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ABSTRACT 

The continuous growth of solar power capacity raises 

challenges to distribution system operators regarding 

power quality and security of supply. Network 

management systems must be enhanced with short-term 

forecasting functionalities able to predict the solar plants 

production in the next hours or days. The provision of 

individual forecasts for each solar plant on the network is 

often required. To that purpose, historical measurements 

are needed for tuning the forecasting models. The 

situation is challenging for new plants for which long 

history of measurements is not yet available. In that case, 

models able to provide accurate production forecasts 

based on few historical production data, are required. In 

this paper, we investigate the performance of state-of-the-

art short-term PV forecasting models as a function of  the 

historical data available for tuning. We compare the 

results with those obtained by a reference model whose 

utilization does not require more than one day of past 

production data. Our analysis relies on production data 

from a 200 kWc solar plant located in the south-east of 

France. It shows that satisfactory performances can be 

expected from state-of-the-art models, when calibrated 

with no more than one or two weeks of training data. 

1. INTRODUCTION

Today, solar power, and namely photovoltaic power (PV) 
plants capacity is undergoing a fast growth. The 
development of network management systems facilitating 
its penetration in the distribution network while ensuring 
power quality and supply may need individual forecasts 
for each plant connected to the grid. Recent research 
works have undertaken the development of dedicated 
short-term (a few hours to a few days ahead) PV 
forecasting models. 

Generally, solar power production forecast algorithms are 
based on a combination of up to date meteorological 
forecasts and historical production data.  In the literature, 
photovoltaic output forecasts are based on: i) 
meteorological forecasts coupled with a physical model, 
ii) time series analysis or iii) a combination of the two
approaches. Research is particularly active on the second 
approach thanks to its possibility of using only 
parameters relative to the PV system as input. Examples  

of this approach can be found in [1], [2] and [3]. The 
approaches proposed in [1] and [2] are based on neural 
networks, while [3] proposes the use of an ARMA 
method coupled with a Kalman filter. An example of the 
third approach can be found in [4], where meteorological 
solar irradiation forecasts are used as an alternative to 
local solar irradiation measurements, in combination with 
a NARX neural network. 

Various power system management tasks would benefit 
from accurate production forecasts available as soon as a 
considered plant is commissioned. At that early stage, 
only few production data is available for tuning 
forecasting models. Forecasts derived from advanced 
models may be of poor accuracy since these models 
generally rely on statistical methods and require, a priori, 
a large amount of data to be calibrated. On the other 
hand, the cost of storing this data and the computational 
burden of using it into forecast algorithms may also 
decrease the value of forecasts derived from those 
models. For those models to be handled appropriately, it 
is necessary to know what performances can be expected 
depending on the amount of available data. 

In this paper, we analyze the performance of two state-of-
the-art short-term PV forecasting models as a function of 
the size of the training period dedicated to their 
calibration. We consider both a linear and a non-linear 
statistical model.  Historical production data as well as 
solar irradiation Numerical Weather Predictions (NWP) 
are used as input. We estimate what amount of data is 
needed to outperform a reference model which does not 
require any calibration, or more than one day of past 
production data. We investigate what performances 
increase can be expected through advanced models, while 
more data becomes available, then giving some clue 
about the considered models value. This information can 
then be used to optimize the design of a solar power 
forecasting tool, able to maintain high performances, 
particularly in the case of new installations with few 
available data.  

The paper is organized as follows: in section 2, we 
describe the methodology of our study, i.e. the considered 
reference and advanced models, details about the latter's 
calibration, and data used. In section 3, we give results 
from an analysis realized with production data from a 200 
kWc solar plant. Finally, conclusions and perspectives 
are given in section 4.  



2. METHODOLOGY

In this section, we describe the forecasting models, 
training procedure, evaluation criteria, and the data used 
in our study. 

State-of-the-art and reference models 

In order to forecast the PV production pt+h at a given time 
origin t for horizon h, state-of-the-art forecasting models 
generally combine past production data mt, with 
meteorological predictions NWPt+h|t. Such a model can be 
written: 

),(ˆˆ
thtththt

NWPmfp


 (1) 

where hf̂  is the estimation of a modelling function hf . 

This function can be linear as in [5], where production 
data has been first normalized using a so-called clear sky 
model to obtain more stationary power time series. 
Nevertheless, to our knowledge, the usefulness of such 
normalization has not been yet demonstrated. Since we 
get similar performance results while not considering 
such normalization, we will consider in this study a usual 
linear model: 

thththhh NWPcmccf
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(2)                    

To capture complex non-linearities, so-called black-box 
models (e.g. Neural-Networks) are often used to forecast 
the PV production as in [1] and [2]. We consider such a 
type of model and evaluate the performances of the 
Random Forest (RF) algorithm [6]. The latter assumes a 

local constant function hf  on a plane-parallel subdivision 

of the inputs space. Different estimations (i.e. 
subdivisions) derived from bootstrap replica of data are 
aggregated in the last place. The Random Forest 
algorithm has been reported to be effective in dealing 
with complex non-linearities in some weather related 
processes [7], and has been recently used for the 
particular case of short-term wind power forecasting [8]. 

As reference model we consider a model that forecasts 
the production based on the previous day of production 
data, without any modelling function involved. We 
consider a mix of persistence and diurnal persistence as 
in [5]: 

pt, if h   2 h and h = 24 h


 ttht

mp̂            (3)   

pt + h mod 24 - 24, otherwise 

We consider the same past production data mt to forecast 
the production with either the reference or the advanced 
models. Thus, the latter differ from the reference model 
by the use of additional meteorological (solar irradiation) 
predictions as inputs, all through a modelling function 
statistically calibrated. 

Training procedure & evaluation 

To appropriately capture the slow seasonal variations in 
the PV production process, we have to estimate the 

parameters of the modelling function hf adaptively.

Then, the calibration of the advanced models is realized 
through a sliding window whose size represents the 
training period size, and varies from 5 to 120 days in our 
study. The step with which the considered window moves 
along the time series, namely the updating step, is 
determined by the updating rate of meteorological 
predictions (i.e. daily at 12 h UTC). Such a training 
procedure has already been proposed for the forecasting 
of other non-stationary time series, such as wind speed 
time series [9]. In some cases, e.g. with linear models, the 
update of the model parameters estimation can be 
determined through recursive formulae, thus increasing 
the computing efficiency (see [5] Appendix B, or [10] for 
more details). 

To evaluate the performances of the different models, we 
consider two criteria adapted to the evaluation of 
forecasts of the mean production level. We consider the 
mean forecast error, namely the bias BIAS, and the root 

mean square error RMSE. If 
tht

e


denotes the forecast

error at instant t for horizon h, then these two criteria are 
defined by:  
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where N denotes the test set sample size. 

Data 

In our study, we consider historical PV production data 
from a 200 kWc plant located in the south-east of France. 
The power output time series covers a 14 months period 
from 06/11 to 08/12, and consists of 10-minute averages 
of power production records.  

We consider NWP delivered by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), at the 
closest grid point from the solar plant. The variables 
consist of surface global solar irradiation forecasts. 
Initially available at a 3-hour time resolution, they have 
been linearly interpolated to an hourly resolution, and 
cover forecast horizons from 1 h to 36 h ahead. Since no 
information is available about the orientation or the tilt of 
the plant, it is not possible to recalibrate a priori those 
forecasts from a horizontal to a well-oriented plan. Some 
clue about such orientation and tilt may be determined 
from the performances analysis (e.g. in the potential 
presence of a seasonal bias in the forecasts), and a 
recalibration procedure could be further envisaged. 

3. RESULTS

In this section, we give the results of our analysis on the 
forecast performances evolution with the training period 
size for the proposed case study. 



Considering a 5 days training period may seem highly 
insufficient to allow a reliable tuning, and satisfactory 
accuracy of the considered advanced forecasting models. 
Nevertheless, our study shows that the accuracy increases 
with the training period size (see Figure 1). Near optimal 
performance is reached with a training period size of 
about 20 days. The non-linear RF based model shows an 
overall better performance than the linear model for 
lower training period sizes. 

 Figure 1: Performances measured through the RMSE 
criterion of the advanced forecasting models as a function 
of the training period size. Results have been normalized 
by the solar plant nominal power Pn. They are given here 
for the linear (lin.) and non-linear (RF) models and 
forecast horizons of 1 h and 4 h. 

This can also be seen with an analysis of the lowest 
training period size, indicated hereafter as LBR, for 
which the advanced models outperform the reference 
model. Such a characteristic size is shown for both 
advanced models considered here in Figure 2. In this 
figure, the LBR is represented as a function of the 
forecast horizon. It is noted that the forecast horizon 
coincides to the hour of the day: h = 1 h to 6 h (i.e. 1 pm 
to 6 pm), and h = 18 h to 30 h (i.e. 6 am to 6 pm, the next 
day). One can notice that the non-linear RF model 
outperforms the reference model even with a tuning 
based on only 5 days of data, except for h = 1 h. Because 
of some persistence in the PV production process, 
forecasting at noon for 1 pm, with just the actual 
production level, allows satisfying performances. Getting 
higher accuracy level from the considered advanced 
models requires a calibration with a longer training 
period. Forecasting the production at the very first hours 
of daytime may also be challenging, and require longer 
training periods. Actually in our study, we did not 
observe any performance improvement with respect to 
the reference model for h = 18 h (i.e. 6 am the next day). 
Nevertheless, accurate forecasts of the midday 
production, when the production and forecast errors level 
may have a significant impact on the network 
management are considered more relevant for industrial 
use. 

 Figure 2:  Lowest training period size (LBR) allowing to 

outperform the reference model, as a function of the 

forecast horizon. The considered horizons range from 1 h 

to 6 h and 18 h to 30 h ahead, and coincide with daytime 

hours.  

When considering training period size higher than the 
LBR, the rate and maximum level to which the 
performances of advanced models improve, also depend 
on the forecast horizon. In Figure 3 is shown the 
performance improvement with respect to the reference 
model, for both the advanced models and different 
forecast horizons, depending on the training period size. 
The results associated to the first forecast day are given 
on the left panel, while those associated to further 
horizons are given in the right panel. For each forecast 
horizon, the performance improvement is displayed from 
the LBR to an optimal training period size. The latter is 
here defined as the lowest training period size allowing 
performances close to the optimal ones (with a tolerated 
relative decrease in performances not exceeding 1%). 

The non-linear model first outperforms the reference 

model for very little training period size (except for h = 1 

h), and thus with a significant improvement. The linear 

model requires more data to be calibrated and after a 

training period of more than about 10 days, it 

outperforms the reference model and shows a sharp 

performance increase until it reaches near optimal 

performances. The optimal performances of the two 

advanced models are rather similar. The linear model 

may perform better in forecasting the production 1 h 

ahead. 

The results associated to the forecasts' bias showed a bias 

which tends to decrease with the training period size. 

Then, the associated decrease in performances is due to a 

prevailing increase in the forecast errors variability. The 

results also showed a higher bias for the linear 

(parametric) than for the non-linear (non-parametric) 

model. We did not observe the presence of a seasonal 



Figure 3: Performances improvement of the advanced models with respect to the reference model, for different forecast 

horizons h (in hours), as a function of the training period size. For each horizon, such improvement is displayed from the 

LBR to some optimal training size (see the text for more details).

bias. Then, the necessity of recalibrating solar irradiation 

forecasts from a horizontal to a well-oriented plan will 

need further investigations. 

4. CONCLUSIONS

In this paper, we presented results of an analysis of the 

performances evolution of short-term state-of-the-art PV 

forecasting models with the training period size. From a 

200 kWc solar plant production data, we showed that a 

calibration based on a few days only (about 5 to 15 days) 

was necessary for those models to outperform a reference 

model whose utilization requires no more than one day of 

past production data. Further analysis on different case 

studies should be carried out to confirm these results. The 

influence of using additional input should also be 

investigated, as it probably would require longer training 

period for a model to be calibrated. Finally, the work 

could be repeated considering probabilistic forecasts of 

the PV production. 
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