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Abstract: The Agence Nationale de la Recherche (ANR-EESI) ENERGY ReCOvery from 

Low Temperature heat sources (ENERCO_LT) project is a waste heat recovery project that 

aims to reduce energy consumption in industrial gas production sites, by producing 

electrical power from exothermic processes discharges at low and medium temperature. 

Two promising thermal sources, consisting of: (i) almost dry gas flow at 165 °C and  

(ii) moist gas flow at 150 °C with a dew point at 60 °C, were then investigated. In this 

paper, the challenge was to discern suitable recovery solutions facing resource specificities 

and their thermodynamic constraints, in order to minimize the overall exergy destruction, 

i.e., to move up the exergy efficiency of the entire system. In this spirit, different designs, 

including Organic Rankine Cycles (ORCs) and CO2 transcritical cycles, operating as 

simple and cascade cycles, were investigated. Combined exergy analysis and pinch 

optimization was performed to identify the potential of various working fluids, by their 

properties, to overcome the global irreversibility according to the studied resource. 

Supercritical parameters of various working fluids are investigated too, and seem to bring 

promising results regarding system performances. 

Keywords: thermodynamic optimization; exergy; pinch; ORC; subcritical cycles; 

transcritical cycles; cascade 
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Nomenclature: 

h specific enthalpy [kJ/kg] 

s specific entropy [kJ/kg K] 

ex specific exergy [kJ/kg] 

Ơx  exergy flow [kW] 

W$  mechanical power [kW] 

ĭin heat flow added to vapour generator 

[kW] 

ĭout heat flow rejected from cycle [kW] 

ĭ'out heat flow non recovered [kW] 

ș  Carnot factor 

T  temperature [°C] 

P pressure [bar] 

m$  mass flow rate [kg/s] 

Ș  efficiency 

Șex cycle exergy efficiency 

Șex,g global exergy efficiency 

C volume capacity [kJ/m
3
] 

TIT turbine inlet temperature [°C] 

TET turbine exhaust temperature [°C] 

ORC Organic Rankine Cycle 

HFC hydrofluorocarbon 

HFO hydrofluoro-olefin 

GWP Global Warming Potential 

Subscripts 

c critical 

o ambient 

p pump 

t turbine 

vg vapour generator 

cd condenser 

f flue gases 

d destroyed 

s isentropic 

g global 

L low 

H high 

Superscripts 

~
 equivalent 

 

1. Introduction 

Recent years have seen a particular focus on renewable energies such as solar, wind energy, 

biomass, geothermal and waste heat recovery from industrial processes. In addition to their economic 

advantages from reducing fossil fuel consumption, the use of these energies contributes to the 

reduction of atmospheric emissions of greenhouse gases. 

Exothermic processes offer more than final products for which they are incurred, exergy flows in 

excess from the effluents. These quantities of exergy have not been subject of transfer or conversion, 

or even destruction during the previous evolutions and therefore remain in thermal form present in dry 

or moist flue gases before they are totally destroyed through exhaust or via gas coolers when the 

effluent is re-employed in downstream process.  

With regards to the specificities of release conditions of the resource, its molar composition and the 

thermodynamic constraints that it may have, no fluid can be presented a priori as the best recovery 

solution, especially when comparing dry exergy resources and highly moist ones. Therefore, as a first 

step, available resources will be characterized.  
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Liu et al. [1] have studied analytically the influence of the working fluid, by its properties and its 

operating conditions, on system performances and highlighted, when calling to thermodynamic 

optimization, the interest of focusing studies on global efficiency of the whole system rather than 

thermal efficiency of the working cycle. Other studies, performed by Madhawa et al. [2] and  

Kanoglu et al. [3] are based on exergy approaches to properly parameterize ORCs for geothermal 

applications. Schuster et al. [4] have pointed out that R-245fa, a hydrofluorocarbon (HFC), is suitable 

for a power plant recovering heat from a thermal source at an initial temperature of 210 °C. This fluid 

is studied in this paper for lower hot source inlet levels and compared to other alternatives. 

2. Resources Characterization 

Waste heat recovery related to ENERCO_LT project covers various gas production plants, such as 

air separation units, Steam Methane Reforming plants (SMR) and oxy-combustion processes.  

When considering an ordinary recovery system, as shown in Figure 1a, the overall available 

resource is defined as bounded by the upstream process outlet 1f and the downstream process inlet 3f. 

Overall exergy resources are determined according to the cooling conditions of effluents and their 

molar compositions as expressed below:  

)( 3113 fffff exexmxE −= $$  (1)  

Two resources are considered, summarized in Table 1. Exergy calculations take as reference the 

ambient temperature To of 15 °C.  

Figure 1. (a) Scheme of one cycle recovery process; (b) Scheme of two-cycle cascade 

recovery process. 

 

(a) 
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Figure 1. Cont. 

 

(b) 

Table 1. Resource characteristics. 

Resource  
T1f 

[°C] 

P 

[bar] 

Water molar

fraction [%] 

Mass flow 

rate [kg/s] 

Dew point 

[°C] 

Ơx3f1f 

[kW] 

almost dry 165 25 2 152.2 75 4950 

moist 150 1 20 130.2 60 6148 

The first resource, with low humidity content, is cooled from 165 °C to 25 °C and shows an exergy 

flow about 4.9 MW thanks to a high mass flow rate. The second resource, highly moist, is cooled from 

150 °C to 25 °C and shows an exergy flow about 6.1 MW thanks to an additional latent heat provided 

by the condensation of water vapour at low temperature. 

From these exergy resources, work production can be evaluated from the exergy efficiency of the 

engine cycles Șex. For a single recovery engine cycle (Figure 1a): 

ffex xEW 12
$$=η  (2)  

For a cascading recovery engine cycle (Figure 1b): 

ffex xEW 12111,
$$=η ,

 ffex xEW 21222,
$$=η  (3)  

Figure 2 estimates the production of work according to the discharge temperature T2f for a fixed 

exergy efficiency of the cycle equal to 50%. The representation shows that the best global performance 

is achieved with low discharge temperature T2f. Moreover, it can be seen that condensing process 

significantly increases the exergy resource, and then the work production. For the moist resource, the 

change of slope when crossing the dew point is particularly important. 

Nevertheless, this first study does not take into account the fitting between the cooled flow (the 

resource) temperature profile and the working fluid temperature profile which could be difficult to 

match with a single recovery engine cycle. As a consequence, 50% exergy efficiency could be  

not reachable with such a cycle, and would require a cascading cycle (Figure 1b); the first one  

working on the right of the dew point (T21f  ≈ Tdew), and the second one taking advantage of the 

condensing process. 
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Figure 2. Produced power calculated for 50% cycle exergy efficiency.  

 

3. Exergy Analysis 

It is well known that exergy efficiency of an engine can be expressed according to the exergy 

destructions Ơxd,i of the constituting components: heat exchangers, pumps, turbines, ducts, etc. 

For a single cycle, exergy efficiency (Equation 2) can also be written as: 

∑−=
i ff

id

ex
xE

xE

12

,
1 $

$η  (4)  

This form is particularly interesting because it emphasizes which processes are mainly responsible 

of the exergy efficiency degradation. In a vapour power plant, the irreversibilities are generally 

qualified as internal or external irreversibilities. The internal exergy destruction is caused by: 

• friction forces at the origin of pressure losses in the internal structures of the system, where the 

work of these forces is transformed into heat, 

• internal heat transfer at finite difference temperature, in case of internal heat recovery. 

The external irreversibilities are caused by: 

• heat transfers at finite difference temperatures between the working fluid and external hot or 

cold sources,  

• mechanical transfer of work. 

The cycle exergy destruction covers the internal and external irreversibilities that occur inside the 

working cycle, basically in feed pump, vapour generator, turbine, condenser and eventually the 

regenerator when adopted [5]. Moreover, it is denoted by exergy loss, the irreversibility occurring 

outside the working cycle; that is the exergy flow Ơx3f2f excluded from the recovery process. 

The evolution of working fluid into the investigated cycle can be summarized in four unitary 

operations as shown in Figure 3. The working fluid leaves the condenser as a saturated liquid at 

temperature T1 and condensation pressure PL (point 1), then it is compressed into a feed pump to an 

evaporation pressure PH (point 2) with a proper isentropic efficiency Șs,p. At the outlet of the pump, the 

fluid is heated at constant pressure in the evaporator until it becomes saturated in vapour or 
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superheated, and reaches T3 temperature (point 3). The vapour is then expanded in a turbine to the 

condenser pressure PL (point 4). During expansion, the fluid delivers mechanical work with a proper 

isentropic efficiency Șs,t. Finally, the fluid passes through the condenser releasing heat at constant 

pressure until it becomes saturated in liquid. 

Figure 3. Simple ORC. (a) Schematic diagram; (b) (T–s) diagram.  

 

 

(a)       (b) 

For each unitary process (i.e., for each component), thermal and/or mechanical power and exergy 

destruction is evaluated from the energy and exergy balances, assuming stationary regime. 

Pump (1 to 2): Assuming adiabatic compression, energy and exergy balances can be written as: 

0)( 21 =−+ hhmWp
$$  (5)  

0)( ,21 =−−+ pdp xEexexmW $$$  (6)  

Isentropic efficiency is defined as the ratio of ideal mechanical power (i.e., reversible pump) and 

actual mechanical power: 

p

s

p

p

ps
W

hh
m

W

W
s

$$$
$

12
,

−==η  (7)  

The power consumed by the pump then becomes: 

ps

s
p

hhm
W

,

12 )(

η
−= $$  (8)  

Equation 5 gives then the specific enthalpy of point 2 (which is then completely defined, pressure 

P2 being known). Equation 6 gives the exergy destruction by the pumping process: 

pss hhhh ,1212 )( η−+=  
(9)  

)()( 1212, ssTmWexexmxE oppd −=−−= $$$$  (10) 
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Vapour generator (2 to 3): Isobaric transformation is assumed for the working fluid. For the hot 

source, gas stream is cooled to an outlet temperature T2f, taking as design parameter. Energy and 

exergy balances are given by: 

0)()( 3221 =−+− hhmhhm fff
$$  

(11) 

0)()( ,3221 =−−+− vgdfff xEexexmexexm $$$  (12) 

Introducing the equivalent temperature of transformation (2 to 3) and (1f to 2f), and the heat power 

transferred from the hot gas to the cycle ĭin: 

)()( 2321 hhmhhm fffin −=−= $$φ  (13) 

ff

ff

ff
s

h
T

21

21

21

~

Δ
Δ=  (14) 

23

23
23

~

s

h
T Δ

Δ=  (15) 

Exergy destruction in the vapour generator can be expressed by: 

)
~~

.( 2321, θθφ −= ffinvgdxE$  (16) 

with:  

ij

o
ij

T

T
~1

~ −=θ  (17) 

Turbine (3 to 4): Except for the isentropic efficiency definition, energy and exergy balance are 

similar to those write to the pump. For a turbine, isentropic efficiency is defined as the ratio of actual 

mechanical power and ideal mechanical power: 

)( 34,

,
hhm

W

W

W

s

t

st

t
ts −⋅==

$
$

$
$η  (18) 

Then, actual power, specific enthalpy h4 and exergy destruction are: 

tsst hhmW ,34 )( η×−= $$  (19) 

tss hhhh ,3434 )( η×−+=  (20) 

)()( 3443, ssTmexexmWxE ottd −=−+= $$$$  (21) 

Condenser (4 to 1): Isobaric operation is assumed, and condensing heat is transferred to cooling 

water, supposed at exergy reference temperature To. Energy and exergy balances are: 

0)( 14 =−+ hhmout
$φ  (22) 

0)( ,14 =−−+ cddouto xEexexm $$φθ  (23) 
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As θo is 0, this yields: 

)( 41 hhmout −= $φ  (24) 

)( 14, exexmxE cdd −= $$  
(25) 

Equivalent temperature can also be introduced here: 

41

41
41

~

s

h
T Δ

Δ=  (26) 

and exergy destruction in the condenser could be expressed as follows: 

outcddxE φθ14,

~=$  (27) 

The total exergy destroyed into the working cycle is equal to the sum of the irreversibilities 

generated within each component: 

∑=
i

idd xExE ,
$$  

(28) 

Finally, the global destruction is equal to the sum of the exergy destroyed inside and outside  

the cycle: 

ff

i

idgd xExExE 23,,
$$$ +=∑  

(29) 

and the global exergy efficiency Șex,g can be written as: 

ff

gd

gex
xE

xE

13

,

, 1 $
$−=η  (30) 

According to the Second Law of Thermodynamics, within a system having real evolutions, it is 

impossible to convert the whole available thermal energy into useful work. The contribution to the 

exergy destruction in the system differs from one component to another; it is dictated in part by the 

properties of the employed fluid and in another part by the evolution conditions of this fluid within 

components of the system. Exergy analysis shows also that it is not recommended to optimize 

separately the components as if each treated process was isolated from the others. Thus, in order to 

reach a final design with minimum overall irreversibilities, the working fluid should be selected with 

care and operating conditions shall be subject to systemic optimization based on simultaneous analysis 

of all the alterations produced. 

4. Static Studies of Recovery Solutions 

Calculation tools for recovery process simulation and optimization were created and developed 

according to the distinctive investigated designs and in convenience with the operating static regimes 

(subcritical and supercritical), from the Prosim Plus 3.1 simulator [6,7]. The working fluid  

properties are calculated using REFPROP 8.0 developed by the National Institute of Standards and  

Technology [8].  

The challenge of technico-economic optimization consists in developing sensitivity analysis on cost 

variations around the pinch while thermodynamic optimization of energy systems requires that the 
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pinch be as small as possible by bringing system near a limit case. Following calculations have been 

done for a quasi-limit case of 10 K pinch in vapour generator without incurring additional need for 

heat in the endothermic zone. Isentropic efficiencies of feed pump and turbine are set respectively  

to 0.9 and 0.85. As for cooling conditions, cold isobar has been fixed to a liquid saturation  

temperature of 25 °C. 

4.1. Results and Discussion for Almost Dry Resource 

The existence in itself of pinch is at the origin of exergy destruction accompanying the cooling of 

hot gases. Although a minimized pinch contributes to a better cooling, however its location on the 

composite curve remains a sensitive point able to degrade global performances of the system. 

When studying a working cycle using R-245fa, Figure 4a shows that the variation of the 

vaporization pressure (leading to the variation of pinch location on the composite curves and therefore 

the discharge temperature T2f) does not affect the cycle exergy destruction and the exergy loss in the 

same manner, i.e., if it reduces the exergy loss outside of the working cycle, it amplifies the exergy 

destruction inside of it and vice versa. As the final objective is to reduce the overall irreversibility of 

the entire system, a compromise should be found between these two irreversibilities reductions. 

Otherwise, in Figure 4b, the global exergy efficiency shows a maximum value obtained at a 

subcritical pressure, below which the cycle exergy destruction appears dominant and above which, the 

exergy loss Ơx3f2f becomes dominant. Such significant optimum corresponds to an appropriate phase 

change temperature, not very high and not close to the hot source inlet temperature.  

Figure 4. R-245fa global performance from almost dry resource. (a) Irreversibilities 

diagram; (b) Global exergy efficiency behavior. 

  

(a)       (b) 

Figure 4 clearly illustrates the contribution of exergy analysis in optimization problems. As for the 

choice of the working fluid to use, this will depend on its thermophysical properties and on the 

resource requirement, mainly the critical temperature, latent heat and the slopes of both saturation lines 

on the (T–s) diagram. 

As seen in Figure 6a, R-245fa cannot be regarded as an appropriate solution since its critical 

temperature is slightly lower than the hot source inlet temperature. This prevents adequate temperature 
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matching between the flue gases and the working fluid. It results in an acute pinch at the end of the 

preheating zone. In this case, and because of the high critical temperature, systemic optimization 

seeking to maximize the global efficiency leads to a ratio between the vaporization latent and sensible 

preheating heat close to one. However, even at the optimum, both cycle exergy destruction and exergy 

loss remain important. 

As seen in Figure 6b, R-236fa is identified as an interesting working fluid according to the almost 

dry resource. Thanks to its properties, this fluid leads to a better temperature matching between the hot 

and cold flows with a high temperature level at the entrance to turbine. In this case, sensible 

preheating, far exceeding vaporization latent heat, leads to high subcritical temperature, close to the 

critical one, limiting therefore the vapour generator irreversibilities. 

Figure 5. R-236fa global performance from almost dry resource. (a) Irreversibilities 

diagram; (b) Global exergy efficiency behavior. 

   

(a)       (b) 

Moreover, it can be seen from Figure 5, that the maximum value of global exergy efficiency is 

spotted at supercritical pressure where the cycle reaches a triangular shape. In this case, the optimum 

issue is no longer of such significance, especially when operating at high supercritical pressures.  

Table 2 indicates that R-236fa, leads to an increase of the optimal global efficiency of only 2% 

compared to subcritical design i.e., net power gain of 62 kW. 

Figure 6. Almost dry resource composite curves. (a) R-245fa solution; (b) R-236fa solution. 
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Using dry and isentropic fluids with high boiling point is interesting because they will not require 

superheat, especially when this latter is able to degrade global system performances by amplifying the 

exergy loss. For that reason, both subcritical cycles using the R-245fa and R-236fa do not foresee 

superheat. As for transcritical cycle, the rise of vapour temperature increases the exergy loss and 

should be subject to exergy analysis. 

The ORC employing R-236fa, even proved as the better solution for the recovery problem, cannot 

be used in practice, due to its high Global Warming Potential value (GWP). Despite a critical 

temperature slightly outside the appropriate range, R-1234yf, an environmentally friendly  

hydrofluoro-olefin (HFO), is a good compromise between environmental impact and performance and 

is applicable for the dry resource recovery process. Performances of subcritical and transcritical cycles 

using this fluid are summarized in Table 2. 

Table 2. Almost dry resource: cycle performances.  

Fluid GWP 
PC 

[bar] 

TC 

[°C] 

PL 

[bar] 

PH 

[bar] 

TIT 

[°C] 

TET 

[°C] 

T2f 

[°C] 

C 

[kJ/m
3
] 

W 

[kW] 

Șex 

[%] 

Șex,g 

[%] 

R-245fa 950 36.5 154 1.4 12 97.7 43.3 68.6 2248 2107 52.5 42.6 

R-236fa 9400 32 124.9 
2.7 30 121.6 33.9 52.2 9801 2710 59.7 54.7 

2.7 48 143.4 29.9 52.8 19,741 2772 61.2 56 

R-1234yf 4 32.6 94.8 
6.7 32 95.6 25.2 44.9 5352 2376 50.6 48 

6.7 70* 142.6 37.5 54.7 16,440 2676 59.8 54.1 

* This value does not correspond to the maximal performance but has been considered as a limit of the 

acceptable pressure. 

4.2. Results and Discussion for Moist Resource 

When using R-245fa as working fluid, the flue gases of both resources (dry and moist) are released 

at approximately the same temperature (68 °C). However, lower global exergy efficiency is obtained 

from moist flue gases recovery, since important exergy content is released at a low temperature of  

60 °C (Figure 7a). 

On the other hand, an ORC, subject to a judicious choice of the working fluid basing on its 

thermophysical properties and correctly optimized by identifying suitable working conditions, seems 

to complete the requirements of the almost dry resource but it is not revealed sufficient in the case of 

the moist resource, since the dew point of this latter leads to a breakage on the shape of the hot 

composite curve. 

A two-cycle cascade as presented in Figure 1b is able to raise global performances. The best 

solution is the one that results in better gases cooling conditions with highest cycle exergy efficiencies 

in the two regions, upper and lower, separated by the dew point. The solution presented in Figure 7b 

consists of two transcritical cycle cascade using R1234yf in the topping one and carbon dioxide in the 

bottoming one, and leads to a minimum exergy destruction, in both cycles heat exchangers. However, 

this solution presents a technological constraint since the bottoming cycle, at the optimum, is operated 

at a high supercritical pressure of 90 bar (Table 3). 
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Figure 7. Moist resource composite curves. (a) R-245fa solution; (b) R-1234yf + CO2 solution. 

    

(a)       (b) 

Table 3. Moist resource: cycle performances. 

System Fluid 
PL 

[bar] 

PH 

[bar] 

TIT 

[°C] 

TET 

[°C] 

T21f /T2f 

[°C] 

C 

[kJ/m
3
] 

W 

[kW] 

Șex 

[%] 

Șex,g 

[%] 

Single cycle R-245fa 1.4 10 89.7 41.3 67.3 1679 1403 50.9 22.8 

Cascade 
R-1234yf 6.7 60 129 25.2 58.6 13,998 1876 58.6 

42 
CO2 64.3 90 48.6 25.8 41.1 2435 706 29.8 

5. Conclusions 

Systemic optimization by extension of pinch method, although it correctly optimizes the system, 

does not adapt it to the specificities of the available resource, since the fluid has influence on system 

performance not only by its operating conditions, but also by its thermophysical properties. 

It has been demonstrated that, when facing a recovery problem, a priori bets on designs and fluids 

cannot be made before assessing their adequacy to the requirements of the particular problem. Based 

on the First and Second Law of Thermodynamics, the optimized solution can be identified via an 

appropriate design, an adequate working fluid and under suitable working conditions, able to overcome 

pinch problem dictated by fluid properties and thermodynamic constraints imposed by the resource 

itself. However, other constraints, predominately technological and environmental, come into 

consideration and have to be included in the optimization process.  

In particular, it can be noted that the presence of contaminants and the possible condensation 

process involved for the moist resource will require high quality materials for the heat exchangers. 

Thus, an economic analysis is very important after the thermodynamically optimized configuration is 

set. Furthermore, a multi-objective optimization would be interesting to look at the trade-offs of the 

system between efficiency and cost. 
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