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Abstract— Traffic Sign Recognition (TSR) is now relatively 
well-handled by several approaches. However, traffic signs are 
often completed by one (or several) supplementary 
placed below. They are essential for correct interpretation of 
main sign, as they specify its applicability scope.
difficulty of supplementary sub-sign recognition 
potentially infinite number of classes, as nearly any 
can be written on them. In this paper, we propose and evaluate 
a hierarchical approach for recognition of supplementary signs, 
in which the “meta-class” of the sub-sign (Arrow, P
Text or Mixed) is first determined. The classification is based 
on the pyramid-HOG feature, completed by dark area 
proportion measured on the same pyramid. 
large database of images with and without supp
shows that the classification accuracy of our approach 
95% precision and recall. When used on output of our sub
specific detection algorithm, the global correct detection and 
recognition rate is 91%. 
 

I. INTRODUCTION 

 
ars are now often equipped with A
Assistance Systems (ADAS) for helping the driver and 

avoiding accidents. Many of those ADAS can benefit from, 
or even require, vision-based Traffic Sign detection and 
Recognition (TSR), and a correct interpretation 
signs. For instance, in order to develop a smart 
Cruise Control (ACC) that would automatically tune target 
cruising speed depending on the current speed
needs reliable detection and recognition of speed
This is a mandatory complement to speed-
extracted from GPS cartographic data, which 
always complete nor systematically up
furthermore cannot handle temporary speed limits for road 
works, nor variable speed limits, due to the 
pre-defined digital cartographic data. 
Until now, most TSR published research and existing 
systems rely on the same process. At first, a detection stage 
aims at extracting from the image all the possible locations 
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of images with and without supplementary signs 
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of speed signs. Two different types of information can be 
used. Colour information (see e.g. [1], [2], 
the detection easier but less robust, and 
detection working on greyscale images
[7]) increases robustness to variation of
conditions and to fading away of colo
then tested through a classification step in order to eliminate 
false alarms and recognize the sun
tracking helps in validating the results from frame to frame.

 

 
 

Figure 1. Examples of traffic signs that cannot be interpreted 
correctly without taking into account the supplementary sign 

located below.

However, the exact meaning of traffic signs, in particular 
speed-limit signs, is often altered by one (or several) 
supplementary sign(s) placed below (see 
supplementary signs are essential for correct interpretation 
of main signs, as they specify their applicability scope, such 
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different types of information can be 
formation (see e.g. [1], [2], and [3]) makes 

but less robust, and shape-based 
yscale images (e.g. [4], [5], [6], and 

to variation of illumination 
colours. Each candidate is 

then tested through a classification step in order to eliminate 
false alarms and recognize the sun-sign type. Finally a 
tracking helps in validating the results from frame to frame. 

 

 

 

Examples of traffic signs that cannot be interpreted 
correctly without taking into account the supplementary sign 

located below. 

However, the exact meaning of traffic signs, in particular 
limit signs, is often altered by one (or several) 

supplementary sign(s) placed below (see Figure 1). These 
supplementary signs are essential for correct interpretation 
of main signs, as they specify their applicability scope, such 



 
 

as type of vehicle (car, truck, etc.), distance extension, 
specific lane, particular dates or timeslots, or weather 
condition (rain, snow, etc.). 

 

II. RELATED AND PREVIOUS WORK

The detection and recognition of supplementary signs is a 
task very similar to usual Traffic Sign 
Recognition. It might even, wrongly, be thought 
simpler due to the fact that detection can b
position and size of the main sign it is related to.

However there are several difficulties s
supplementary signs: 
1/ the aspect ratio (height/width) of the rectangle wildly

varies between sub-sign types (see Figure 
2/ supplementary signs are much less normalized than 

main signs, and significantly vary from country to 
country; 

3/ the contrast between sub-signs and their
is often low. In greyscale images, the 
colour of supplementary signs can easily be confused 
to sky, and contrary to most main signs
coloured border around them; 

4/ supplementary sign recognition is a classification task 
with a potentially infinite number of classes
sub-signs contain rather “free” text. 
 

Figure 2. Sub-sign width/height ratio distribution for our database 
(see Table 1). 

Some or all of the above difficulties could explain why, 
despite its practical importance, supplementary sign 
detection is not a trendy field and only very few 
published. To our best knowledge, the first paper including 
some work on supplementary sub-sign detection and 
recognition is that of Hamdoun et al. [8
proposed to use a rectangle edge detection for localizing 
potential sub-signs in a rather large region
signs. However their recognition, using a 
neural network applied to rescaled images
and tested only for “Exit Arrow” supplementary sign type 

as type of vehicle (car, truck, etc.), distance extension, 
specific lane, particular dates or timeslots, or weather 

WORK 

detection and recognition of supplementary signs is a 
task very similar to usual Traffic Sign detection and 

be thought to be 
simpler due to the fact that detection can be guided by 

the main sign it is related to. 

However there are several difficulties specific to 

the aspect ratio (height/width) of the rectangle wildly 
Figure 2); 

supplementary signs are much less normalized than 
main signs, and significantly vary from country to 

their surroundings 
low. In greyscale images, the background 

can easily be confused 
contrary to most main signs, there is no 

supplementary sign recognition is a classification task 
ite number of classes, as many 

 
ratio distribution for our database  

Some or all of the above difficulties could explain why, 
supplementary sign 
very few works were 

knowledge, the first paper including 
sign detection and 

8] in 2008, who 
a rectangle edge detection for localizing 

region below the main 
, using a feed forward 

s, was developed 
rrow” supplementary sign type 

(one of the most frequent in France
have presented in 2010 a work handling
signs: "Exit Arrow", "Truck", "Bei Nässe" (
and "7.5t". They however had to train a 
Support Vector Machine (SVM) classifier
which makes difficult to extend their 
all types of supplementary signs. Liu 
supplementary signs detection (based on 
Hough voting) and recognition (using 
applied to Fourier and wavelet descriptors
presented in 2011. Finally, Puthon 
proposed and tested a new original and performant technique 
for the detection step, based on region
contrasted seeds. 

In the present paper, we propose and evaluate a general 
framework for recognition of supplementary signs.
 

III.  RECOGNITION OF TRAFFIC SU

Recognition of supplementary signs is not very different 
from TSR in general, except for the existence of a 
potentially very large number of classes, as several sub
types consist of “free” text. The undefined and large number 
of classes pleads for the use of a hierarchical classification 
approach as adopted by Liu et al. in [10]
approach the addition of a new type of sub
require retraining their whole cascade of classifiers. For this 
reason, and also for taking into accoun
“text” supplementary signs, we have decided to implement a 
hand-crafted hierarchical recognition in which we first 
determine the “meta-class” of the sub
“Arrow”, “Pictogram”, “Text”, and “
The idea is that for “text” meta-class, interpretation could be 
done in a further stage by applying character recognition.
 

Figure 3. Illustration of the 4 “meta
supplementary signs.

The first step is the choice of the features (or “descriptors”) 
that should be computed on the candidate region and fed into 
classifiers. We focus on global descriptors which describe 
the entire image contrary to local ones, such as interest 
points, localizing information around discriminative regions.
A solution is to use the pixel values
to a fixed size is first applied, as was done in [8] and [9]
However the drawback is that 
“bounding” error in the detection stage can translate into a 
total change of the resulting descriptor. 

For this “offset robustness” issue, it seems better to use 
descriptors that integrate information on large enough 

 

(one of the most frequent in France). Nienhüser et al. [9] 
a work handling more types of sub-

ei Nässe" (“when raining”) 
d to train a one-against-all 

Vector Machine (SVM) classifier for each type, 
which makes difficult to extend their approach for handling 

Liu et al. [10] also include 
detection (based on gradients and 

Hough voting) and recognition (using a tree of binary SVMs 
applied to Fourier and wavelet descriptors) in their system 

Puthon et al. [11] in 2012 have 
proposed and tested a new original and performant technique 

, based on region-growing from 

In the present paper, we propose and evaluate a general 
of supplementary signs. 
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Recognition of supplementary signs is not very different 
from TSR in general, except for the existence of a 
potentially very large number of classes, as several sub-sign 

The undefined and large number 
use of a hierarchical classification 

in [10]. However, in their 
addition of a new type of sub-sign would 

require retraining their whole cascade of classifiers. For this 
reason, and also for taking into account the specificity of 

we have decided to implement a 
hierarchical recognition in which we first 

class” of the sub-sign, between 
ext”, and “Mixed” (see Figure 3). 

class, interpretation could be 
done in a further stage by applying character recognition. 

 
the 4 “meta-classes” used for 

supplementary signs. 

the features (or “descriptors”) 
that should be computed on the candidate region and fed into 

We focus on global descriptors which describe 
contrary to local ones, such as interest 

points, localizing information around discriminative regions. 
A solution is to use the pixel values, provided that rescaling 

applied, as was done in [8] and [9]. 
 any slight offset or 

“bounding” error in the detection stage can translate into a 
total change of the resulting descriptor.  

For this “offset robustness” issue, it seems better to use 
descriptors that integrate information on large enough 



 
 

chunks of the sub-sign. Resizing to very few pixels (e.g. 
8x8) might sound tempting, but it would not retain enough 
information to discriminate categories. We therefor
to the “pyramid-HoG” (pHoG) descriptor, proposed by 
Bosch et al. [12], which has the advantage o
sensitive to image offset, while retaining pertinent and 
discriminating information (see Figure 4). 

Figure 4. Illustration of pyramid-HoG (pHoG) descriptor used
the left, with no subdivision, in middle with L=1 level of 

subdivision, on the right with L=2 levels.

The main parameter for pHoG is the number of levels 
the pyramid. For determining its optimal value, we 
compared performances for L=0, 1, 2 and 3.
on Figure 5, increasing L from 0 to 2 provides significant 
improvement to classification accuracy attained when 
training Gaussian kernel SVMs but going above 
not bring more recognition performance. L=2
the best performance and a relatively small number of 
values. Another critical parameter for pHoG
of bins for computing the histogram of gradient orientations; 
similar analysis of the impact of the number K of bins for 
computing the histogram has led us to fix it to the smallest 
value K=8. 
 

Figure 5 Influence of the number L of levels of the pyramid
shows much better recall and precision than L=0 and 1, and L=3 
brings no further improvement. Evaluation is done on

kernel SVMs trained on variants of the feature.

By looking closer at frequent confusions that were produced 
when training SVM classifier on only pHoG descriptor, we 
realized that most of them seemed due to the fact that 
contains only gradient information, while correct 

sign. Resizing to very few pixels (e.g. 
8x8) might sound tempting, but it would not retain enough 
information to discriminate categories. We therefore turned 

HoG) descriptor, proposed by 
[12], which has the advantage of being less 

sensitive to image offset, while retaining pertinent and 
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the left, with no subdivision, in middle with L=1 level of 
subdivision, on the right with L=2 levels. 
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the pyramid. For determining its optimal value, we 

2 and 3. As can be seen 
provides significant 

to classification accuracy attained when 
oing above L=2 does 

L=2 thus provides 
the best performance and a relatively small number of 

HoG is the number K 
of bins for computing the histogram of gradient orientations; 
similar analysis of the impact of the number K of bins for 
computing the histogram has led us to fix it to the smallest 

 
of the number L of levels of the pyramid: L=2 

shows much better recall and precision than L=0 and 1, and L=3 
Evaluation is done on Gaussian 

kernel SVMs trained on variants of the feature. 

ions that were produced 
HoG descriptor, we 

realized that most of them seemed due to the fact that pHoG 
contains only gradient information, while correct 

discrimination between our meta-classes would clearly be 
made easier if using also some colorimetric info
have therefore enhanced pHoG by adding, for each sub
region of the pyramid, the proportion of “dark” pixels (as 
illustrated on Figure 6). This “dark proportion” is computed 
using the same binarization technique as 
[11] for extracting contrasted seed from which is grown 
detected region. A morphological reconstruction 
used to find highly contrasted pixels in the image, then 
“dark” pixels are selected as pixels with intensity included in 
the [t1;t2] interval, with t1=µ+0.5σ and
the mean of pixel values, and σ 
Examples of pixels considered as “dark” by this method are 
shown on second column of Figure 6

Figure 6. Illustration of the « darkness proportion
same pyramid as pHoG: left, the original image, and its 

binarized version; middle, visualization of the darkness proportions 
in the various sub-regions for the 3 levels of the pyramid; 

right, the resulting vector

We nickname pHoG-Dp this new proposed descriptor 
concatenating the standard pHoG with the “darkness 
proportion” information computed on the same pyramid.
new pHoG-Dp descriptor allows significant classification 
improvement, as can be seen on precision
figure 7. 

Figure 7. Comparison of classification performance of 
3 descriptors: pixels of rescaled image (

pHoG (middle in dashed red), and pHoG
dash-point).

 

classes would clearly be 
easier if using also some colorimetric information. We 

HoG by adding, for each sub-
region of the pyramid, the proportion of “dark” pixels (as 

This “dark proportion” is computed 
technique as that used by us in 

extracting contrasted seed from which is grown 
detected region. A morphological reconstruction algorithm is 

ly contrasted pixels in the image, then 
“dark” pixels are selected as pixels with intensity included in 

and t2=µ+1.5σ (where µ is 
 the standard deviation). 

Examples of pixels considered as “dark” by this method are 
6.  

 
darkness proportion » computed on 

: left, the original image, and its inverse 
version; middle, visualization of the darkness proportions 

regions for the 3 levels of the pyramid;  
the resulting vector. 

Dp this new proposed descriptor 
concatenating the standard pHoG with the “darkness 
proportion” information computed on the same pyramid. The 

Dp descriptor allows significant classification 
n be seen on precision-recall curves of 

 
Comparison of classification performance of 

descriptors: pixels of rescaled image (bottom curve, in blue), 
HoG-Dp (top curve, in green 
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IV.  EXPERIMENTS AND RESULTS

In order to evaluate the classification accuracy of our 
approach, we use a large database of sub-signs as described 
in Table 1. As mentioned in previous section, supplementary 
signs were grouped in 4 “meta-classes”: 
Pictogram, Mixed. 

Table 1. Content of the supplementary signs dat
training and testing. 

Category Examples Training

Text  

 

Arrow 
 

 
Pictogram  

Mixed 

 

Negative  13856
 

After training Gaussian kernel SVMs, the classification 
accuracy is satisfactory, as can be seen on 
shows precision-recall curves computed separately for each 
meta-class. Note that this first evaluation is for recognition 
alone, as it is done on test images extracted after manual 
labelling, which emulates a “perfect” detection step.
 
 

Figure 8. Precision-recall curves separately for each meta
computed on test database (from manually

bounding-boxes). 

 

ESULTS 

In order to evaluate the classification accuracy of our 
signs as described 

As mentioned in previous section, supplementary 
classes”: Text, Arrow, 

Content of the supplementary signs database used for 

Training  Test 

1693 697 

267 99 

2030 473 

1293 521 

13856 4944 

, the classification 
accuracy is satisfactory, as can be seen on Figure 8, which 

separately for each 
Note that this first evaluation is for recognition 

done on test images extracted after manual 
elling, which emulates a “perfect” detection step. 

 
recall curves separately for each meta-class, 

computed on test database (from manually-labeled  

More details on the classification accuracy reached can be 
found on the confusion matrix computed on test examples of 
our database, shown in Table 2. The Text category is the one 
with the lowest precision, which can be explained by some 
confusions, in particular with guard rails (see top line of 
Figure 9). The slightly lower precision for “
can be explained by some confusions arising in particular 
with pictograms contained in main signs lying in the 
searched sub-region (see bottom line of

Table 2. Confusion matrix.

 Classifier 

Ground  
Truth 

Neg. Text Arrow 

Negative 4766 107 0 

Text 48 632 2 

Arrow 2 4 90 

Pictogram 23 8 0 

Mixed 24 14 0 

Precision 98% 83% 98% 

 

Figure 9. Some examples of negatives confused with “Text” type 
supplementary sign (top line), and of negatives confused 

“pictogram” type (bottom line).

All the above evaluations were conducted on a database in 
which the bounding boxes around su
stems from manually-made “ground truth”. From the 
application point of view, it is essential to also test 
performance of our recognition approach when applied on 
the candidate sub-sign regions found by our sub
detection technique. As described in more details in [11], our 
detection method is based on region
highly contrasted seeds (hopefully lying on border of black 
pictogram or text of the sub-sign). 

 Figure 10 shows, for our global chain consisting of detection 
by region-growing from contrasted seeds followed by 
recognition with SVM applied on p
f(FPPP) curves separately for eac
(FPPP = False Positive Per Positive). One can see that 
maximum recall is rather low (~45%) for Arrow
essentially due to lower detection rate for this type of sub
signs. Maximum recall for Pictogram and Mixed categories 
are respectively ~65% and ~72%. The Text meta
the best maximum recall ~92%, but also the highest false 
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computed on test examples of 
The Text category is the one 

on, which can be explained by some 
confusions, in particular with guard rails (see top line of 

The slightly lower precision for “Pictogram” type 
explained by some confusions arising in particular 

with pictograms contained in main signs lying in the 
bottom line of Figure 9). 

Confusion matrix. 

  

Pict. Mixed Recall 

49 22 96% 

13 2 91% 

2 1 91% 

440 2 93% 

9 474 91% 

86% 95% 95% 
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separately for each meta-class obtained 

Positive). One can see that 
maximum recall is rather low (~45%) for Arrow category, 

rate for this type of sub-
signs. Maximum recall for Pictogram and Mixed categories 

respectively ~65% and ~72%. The Text meta-class has 
the best maximum recall ~92%, but also the highest false 



 
 

positive rate, which was expected given that this class had 
the lowest precision in table 2. The recall rates may seem 
low, but these are frame-by-frame evaluations, including 
first “human-detectable” appearance of sub
often too few pixels to be easily classified by recognition 
step. In practice however, one does not need to detect and 
recognize on every frame, but only on enough frame
confident in output. 

Figure 10. Frame-by-frame evaluation of our complete detection
recognition chain: Recall=f(False Positive Per

separately for each meta-class

In the final application, performance should only count the 
percentage of physical sub-signs that are “validated”
their appearance. Our validation criterion
same sub-sign is detected and recognized (with same class!) 
at least 3 times during the total time-window
visibility. The resulting correct detection 
validation rates are reported in Table 3. As one can see the 
global recall is from 70% for the “Arrow” meta
for the “Text” meta-class, with an average recall of 91%
the same setting, the false alarm rate for signs 
sub-sign placed below is ~12%. 

Table 3. Correct detection + recognition + validation rates for 
each sub-sign meta-class, and false alarm rate on signs without 

sub-signs. 

Meta-class Text Arrow  Pictogram  Mixed 

Total 102 23 55 49 

detection 
+ 

recognition 

101 

99% 

16 

70% 

53 

95% 

39 

80% 

positive rate, which was expected given that this class had 
the lowest precision in table 2. The recall rates may seem 

frame evaluations, including 
detectable” appearance of sub-sign which has 

often too few pixels to be easily classified by recognition 
In practice however, one does not need to detect and 

recognize on every frame, but only on enough frames to be 

 

frame evaluation of our complete detection + 
Per Positive) curves 

class. 

hould only count the 
signs that are “validated” during 

on adopted is that 
sign is detected and recognized (with same class!) 

window of sub-sign 
 + recognition + 

. As one can see the 
rrow” meta-class to 99% 

recall of 91%. For 
the false alarm rate for signs without any 

validation rates for 
e alarm rate on signs without 

ALL  
SUB-

SIGNS 

No  
sub-
sign 

229 278 

209 

91% 

34 

12% 

V. CONCLUSIONS, DISCUSSION 

We have presented in this paper an original framework for 
hierarchical recognition of supplementary signs. We use
feature pHoG-Dp, a new proposed original variant of 
“pyramid HoG”, in which we have added the “proportion of 
dark pixels” evaluated on the same pyramid of sub
as the histograms of gradient. Furthermore, to cope with 
potentially very large number of supplementary sign types, 
we proposed to apply a hierarchical classification in which 
the meta-class of sub-sign (Arrow, 
is first determined.  

An experimental evaluation conducted on a large data
sub-signs showed that accuracy of our proposed framework 
can reach 95% recall and precision on perfectly cropped sub
signs. Furthermore, the global performance when chaining 
our recognition after our detection wa
all supplementary signs types (with a false alarm rate of 12% 
on signs without sub-signs).  

Future works include training and evaluation of second stage
of the hierarchical classifier (in order to recognize precise 
type of supplementary sign), and 
optical character recognition (OCR) on the sub
identified as “text” type. 
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