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Recognition ofsupplementary signs for
correct interpretation of traffic signs

Anne-Sophie Puthc, Fabien Moutarde and Fawzi Nashashibi

Abstract— Traffic Sign Recognition (TSR) is now relatively
well-handled by several approaches. However, traffic sig are
often completed by one (or severallsupplementary sign(s)
placed below. They are essential focorrect interpretation of
main sign, as they specify its applicability scop The main
difficulty of supplementary sub-sign recognition is the
potentially infinite number of classes, as nearly @y information
can be written on them. In this paper, we proposeral evaluate
a hierarchical approach for recognition of supplemenary signs,
in which the “meta-class” of the sub-sign Arrow, Pictogram,
Text or Mixed) is first determined. The classification is baset
on the pyramid-HOG feature, completed by dark ares
proportion measured on thesame pyramid. Evaluation on a
large databaseof images with and without supjlementary signs
shows that the classification accuracy obur approach reaches
95% precision and recall.When used on output of our su-sign
specific detection algorithm, the global correct dection and
recoghnition rate is 91%.

I. INTRODUCTION

ars arenow often equipped with dvanced Driving

Assistance Systen{&DAS) for helping the driver an
avoiding accidents. Many of those ADAS can berfeditn,
or even require, visiobased Traffic Sign detection a
Recognition (TSR), and a&orrect interpretatiorof these
signs. For instance, in order to develop a smAdaptive
Cruise Control (ACC) thatvould automatically tune targ
cruising speed depending on tharrent spee limit, one
needs reliable detection arecognition of speelimit signs.
This is a mandatory complement to spdiett information
extracted from GPS cartographic datahich is neither
always complete nor systematically -to-date, and
furthermore cannot handlemporary speed limits for ro:
works, nor variable speed limits, dueth® static nature of
pre-defined digital cartographic data.
Until now, most TSR published search and existin
systems rely on the same process. At first, a tHetestage
aims at extracting from the image all the possibtations
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of speed signs. Twadifferent types of information can |
used. Colour iformation (see e.g. [1], [2and [3]) makes
the detection easiebut less robust, ancshape-based
detection working on ggescale image (e.g. [4], [5], [6], and
[7]) increases robustnesto variation o illumination
conditions and to fading away oblours. Each candidate is
then tested through a classification step in otderliminate
false alarms and recognize the -sign type. Finally a
tracking helps in validating the results from fratodrame
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Figure 1. Examples of traffic signs that cannot be intergt
correctly without taking into account the suppletaey sign
located belov

However, the exact meaning of traffic signs, intigatar
speedimit signs, is often altered by one (or seve
supplementary sign(s) placed below (sFigure 9. These
supplementary signs are essential for correct prgéation
of main signs, as they specify their applicabistope, suc!



as type of vehicle (car, truck, etc.), distanceemsion,
specific lane, particular dates or timeslots, orather
condition (rain, snow, etc.).

Il. RELATED AND PREVIOUSWORK

The detection and recognition of supplementary signa
task very similar to usual Traffic Sigidetection and
Recognition. It might even, wronglype thoughtto be
simpler due to the fact that detection cee guided by
position and size dhe main sign it is related

However there are several to
supplementary signs:

1/ the aspect ratio (height/width) of the rectanglédiy
varies between sub-sign types (Sagire2);
supplementary signs are much less normalized
main signs, and significantly vary from country
country;

the contrast between sub-signs dhdir surroundings
is often low. In greyscale images, thbackground
colour of supplementary sigrean easily be confuse
to sky, andcontrary to most main sig, there is no
coloured border around them;

supplementary sign recognition is a classificatiask
with a potentially infiite number of class, as many
sub-signs contain rather “free” text.

difficulties pecific

2/

3/

4/
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Figure 2. Sub-sign width/heighatio distribution for our databas
(see Table 1).

Some or all of the above difficulties could explaihy,
despite its practical importancesupplementary sig
detection is not a trendy field and omgry fewworks were
published. To our be#nowledge, the first paper includii
some work on supplementary ssign detection an
recognition is that of Hamdoust al. [8] in 2008, who
proposed to usea rectangle edge detection for localiz
potential sub-signs in a rather largegior below the main
signs. However their recognitiorusing afeed forward
neural network applied to rescaled imggeas developed
and tested only for “Exit Aow” supplementary sign tyg

(one of the most frequent in Fra). Nienhiuseret al. [9]
have presented in 20E0work handlin more types of sub-
signs: "Exit Arrow", "Truck", "Bei Nasse" “when raining”)
and "7.5t". They however Hato train aone-against-all
Support Vector Machine (SVM) classifi for each type
which makes difficult to extend theapproach for handling
all types of supplementary sigrisu et al.[10] also include
supplementary signgletection (based orgradients and
Hough voting) and recognition (usiia tree of binary SVMs
applied to Fourier and wavelet descrip) in their system
presented in 2011. Finallputhonet al. [11] in 2012 have
proposed and tested a new original and perforneghinique
for the detection stepbased on regic-growing from
contrasted seeds.

In the present paper, we propose and evaluate ara)
framework forrecognitionof supplementary sigr

ll. RECOGNITION OF TRAFFC SLPPLEMENTARY SIGNS

Recognition of supplementary signs is not very edéht

from TSR in general, except for the existence ¢

potentially very large number of classes, as sé&eik-sign

types consist of “free” texiThe undefined and large numt

of classes pleads for these of a hierarchical classificati

approach as adopted by Léw al. in [10]. However, in their
approach theaddition of a new type of s-sign would

require retraining their whole cascade of classfi€or this

reason, and also for taking into acct the specificity of
“text” supplementary signsye have decided to implemen

hand-crafted hierarchical recognition in which we fir
determine the “metalass” of the siL-sign, between
“Arrow”, “Pictogram”, “Text”, and ‘Mixed” (see Figure 3).
The idea is that for “text” metelass, interpretation could |
done in a further stage by applying character reitiog.
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Figure 3.lllustration ofthe 4 “meteclasses” used for
supplementary sigr

The first step is the choice tfe features (or “descriptors
that should be computed on the candidate regiorfexhihto
classifiers.We focus on global descriptors which desc
the entire imagecontrary to local ones, such as intel
points, localizing information around discriminativegions

A solution is to use the pixel vali, provided that rescaling
to a fixed size is firsapplied, as was done in [8] and.
However the drawback is thaany slight offset or
“bounding” error in the detection stage can tratesiato a
total change of the resulting descript

For this “offset robustness” issue, it seems betteruse
descriptors that integrate information on large ugft



chunks of the subign. Resizing to very few pixels (e
8x8) might sound tempting, but it would not retaimough
information to discriminate categories. We there turned
to the “pyramid-HoG” (ploG) descriptor, proposed |
Boschet al. [12], which has the advantagd being less
sensitive to image offset, while retaining pertineand
discriminating information (seigure 4.

3885322

mi=1 (l=2
Figure 4. lllustration of pyramid-HoG {oG) descriptor use. On
the left, with no subdivision, in middle with L=dvEl of

subdivision, on the right with L=2 leve
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The main parameter forHoG is the number of level of
the pyramid. For determining its optimal value,
compared performances for L=0,2L.and 2 As can be seen
on Figure 5, increasing L from 0 to Provides significan
improvement to classification accuracy attained wt
training Gaussian kernel SVMs bubigg abovel=2 does
not bring more recognition performande=2 thus provides
the best performance and a relatively small numdi
values. Another critical parameter fdd@G is the number K
of bins for computing the histogram of gradieneatations
similar analysis of the impact of the number K d@fsbfor
computing the histogram has led us to fix it to imeallest
valueK=8.
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Figure 5 Influenceof the number L of levels of the pyra: L=2
shows much better recall and precision than L=0 andnd L=3
brings no further improvemertvaluation is done ¢ Gaussian
kernel SVMs trained on variants of the feat
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By looking closer at frequent confass that were produce
when training SVM classifier on onlyHoG descriptor, w
realized that most of them seemed due to the fiatpHoG
contains only gradient information, while corn

discrimination between our metéasses would clearly
madeeasier if using also some colorimetric irmation. We
have therefore enhancedH@G by adding, for each s-
region of the pyramid, the proportion of “dark” plz (as
illustrated onFigure §. This “dark proportion” is compute
using the same binarizatidgachnique athat used by us in
[11] for extracting contrasted seed from which is grc
detected region. A morphological reconstrucialgorithm is
used to find higly contrasted pixels in the image, tr
“dark” pixels are selected as pixels with intensitgluded in
the [t;t5] interval, with t=4+0.50 and t,=u+1.50 (whereu is
the mean of pixel values, amul the standard deviation).
Examples of pixels considered as “dark” by this hodtare
shown on second column Bigure6.

=] L]

-

Figure 6.lllustration of the «darkness proportic » computed on
same pyramid agHoG: left, the original image, and iinverse
binarizedversion; middle, visualization of the darkness nipns
in the various sulvegions for the 3 levels of the pyram
right, the resulting vect.

e

We nickname pHo@®p this new proposed descrip
concatenating the standard pHoG with the “dark
proportion” information computed on the same pyi The
new pHoGPBp descriptor allows significant classificati
improvement, as cabe seen on precisi-recall curves of
figure 7.
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Figure 7.Comparison of classification performance
3 descriptors: pixels of rescaled imagbottom curve, in blue),
pHoG (middle in dashed red), amHoG-Dp (top curve, in green
dash-point)



IV. EXPERIMENTS ANDRESULTS

In order to evaluate the classification accuracy oofr
approach, we use a large database ofsigis as describe
in Table 1 As mentioned in previous section, supplemen
signs were grouped in 4 “metdasses”: Text, Arrow,
Pictogram, Mixed.

Table 1.Content of the supplementary signsabase used for
training and testing.

Category Examples Training | Test
Text - 1693 697
Arrow - 267 99
Pictogram - _'L* 2030 4r3
Mixed . 1293 521
Negative 1385¢ 4944

After training Gaussian kernel SVMsghe classificatiol
accuracy is satisfactory, as can be seerFigure 8§ which
shows precision-recall curves computsparately for eac
meta-classNote that this first evaluation is for recogniti
alone, as it isdone on test images extracted after ma
labelling, which emulates a “perfect” detection s

0.95

Text

Arrow

— = Pictogram
- Mixed

0.70

0.10 0.20 030 0.40 0.50 0.60 070 0.80 0.90 1.00

Precision
Figure 8. Precisiorrecall curves separately for each m-class,

computed on test database (from mani-labeled
bounding-boxes).

More details on the classificaticaccuracy reached can

found on the confusion matrcomputed on test examples
our database, shown iable 2 The Text category is the o
with the lowest precisin, which can be explained by so
confusions, in particular with guard rails (see o of
Figure 9. The slightly lower precision forPictogram” type
can beexplained by some confusions arising in partic
with pictograms contained in main signs lying ine
searched sub-region (skettom line o Figure 9.

Table 2.Confusion matri

Classifier

qll'?ljltﬂd Neg. | Text| Arrow Pict. | Mixed| Recall
Negative | 4766 | 107 0 49 22 | 96%
Text 48 | 632 2 13 2 91%
Arrow 2 4 0 2 1 91%
Pictogram| 23 8 0 440 2 93%
Mixed 24 14 0 9 474 | 91%
Precision | 98% | 83% | 98% | 86% | 95% | 95%

Figure 9.Some examples of negatives confused with “Tex#
supplementary sign (top line), and of negativedusadwith
“pictogram” type (bottom line’

All the above evaluations weednducted on a database

which the bounding boxes aroundpplementary signs
stems from manualljpade “ground truth”. From tt

application point of view, it is essential to aldest

pefformance of our recognition approach when appliac

the candidate sub-sign regiorfsund by our su-sign

detection technique. As described in more detai[d1], our

detection method is based on re¢-growing applied from
highly contrasted seeds (hophy lying on border of blacl

pictogram or text of the sub-sign).

Figure 10shows for our global chain consisting of detecti
by regiongrowing from contrasted seeds followed
recognition with SVM applied on HoG-Dp, the recall =
f(FPPP) curvesseparately for eih meta-class obtained
(FPPP = False Positive P&ositive). One can see tt
maximum recall is rather low (~45%) for Arri category,
essentially due to lowedetectionrate for this type of si-
signs. Maximum recall for Pictogram and Mixed catégs
are respectively ~65% and ~72%. The Text r-class has
the best maximum recall ~92%, but also the higlieise



positive rate, which was expected given that thes< hac
the lowest precision in table 2. The recall ratesy rseen
low, but these are frame-yame evaluations, includir
first “humandetectable” appearance of -sign which has
often too few pixels to be easily classified byagmwition
step.In practice however, one does not need to detedt
recognize on every frame, but only on enough fis to be
confident in output.
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Figure 10. Frame-byrame evaluation of our complete detec +
recognition chain: Recall=f(False PositiRel Positive) curves
separately for each metdas:.

In the final application, performancéauld only count thi

percentage of physical sgigns that are “validate during

their appearance. Our validation criteriadopted is that
same sulsign is detected and recognized (with same cli

at least 3 times during the total timérdow of sub-sign
visibility. The resulting correct detectioh recognition +
validation rates are reported fiable 3 As one can see ti

global recall is from 70% for the ‘thow” mete-class to 99%
for the “Text” meta-class, with an averageall of 919. For

the same settinghe false alarm rate for sigiwithout any

sub-sign placed below is ~12%.

Table 3. Correct detection + recognitionvalidation rates fol
each sub-sign meta-class, and éaddarm rate on signs witho

sub-signs.
ALL No
Meta-clas§ Text |Arrow | Pictogram | Mixed | SUB- sub-
SIGNS| sign
Total | 102 | 23 55 49 | 229 | 278
det‘iC“O” 101 | 16 53 39 | 209 34
recognition] 99% | 70% 95% 80% 91% 12%

V. CONCLUSIONS DISCUSSIONAND PERSPECTIVES

We have presented in this paper an original framk\iar
hierarchical recognition dupplementary signs. We d as
feature pHoG@p, a new proposed original variant
“pyramid HoG”, in which we have added the “proportfr
dark pixels” evaluated on theame pyramid of si-regions
as the histograms of gradiefurthermore, to cope witthe
potentially very large number of supplementary sigpes,
we proposedo apply a hierarchical classification in whi
the meta-class of sub-sign rfAw, Pictogram, Text, Mixed)
is first determined.

An experimental evaluation conducted on a largebase of
sub-signs showethat accuracy of our proposed framew
canreach 95% recall and precision on perfectly cropgpé-
signs. Furthermore, thglobal performance when chaini
our recognition after oudetection ws 91% on average on
all supplementary signs typesith a false alarm rate of 12
on signswithout sub-signs).

Future works includéraining and evaluation of second st

of the hierarchical classifiein( order to recognize preci:
type of supplementary signgnd experiment on applying
optical character recognition (OCR) on the -signs
identified as “text” type.
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