(z, x)} , (17)

ϕb( f )(x) = inf
z∈M

sup
y∈M
{ f (y) + b(z, y) − b(x, z)} . (18)

Remarkably, the symmetry of b is not a necessary condition for
the adjunction. Examples of such asymmetric structuring func-
tions have recently appeared in the context of stochastic mor-
phology (Angulo and Velasco-Forero, 2013), non-local mor-
phology (Velasco-Forero and Angulo, 2013) and saliency-based
adaptive morphology (Ćurić and Luengo-Hendriks, 2013).

In our framework, we propose a general form of any admis-
sible Riemannian structuring function b(x, y), ∀x, y ∈ M, which
should be decomposable into the sum of two terms:

b(x, y) = αbsym(x, y) + βbasym(x, y), α, β ≥ 0. (19)

Symmetric structuring function. The symmetric term of
the structuring function will be a scaled p-norm shaped func-
tion depending exclusively on the Riemannian distance, i.e.,
bsym(x, y) = bsym(y, x) = kλ,p (dM(x, y)) such that

kλ,p (η) = −Cp
η

p
p−1

λ
1

p−1

; λ > 0, p > 1,

where the normalization factor is given by Cp = (p − 1)p−
p

p−1 .
We note that with the shape parameter p = 2 we recover the
canonic quadratic structuring function. In fact, this general-
ization of the quadratic structuring is inspired from the solu-
tion of a generalized morphological PDE (Lions et al., 1987):
ut(t, x) + ‖ux(t, x)‖p = 0, (t, x) ∈ (0,+∞) × E; u(0, x) = f (x),
x ∈ E, since the quadratic one is the solution of the classi-
cal (Hamilton-Jacobi) morphological PDE (Bardi et al., 1984;
Crandall et al., 1992): ut(t, x) + ‖ux(t, x)‖2 = 0. Asymptotically,
one is dealing with almost flat shapes over M as p → 1; as

p > 2 increases and p→ ∞ the shape of kλ,p (η) evolves from a
parabolic shape p = 2, i.e., term on dM(x, y)2, to the limit case,
which is a conic shape, i.e., term on dM(x, y).

We note that ifM is a Cartan–Hadamard manifold, the sym-
metric part bsym(x, y) is a concave function for any λ > 0 and
any p > 1.

Asymmetric structuring function. Relevant forms of the
asymmetric term is an open issue on Riemannian morphology,
which will probably allows to introduce more advanced mor-
phological operators. For instance, we can fix a reference point
o ∈ M and define, for x, y ∈ M, y , o, the function

basym
λ,o (x, y) = −

dM(x, y)
λdM(y, o)

.

The assignment x 7→ basym
λ,o (x, y) involves a shape strongly de-

formed near the reference point. One can also replace the ref-
erence point by a set O ⊂ M, hence changing dM(y, o) by the
distance function dM(y,O).

An alternative asymmetric function could be based on the
notion of Busemann function (Ballmann et al., 1985). Given
a point x ∈ M and a ray γ starting at x in the direction of
the tangent vector v, i.e., a unit-speed geodesic line γ : [0,∞)
→ M such that dM(γ(0), γ(t)) = t for all t ≥ 0, one defines its
Busemann function bγx,v by the formula

bγx,v (y) = lim
t→∞

[
dM

(
x, γx,v(0)

)
− dM

(
y, γx,v(t)

)]
= lim

t→∞

[
t − dM

(
y, γx,v(t)

)]
.

Since t − dM
(
y, γx,v(t)

)
is bounded above by dM

(
x, γx,v(0)

)
and

is monotone non-decreasing in t, the limit always exists. It fol-
lows that |bγx,v (y) − bγx,v (z)| ≤ dM(y, z), i.e., Busemann function
is Lipschitz with constant 1. If M has non-negative sectional
curvature bγx,v (y) is convex. If M is Cartan–Hadamard mani-
fold, it is concave. Consequently, we can define our asymmetric
structuring function as

basym
λ,v (x, y) =

{
−λ−1bγx,v (y) if sect. curvature ofM ≥ 0
λ−1bγx,v (y) if sect. curvature ofM < 0

From a practical viewpoint, asymmetric structuring func-
tions obtained by Busemann function allow to introduce a shape
which depends on the distance between the point x and a kind
of orthogonal projection of point y on the geodesic along the
direction v. Hence, it could be a way to introduce directional
Riemannian operators.

5. Parallel transport of a fixed external structuring func-
tion

Previous Riemannian morphological operators are based on
geodesic structuring functions b(x; y) which are defined by the
geodesic distance function onM. Let us consider now the case
where a prior (semi-continuous) structuring function b external
to M is given and it should be adapted to each point x ∈ M.
Our approach is inspired from Roerdink (1994) formulation of
dilation/erosion for binary images on smooth surfaces.
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5.1. Manifold morphology

The idea behind the binary Riemannian morphology on smo-
oth surfaces introduced in (Roerdink, 1994) is to replace the
translation invariance by the parallel transport (the transforma-
tions are referred to as “covariant” operations). Let M be a
(geodesically complete) Riemannian manifold and P(M) de-
notes the set of all subsets of M. A binary image X on the
manifold is just X ∈ P(M). Let A ⊂ M be the basic structur-
ing, a subset which is defined on the tangent space at a given
point ω ofM by Ã = Logω(A) ⊂ TωM. Let γ = γ[p,q] be a path
from p to q, then the operator

τγ(A) = Expq Pγ Logp(A) = B,

transports the subset A of p to the set B of q. As the image of the
set X under parallel translation from p to q will depend in gen-
eral on which path is taken; the solution proposed in (Roerdink,
1994), denoted by δRoerdink

A , is to consider all possible paths
from p to q. The mapping δRoerdink

A : P(M) → P(M) given
by

δRoerdink
A (X) =

⋃
x∈M

⋃
γ

τγ(A) =
⋃
x∈M

⋃
γ

Expx Pγ[ω,x] Logω(A),

(20)
is a dilation of image X according to the structuring element A.
Using the symmetry group morphology (Roerdink, 2000), this
operator can be rewritten as

δRoerdink
A (X) =

⋃
x∈M

Exp
x

Pγ[ω,x] Log
ω

(Ā),

where Ā =
⋃

s∈Σ sA, with Σ being the holonomy group around
the normal at ω. For instance, if Ã = Logω(A) is a line segment
of length r starting at ω then Ā is a disk of radius r centered at
ω.

5.2. bω-transported Riemannian dilation and erosion

Coming back to our framework of real-valued images on
a geodesically complete Riemannian manifold M. From our
viewpoint, it seems more appropriate to fix the reference struc-
turing element as a Boolean set S on the tangent space at the
reference point ω ∈ M, i.e., S ω ⊂ TωM. More precisely, let
S ω be a compact set which contains the origin of TωM. We can
now formulate the S ω-transported flat Riemannian dilation and
erosion as

δ̆S ω
( f )(x) = sup

{
f (y) : y ∈ Expx Pγ

geo
[ω,x]

Š ω

}
, (21)

ε̆S ω
( f )(x) = inf

{
f (y) : y ∈ Expx Pγ

geo
[ω,x]

S ω

}
. (22)

Thus, in comparison to dilation (20), we prefer to consider in
our case that the parallel transport from ω to x is done exclu-
sively along the geodesic path γgeo

[ω,x] between ω and x, i.e., if S ω

is a line in ω then it will be also at x a line, but rotated.
This idea leads to a natural extension to the case where

the fixed datum is an upper-semicontinuous structuring func-
tion bω(v), defined in the Euclidean tangent space at ω, i.e.,

bω : TωM → [−∞, 0]. Let consider now the upper level sets
(or cross-section) of bω obtained by thresholding at a value l:

Xl(bω) = {v ∈ TωM : bω(v) ≥ l} , ∀l ∈ [−∞, 0]. (23)

The set of upper level sets constitutes a family of decreasing
closed sets: l ≥ m⇒ Xl ⊆ Xm and Xl = ∩{Xm,m < l}. Any func-
tion bω(v) can be now viewed as an unique stack of its cross-
sections, which leads to the following reconstruction property:

bω(v) = sup {l ∈ [−∞, 0] : v ∈ Xl(bω)} , ∀v ∈ M. (24)

Using this representation, the corresponding Riemannian struc-
turing function at ω is given by bω(ω, y) = sup{l ∈ [−∞, 0] : z ∈
Expω Xl(bω)}. In the case of a different point x ∈ M, the cross-
section should be transported to the tangent space of x before
mapping back toM, i.e.,

bω(x, y) = sup
{
l ∈ [−∞, 0] : z ∈ Expω Pγ

geo
[ω,x]

Xl(bω)
}
.

Finally, the bω-transported Riemannian dilation and erosion of
image f are given respectively by

δ̆bω ( f )(x) = sup
y∈M
{ f (y) + bω(x, y)} , (25)

ε̆bω ( f )(x) = inf
y∈M
{ f (y) − bω(y, x)} . (26)

Obviously, the case of a concave structuring function bω is
particularly well defined since in such a case, its cross-sections
are convex sets. In addition, ifM is a Cartan–Hadamard mani-
fold, the corresponding Riemannian structuring function bω(x, y)
is also a concave function.

A typical useful case consists in taking at reference ω the
structuring function:

bω(v) = −
vT Qv

2

where Q is a d × d symmetric positive definite matrix, d being
the dimension of manifold M. It corresponds just to a gener-
alized quadratic function such that the eigenvectors of Q de-
fine the principal directions of the concentric ellipsoids and the
eigenvalues their eccentricity. Therefore, we can introduce by
means of Q an anisotropic/directional shape on bω(x, y). We
can easily check that Q = 1

λ
I, I being the identity matrix of di-

mension d, corresponds just to the canonic Riemannian dilation
and erosion (1) and (2).

Without an explicit expression of the exponential map, we
cannot compute straightforward the bω-transported Riemannian
dilation and erosion on a Riemannian manifoldM. This is for
instance the situation when is f is an image on a 3D smooth
surface. Hence, in the case of applications to valued surfaces,
manifold learning techniques as LOGMAP (Brun et al., 2005)
can be used to numerically obtain the transported cross-sections
onM.

6. Connections with classical Euclidean morphology

Riemannian dilation and erosion generalize previous opera-
tors in Euclidean morphology for both, translation invariant and
spatially-variant morphology.
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6.1. Spatially-invariant operators
First of all, it is obvious that the Riemannian dilation/erosion

naturally extends the quadratic Euclidean dilation/erosion for
images F (Rd,R) by considering that the intrinsic distance is
the Euclidean one (or the discrete one for Zd), i.e., dM(x, y) =

‖x − y‖ = dspace(x, y).
By the way, we note also that definition of the Riemannian

flat dilation and erosion of size r given in (8) and (9) are com-
patible with the formulation of the classical geodesic dilation
and erosion (Lantuejoul and Beucher, 1981) of size r of im-
age f (marker) constrained by the image g (reference or mask),
δg,λ( f ) and εg,λ( f ), which underly the operators by reconstruc-
tion (Soille, 1999), where the upper-level sets of the reference
image g are considered as the manifoldM where the geodesic
distance is defined.

6.2. Adaptive (spatially-variant) operators
From (Kimmel et al., 1997), the idea of embedding a 2D

grey-level image f ∈ F (R2,R), x = (x1, x2), into a surface
embedded in R3, i.e.,

f (x) 7→ ξx = (x1, x2, α f (x1, x2)), α > 0,

where α is a scaling parameter useful for controlling intensity
distances, has become popular in differential geometry inspired
image processing. This embedded Riemannian manifoldM =

R2×R has a product metric of type ds2
M

= ds2
space+αds2

f , where
ds2

space = dx2
1 + dx2

2 and ds2
f = d f 2. The geodesic distance

between two points ξx, ξy ∈ M is the length of the shortest path
between the points, i.e., dM(ξx, ξy) = minγ=γ[ξx ,ξy ]

∫
γ

dsM.
As shown in (Welk et al., 2011), this is essentially the frame-

work behind the morphological amoebas (Lerallut et al., 2007),
which are flat spatially adaptive structuring functions centered
in a point x, Aλ(x), computed by thresholding the geodesic dis-
tance at radius λ > 0, i.e., Aλ(x) =

{
y ∈ E : dM(ξx, ξy) < λ

}
. In

the discrete setting, the geodesic distance is given by

dM(ξx, ξy) = min
{ξ1=ξx,ξ2,··· ,ξN =ξy}

N∑
i=1

α| f (xi) − f (xi+1)|

+

√
(xi

1 − xi+1
1 )2 + (xi

2 − xi+1
2 )2. (27)

We should remark that for x → y and assuming a smooth man-
ifold, the geodesic distance is asymptotically equivalent to the
corresponding distance in the Euclidean product space, i.e.,

dM(ξx, ξy)2 ≈ dspace(x, y)2 + α2| f (x) − f (y)|2, (28)

which is the distance appearing in the bilateral structuring func-
tions (Angulo, 2013). We can also see that the salience maps
behind the salience adaptive structuring elements (Ćurić et al.,
2012) can be approached in a Riemannian formulation by choos-
ing the appropriate metric.

7. Various useful case studies

We state in this Section several interesting cases of image
manifolds (and their corresponding Riemannian distances) which
can be processed using Riemannian morphological operators.

7.1. Hyperbolic embedding of an Euclidean positive image into
Poincaré half-spaceH3

Shortest path distance (27) is not invariant to scaling of im-
age intensity, i.e., f 7→ f ′ = β f , β > 0 involves that | f ′(xi) −
f ′(xi+1)| = β| f (xi) − f (xi+1)| and hence the shape of the corre-
sponding Riemannian structuring function for f and f ′ will be
different. This lack of contrast invariance can be easily solved
by using a logarithmic metric in the intensities. Hence, if we
assume positive intensities, f (x) > 0, for all x ∈ M, we can
consider the distance dM(ξx, ξy) = minγξx ,ξy

∑N
i=1 dspace(xi, xi+1)+

α| log f (xi) − log f (xi+1)|. This metric can be connected to the
logarithmic image processing (LIP) model (Jourlin and Pinoli,
1988). This geometry can be also justified from a human per-
ception viewpoint. The classical Weber-Fechner law states that
human sensation is proportional to the logarithm of the stim-
ulus intensity. In the case of vision, the eye senses brightness
approximately according to the Weber-Fechner law over a mod-
erate range.

Following the same assumption of positive intensities, we
can also consider that a 2D image can be embedded into the
hyperbolic space H3 (Cannon et al., 1997). More particularly
the (Poincaré) upper half-space model is the domain H3 =

{(x1, x2, x3) ∈ R3 | x3 > 0} with the Riemannian metric ds2
H3 =

dx2
1+dx2

2+dx2
3

x2
3

. This space has constant negative sectional curva-
ture. If we consider the image embedding f (x) 7→ ξx = (x1, x2, f (x1, x2)) ∈
H3, the Riemannian distance needed for morphological opera-
tors will be given by

dM(ξx, ξy) = min
γξx ,ξy

N∑
i=1

cosh−1
1 +

(xi
1 − xi+1

1 )2 + (xi
2 − xi+1

2 )2 + ( f (xi) − f (xi+1)2

2 f (xi) f (xi+1)

 . (29)

The geometry of this space is extremely rich in particular con-
cerning the invariance and isometric symmetry. Hence, dis-
tance (29) is for instance invariant to translations ξ = (x1, x2, x3)
7→ ξ + α, α ∈ R, scaling ξ 7→ βξ, β > 0. A specific theory on
granulometric scale-space properties in this embedding can be
intended.

7.2. Embedding an Euclidean image into the structure tensor
manifold

Besides the space×intensity embeddings discussed just above,
we can consider other more alternative non-Euclidean geomet-
ric embedding of scalar images, using for instance the local
structure.

More precisely, given a 2D Euclidean image f (x) = f (x1, x2)
∈ F (R2,R), the structure tensor representing the local orienta-
tion and edge information (Förstner and Gülch, 1987) is ob-
tained by Gaussian smoothing of the dyadic product ∇ f∇ f T :

S ( f )(x) = Gσ∗
(
∇ f (x1, x2)∇ f (x1, x2)T

)
=

(
sx1 x1 (x1, x2) sx1 ,x2 (x1, x2)
sx1 x2 (x1, x2) sx2 x2 (x1, x2)

)
where ∇ f (x1, x2) =

(
∂ f (x1 ,x2)

∂x1
, ∂ f (x1 ,x2)

∂x2

)T
is the 2D spatial intensity

gradient and Gσ stands for a Gaussian smoothing with a stan-
dard deviation of σ. From a mathematical viewpoint, S ( f )(x) :
E → SPD(2) is an image where at each pixel we have a sym-
metric positive definite matrix 2 × 2. The differential geome-
try in the manifold SPD(n) is very well-known (Bhatia, 2007).
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2: Morphological processing of real valued 3D surface: (a) original
image on a surface S ⊂ R3, f (x) ∈ F (S,R+); (b) and (c) Riemannian dilation
δλ( f )(x) with respectively λ = 4 and λ = 8; (d) and (e) Riemannian closing
ϕλ( f )(x) with respectively λ = 4 and λ = 8; (f) and (g) residue between the
original surface and the Riemannian closings ϕλ( f )(x)− f (x), λ = 4 and λ = 8.

Namely, the metric is given by ds2
S PD(n) = tr(M−1dMM−1dM)

and the Riemannian distance is defined as dS PD(n)(M1,M2) =

‖ log
(
M−1/2

1 M2M−1/2
1

)
‖F , ∀M1,M2 ∈ SPD(n). Let consider

now the embedding f (x) 7→ ξx = (x1, x2, αS ( f )(x1, x2)), α > 0,
in the product manifoldM = R2×SPD(2), which has the prod-
uct metric ds2

M
= ds2

space + αds2
S PD(2). It is a (complete, not

compact, negative sectional curved) Riemannian manifold of
geodesic distance given by dM(ξx, ξy) = minγξx ,ξy

∑N
i=1 dspace(xi, xi+1)

+α dS PD(n)(S ( f )(xi), S ( f )(xi+1)), which is asymptotically equal
to dM(ξx, ξy)2 ≈ dspace(x, y)2 + αdS PD(2)(S ( f )(x), S ( f )(y))2.

By means of this embedding, we can compute anisotropic
morphological operators following the flow coherence of image
structures. This embedding is connection to previous adaptive
approaches such as (Verdú et al., 2011) and (Landström and
Thurley, 2013).

7.3. Embedding star-like 3D surfaces into the sphere S2

Let consider a smooth surface S ⊂ R3 under the assump-
tion that it corresponds to a star-shaped 3D objet: that means
that there exists a point z0 ∈ R3 within the object, such that
each ray originating from this point intersects the object’s sur-
face exactly one; this point is denoted πz0→S. We can assign to
each ray, representing a 3D orientation in space and therefore
an element of the sphere S2, the distance of the ray-surface-
intersection to the origin of the ray. Hence, we have a function
f : S2 → R+, where (S, z0) 7→ f (θ, φ) = ‖z0 − πz0→S‖, (θ, φ) are
the standard spherical coordinates. The Riemannian geodesic
distance in S2 (or Great circle distance) is simple the angle be-
tween the two points; i.e., dS2 (ξ1, ξ2) = arccos (ξ1 · ξ2), where
ξi = (sin θi cosϕi, sin θi sinϕi, cos θi). The image f can be pro-
cessed using the Riemannian morphological operators, obtain-
ing the image f ′ and the corresponding processed surface S′ is
simply obtained by inversion of projective mapping πz0→S

′ .

(a) (b)

(c) (d)

(e) (f)

Figure 3: Morphological processing of real valued 3D surface of a face: (a)
original image on a surface S ⊂ R3, f (x) ∈ F (S,R+); (b) example of geodesic
ball Br(x) at a given point x ∈ S; (d) and (e) Riemannian dilation δλ( f )(x) and
Riemannian erosion ελ( f )(x) with λ = 0.5; (e) nonsmooth version of surface
(added impulse noise); (f) filtered surface obtained by Lasry–Lions regulariz-
ers.

7.4. Morphological processing of real valued 3D surfaces

In Fig. 2(a) is given an example of real-valued 3D surface,
i.e., the image to be processed is f : S ⊂ R3 → R. In practice,
the 3D surface is represented by a mesh (i.e., triangulated man-
ifold with a discrete structure composed of vertices, edges and
faces). In our example, the grey-level intensities are supported
on the vertices. In the case of a discrete approximation of a
manifold based on mesh representation, the geodesic distance
dS(x, y) can be calculated by the Floyd–Warshall algorithm for
finding shortest path in the weighted graph of vertices of the
mesh. Efficient algorithms are based on Fast Marching gener-
alized to arbitrary triangulations Kimmel and Sethian (1998).
Fig. 2 depicts examples of Riemannian dilation δλ( f ) and Rie-
mannian closing ϕλ( f ), for two different scales (λ = 4 and
λ = 8) and the corresponding dual top-hats.

Another example of real valued surface is given in Fig. 3.
It corresponds to the 3D acquisition of a face. We observe how
the canonic Riemannian dilation and erosion are able to locally
process the face details taking into the geometry of the surface.
In Fig. 3 is also given an example of image filtering using the
composition our Lasry–Lions regularizers (15) (with λ = 4 and
µ = 2), where the original surface is a nonsmooth version ob-
tained by adding impulse noise.
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8. Conclusions

We have introduced in this paper a general theory for the
formulation of mathematical morphology operators for images
valued on Riemannian manifolds. We have defined the main
operators and studied their fundamental properties.

We have considered two main families of operators. On the
one hand, morphological operators based on an admissible Rie-
mannian structuring function which is adaptively obtained for
each point x according to the geometry of the manifold. On
the other hand, morphological operators founded on an exter-
nal Euclidean structuring function which is parallel transported
to the tangent space at each point x and then mapped to the
manifold.

We have also discussed some original Riemannian embed-
ding of Euclidean images onto Cartan–Hadamard manifolds.
This is the case of the Poincaré half-space H3 as well as the
structure tensor manifold. Riemannian structuring functions
defined on Cartan–Hadamard manifolds are particular rich in
terms of scale-space properties as well as in Lipschitz regular-
ization.
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