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Abstract—This paper is motivated by the question of the impact 

that uncertainty in PV forecasts has in forecast-based battery 

schedule optimisation in microgrids in presence of network 

constraints. We examine a specific case where forecast accuracy 

can be impacted by the lack of enough data history to finetune the 

forecasting models.  This situation can be expected to be frequent 

with new PV installations.  A probabilistic PV production forecast 

algorithm is used in combination with a battery schedule 

optimisation algorithm. The size of the learning dataset of the 

forecast algorithm is modified in order to simulate the application 

of the system to new plants and the impact on the performance in 

the management of the battery is analysed. 

Index Terms-- Photovoltaic systems, Batteries, Forecasting 

I. INTRODUCTION 

This paper presents first results of a study on the effect of 
the size of forecast algorithm datasets on the management of 
energy storage carried out within the framework of the project 
NiceGrid. The objective of this project is to develop an active 
network management system able to control distributed 
electric storage devices and flexible loads in order to facilitate 
the penetration of solar power on the distribution network and 
to increase power quality and security of supply. One of the 
main challenges found is the necessity to provide individual 
forecasts for each solar plant on the network in order to 
identify localised voltage constraints violations. This 
information is then used to schedule optimized battery charge 
and discharge sequences. 

In general solar power production forecast algorithms use 
up to date meteorological forecasts and historical production 
data as input to generate the forecasts. Two problems relative 
to the size of the learning datasets are found: little datasets 
may be not suitable for advanced statistical methods, resulting 
in poor performance. On the other hand large datasets may 
increase considerably the computational intensity and time of 
the forecast algorithm. Historical data are necessary in 
particular when information on the characteristics of the solar 
plant, such as tilt and orientation are not available making a 
so-called physical approach difficult to apply. In that case a 

statistical approach might me more appropriate. This is a 
common situation for residential solar plants, for which often 
only information about the rating of the inverter is available. 
In these cases it is not possible to estimate the solar plant peak 
production period, when its output can create constraints 
violations on the network. 

The scheduling of batteries is strongly influenced by errors 
in input forecasts. In the system studied, batteries are called to 
increase their consumption in hours of the day when high solar 
production is forecasted. When high photovoltaic (PV) 
production levels are not forecast, batteries are potentially 
used for day/night arbitrage. The battery is therefore called to 
de-optimise its typical cycle in order to provide a service to 
the network and the difference between the daily gain of the 
undisturbed schedule and the schedule optimized for 
absorbing the excess solar production represents the cost of 
the flexibility offered. If a high production event is not 
forecasted, solar panels can be disconnected, with a loss of 
renewable energy and potentially additional charges for the 
distribution network operator. On the other hand if forecasted 
high production events do not occur, the cost of de-
optimisation of the battery has been lost. 

The study does not aim at identifying the optimal or the 
minimal training dataset size of solar power production 
forecasts, but to characterise its influence on battery operation 
performance. This information can then be used to facilitate 
planning decisions by reducing uncertainty about the effect of 
lack of historical information on new plants. This is 
particularly important considering the current growth of 
installed solar power, the relative small size of solar plants and 
the cost of storage systems which requires correct evaluation 
of the risks associated with their utilization. 

II. BACKGROUND 

Short term forecasts of PV plants output are based on: i) 
meteorological forecasts coupled with a physical model, ii) 
time series analysis or iii) a combination of the two 
approaches. Research is particularly active on the second 
approach because of its possibility to use only measurements 
resulting from the PV system as inputs. Examples of this 



approach can be found in [1], [2] and [3]. Two [1], [2] of these 
three works make use of neural networks whilst the third 
proposes the use of an autoregressive moving average 
(ARMA) method coupled with a Kalman filter. An example of 
the third approach can be seen in [4], where meteorological 
solar radiation forecasts are used as an alternative to local 
solar radiation measurements, in combination with a nonlinear 
autoregressive exogenous model (NARX) neural network. 

Regarding battery schedule optimisation, dynamic 
programming or mixed integer dynamic programming are 
largely the most common approaches as seen in [5], [6]. An 
interesting aspect of battery schedule optimisation is the 
necessity of the algorithm to be robust and able to incorporate 
stochastic inputs as shown in [7], [8]. 

 

III. METHODOLOGY 

In this study, the methodology reported below is adopted. 

1. The forecast algorithm is trained with a dataset D 

2. Forecasts are calculated for N test days 

3. For each test day, an optimal schedule for the battery is 
calculated taking into account i) the forecast calculated at 
point 2 and ii) the objective function 

4. The performance of the forecast-based schedule 
optimisation algorithm is evaluated over the test period 

5. The points from 1 to 4 are repeated with different sizes of 
the training dataset D 

A description of the details of the algorithms for PV power 
forecast and for the battery optimisation used in this study are 
provided below. 

A. PV plant power output forecast algorithm 

The most complete information we can get from the future 
PV production is given through its probability distribution. 
Such a distribution can be characterized through a probability 
density function, a cumulative distribution function or 
equivalently through a set of quantiles. If 𝐹𝑡+ℎ |𝑡  denotes the 

cumulative distribution function and 𝑞𝑡+ℎ |𝑡
𝛼   the α-quantile of 

the production pt+h, forecast for the horizon h, conditionally to 
the information set Фt available at instant t, we got: 

 𝐹𝑡+ℎ |𝑡 𝑥 =  ℙ(𝑝𝑡+ℎ ≤ 𝑥|Φt) (1) 

 𝑞𝑡+ℎ |𝑡
𝛼 =  𝐹𝑡+ℎ |𝑡

−1 (𝛼) (2) 

Quantiles may represent a good alternative to forecasts of 
the mean production level, as considered in [9], since it has 
been demonstrated they are optimal predictors for a large class 
of decision loss functions [10]. In [11], the authors used a 
recursive algorithm, initially proposed in [12], to make time-
adaptive forecasts of the PV production distribution. In their 
approach however, quantiles are estimated independently from 
one another, which might lead to undesirable phenomena, e.g. 
quantiles crossing [13]. 

In this paper, we propose to forecast the PV production 
distribution using the Quantile Regression Forest (QRF) 
algorithm [14]. The QRF algorithm estimates the whole 

cumulative distribution function of the production, then 
allowing to derive the desired quantiles all at once. Such 
estimation is made conditionally to the projected surface 
global solar irradiation at the level of the solar plant. We 
considered solar irradiation numerical weather predictions 
from the European Centre for Medium-Range Weather 
Forecasts (ECWMF). They are available at a 3-hour time 
resolution, but for the purposes of the study they have been 
linearly interpolated to an hourly resolution and cover forecast 
horizons from 18 h to 30 h ahead (i.e. from 6 am to 6 pm the 
next day). 

For each forecast horizon, the forecasting model is 
repeatedly trained using a sliding window. This approach 
permits  to update the model's parameters and provides time-
adaptive forecasts. For the purpose of the study, we 
considered different training periods with size ranging from 7 
days to 4 months, with one week increment. 

B. Battery schedule optimisation algorithm 

The objective of the battery schedule optimisation 
algorithm is to minimise the cost associated to the exploitation 
of the battery. For a complete schedule of the battery 
PLAN = [P1, ..., PT], with Pi being the power charged or 
discharged by the battery at time i, the overall cost can be 
calculated as the sum of three main components, as proposed 
in [15] and reported in Equation (3). 

 C(PLAN)=Csource + Closs+ Clol (3) 

where, CSource represents the cost of importing/exporting 
power from/to the main grid, Closs represents the cost 
associated to the losses in the inverter and the efficiency in the 
charge/discharge of the battery and Clol represents the cost of 
the loss of life of the battery. 

The sourcing cost Csource depends on the price Pr of 
electricity. In this study, the residential day-night tariff applied 
in the region of Nice is chosen. The cost is calculated both in 
the charge and discharge phase, where in the second case, it 
represents a profit for the battery as reported in Equation (4). 

 Csource = Σh (Ph · Prh) (4) 

The cost Closs associated to the losses in the inverter and in 
the electrochemical reactions of the battery, is calculated 

considering an overall charge/discharge efficiency eff  [0,1], 
as shown in Equation (5). 

 𝐶𝑙𝑜𝑠𝑠  =     𝑒𝑓𝑓  ·  𝑎𝑏𝑠(𝐶𝑠𝑜𝑢𝑟𝑐𝑒 ,ℎ) ℎ  (5) 

The cost Clol is relative to the ageing of the battery caused 
by the charge and discharge cycle. The ageing mechanism is 
particularly complex, strongly dependent on the Depth of 
Discharge (DOD) during the discharge, and is described in 
detail in [16]. In this work, the effect of the temperature is not 
taken into account and it is considered that the ageing speed 

increases of a value x  [1,2], at each doubling of the DOD. 
It is assumed also that the maximum number nCycles of full 
cycles (DOD = 100%) that the battery can withstand is known. 
With these assumptions the cost Clol can be calculated as 
shown in Equation (6), where BC [€] is the initial cost of the 
battery. The sum on negative DOD is done to take into 



account that the irreversible reactions contributing to the aging 
of the battery occur in the discharge phase of the cycle. 

 Clol = Σh (-min(0,DODh))
x
 · BC / nCycles (6) 

In this study, a gradient-descend optimisation algorithm 
has been used for minimising the cost function reported in (3). 
The algorithm, as shown in Equation (7) minimises the sum 
over the whole period T of the cost for the single horizon h 
calculated as in Equation (3), subject to the constraints 
reported in Equation (8) and Equation (9) and returning the 
optimal battery schedule  

 PLANopt = argmin(Σh(Ch(PLAN))) (7) 

 Pdh ≤ Ph ≤ Pch (8) 

 SOCmin ≤ SOCh ≤ SOCmax (9) 

where: Ph [W], is the power exported or absorbed by the 
battery at horizon h, SOCh, is the state of charge of the battery 
at horizon h, Pdh, Pch [W], are respectively the maximum 
charge and discharge power of the battery that can change in 
relation to the situation of the network at horizon h, SOCmin, 
SOCmax, are respectively the minimum and maximum 
allowable state of charge of the battery. 

C. PV-Battery interaction 

Central to the definition of the problem is the relation 

between the PV plant and the battery. The system considered 

in this paper is composed by two different entities, where the 

battery offers a service to the PV producer on a day ahead 

contract. In this study it is assumed that the export capacity of 

the PV producer is limited to a threshold thr equivalent to the 

50% of the peak rating of the PV plant and the exceeding 

power is either stored in the battery, or not produced. The 

mechanism is described below: 

 

1) An initial optimal schedule for the battery PLAN(0) is 

calculated by solving the optimisation problem described in 

(7-9) without considering network constraints in Equation 

(8). 

2) For each quantile α of the probabilistic forecasts an 

array of flexibility needed FLEX = [F1, ..., FT] is calculated 

as described in (10). Negative velues represent energy that 

must be absorbed by the battery, whilst positive values 

represent the maximum discharge allowed to the battery. 

 Fh(α) = thr - qt+h|t(α) (10) 

3) The corresponding battery schedule PLAN(α) is 

calculated solving the optimisation problems described in (7-

9), imposing the flexibility FLEX(α) as the minimum (in 

absolute value) discharge power of the battery, as reported in 

(11), where the maximum discharge capacity of the battery 

Pd is also taken into account. If the total amount of energy of 

the flexibility demanded is greater than the capacity of the 

battery, a correction factor is calculated and applied to the 

flexibility request. The cost associated with the plan C(α) is 

calculated as the difference between the cost of the schedule 

PLAN(α) and the schedule PLAN(0), as described in (12) 

 Pdh = min(Fh(α),Pd) (11) 

 C(α) = C(PLAN(α)) – C(PLAN(0)) (12) 

The expected profit EPPV for the PV associated to the 

flexibility FLEX(h,α) is calculated as described in (13). 

 EPPV(α) = -Σh(min(0, Fh(α)) · Prh)   (1-α) (13) 

4) The expected profit for the system EPSYS is then 

calculated as the difference between the expected profit 

EPPV(α) and the disoptimisation cost of the battery C(α). 

5) The steps 2-4 are then repeated for each quantile of the 

forecasts and finally the quantile αopt corresponding to the 

maximum expected profit for the system is identified, along 

with the optimal schedule PLAN(αopt). 

6) The effective profit for the PV TPPV is then calculated 

as in Equation (13), by considering the effective measured 

PV production Y instead of the forecasted production 

qt+h|t(αopt). 

 

A visual representation of the process described is presented 

in Figure 1 and Figure 2. 

 
 Figure 1: Battery schedule for the quantiles 10%, 50% and 90% of 

the forecasts 

 
 Figure 2: Cost benefit analysis of the flexibility requested at 

different forecast quantiles. 

In Figure 1 the battery schedule for different request of 
flexibilities relative to the 1st, 5th and 9th decile of the 
probability distribution of the forecasts is represented. In the 
three cases the battery is charged in peak hours according to 
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the expected PV production and the energy is discharged in 
the later hours. The effect of the constant electricity prices 
during the day and the night can be seen in the uniform 
discharge pattern. In Figure 2 the probabilistic cost-benefit 
analysis performed at each time step is represented: for 
increasing values of the quantiles, the expected profit of the 
PV plant EPPV (represented by the light continuous line) 
increases slowly because of the reduced probability associated 
to each additional energy level. 

On the other side, the cost of the flexibility of the battery C 
is initially negligible, but increases quickly because of the 
nonlinearities in the battery ageing mechanism. The resulting 
profit EPSYS has a characteristic bell shape and the maximum 
corresponds to the optimal plan maximising the efficacy of the 
combined PV-battery system. 

IV. RESULTS 

A. Datasets 

For this work, three main datasets are used: a time series 
reporting the historical production of a PV plant, the historical 
Nomerical Weather Predictions of solar radiation for the PV 
plant location from the ECWMF. The period considered 
ranges from June 2011 to October 2012. The problem is 
influenced not only by technical parameters such as the 
accuracy of the forecasts or the efficiency and lifespan of the 
battery, but also by financial parameters such as the electricity 
price and its variation during the day, the eventual incentive 
for photovoltaic energy and the purchasing cost of the battery. 
Although a complete sensitivity analysis is out of the scope of 
this paper, the results of the study have been reported for three 
different values of the cost of the battery. A summary of the 
parameters used for the simulations presented in this paper is 
reported in Table I. The three cases studied involve different 
values for the initial capital cost of the battery, relative for 
example to different battery technologies, such as lead-acid or 
lithium-ions. Other parameters such as the cost per cycle or 
the ratio between battery cost and electricity price could have 
been used. 

 Table I: Input parameters used in the simulation 

Parameter Unit Value 

Battery power rating kW 100 

Battery energy rating kWh 100 

Battery cost, Case A €/kWh 1000 

  -    -    -    -  Case B €/kWh 500 

  -    -    -    -  Case C €/kWh 200 

Battery efficiency % 95 

Battery max cycles n 5000 

Electricity Price Night 

(23:00-07:00) 
€/kWh 0,0964 

Electricity Price Day 

(07:00-23:00) 
€/kWh 0,1391 

PV production incentive €/kWh 0,12 

 

B. Evaluation of the PV production forecasts 

The evaluation of probabilistic forecasts generally relies 
on a reliability / sharpness paradigm [17]. The forecasts 

reliability may be define here as the adequacy between the 
nominal coverage α associated to some forecast quantile 
𝑞𝑡+ℎ |𝑡
𝛼 , and the true coverage 𝐶𝑜𝑣ℎ

𝛼  evaluated on a testing data 

set:  

 𝐶𝑜𝑣ℎ
𝛼 =  

# 𝑝𝑡𝑖+ℎ≤𝑞𝑡𝑖+ℎ |𝑡
𝛼  

𝑁
;  𝑖 = 1, … , 𝑁 (14) 

N being the test set sample size. Reliability is a 
prerequisite to satisfying forecasts. On the other hand, 
sharpness refers to the ability of a forecasting system to 
provide informative forecasts. Different forecasting systems 
should be compared based on sharpness, once their respective 
reliability has been established. Sharpness is sometimes 
evaluated through the provision of narrow centered prediction 
intervals (see [18] for instance). 

 

 Figure 3: Reliability diagram showing the deviation between 
nominal and actual coverages associated to the forecast deciles of the PV 

production distribution, as a function of the hour in the next forecast day. The 

numbers in the plot indicate the distribution deciles. Colors close to red 
indicate higher deciles, while those close to blue indicate lower deciles. 

In Figure 3 is shown the deviation between the nominal 
and actual coverages associated to the forecast deciles of the 
PV production distribution for the next day, considering a 
maximum training period size of 120 days. The results show 
that the distribution forecasts have higher reliability for 
midday hours, while the production is susceptible to reach its 
maximum value. If one excepts the forecast horizon associated 
to 11 am, one can notice that the proposed approach tends to 
underestimate quantiles associated to the upper tail of the 
distribution (positive difference between α and 𝐶𝑜𝑣ℎ

𝛼 ), while 
overestimating those associated to the lower tail of the 
distribution (resp. negative difference). This tendency is 
amplified when only few data is available to calibrate the 
models. It results in more narrow centered prediction intervals. 
One has to be careful here not interpreting this result as a gain 
in forecasts sharpness, but more as a loss in forecasts 
reliability. In Figure 4 the mean absolute deviation between 
nominal and actual coverages associated to the forecast 



quantiles of the PV production distribution, as a function of 
the training period size is shown. One can see that the highest 
gain in forecasts reliability is obtained with the first two weeks 
of  data available for training. Further analysis showed that 
such an evolution in calibration actually depends on the 
considered distribution quantiles. Indeed, this pattern is 
particularly observed for quantiles in the upper tail of the 
distribution, while those in the lower tail did not show much 
improved reliability with increasing training period size. 

 

 Figure 4: Mean absolute deviation between nominal and actual 
coverages associated to the forecast quantiles of the PV production 

distribution, as a function of the training period size. 

C. Simulations 

The simulations have been carried out applying the 
methodology described in Section III. In total the performance 
of the system was tested in 17 cases corresponding to different 
learning dataset sizes from 7 to 119 days of training. In each 
case the simulation spanned the 324 days of the training set, 
considering 19 quantiles for each forecast, equivalent to a 
percentage step of 5%. The relation between the performance 
of the learning dataset size, and hence the forecast precision, 
and the performance of the combined PV-Battery system is 
shown in Figure 5 and Figure 6 and the main findings are 
summarised below. From the analysis of Figure 5, for Case B 
and Case C, the performance in terms of effective revenue 
roughly doubles after 21 days of training, to become then 
almost constant, whilst in Case A, this improvement increases 
more slowly. In all the three cases, this is due mainly to the 
reduction of the battery management cost, thanks to more 
precise PV production forecasts. It is possible also to establish 
a relation between the quality of the forecasts used and the 
performance of the system. Case B will be used to illustrate 
this aspect. The initial increase in performance of the forecast 
algorithm, with a relative reduction of the 49% of the mean 
absolute deviation between nominal and actual coverages is 
responsible for a reduction of about the 25% in the operation 
cost of the battery and an increase of about the 62% of the 
effective revenue of the system. From the analysis of Figure 6 
it is possible to analyse the impact of the initial battery cost on 
the utilisation of the battery and the quantiles used for the 
optimisation of the flexibility offered. The behaviour of the 
system is, as expected, strongly influenced by the financial 

parameters of the problem, mainly the difference between 
night and daytime electricity price and the cost of the battery. 
The simulation shows that only in Case C, with a cost of the 
battery of 200€/kWh the system is able to be in profit with the 
electricity prices used. This is an important observation, since 
the high cost of the battery and its ageing push the 
optimisation algorithm to limit considerably its use in Case A 
and Case B.  

 

 Figure 5: Effect of the training dataset size on the performance of 

the combined PV-Battery system. 

 

 Figure 6: Mode of the optimal quantiles selected by the 

optimisation algorithm for the three cases considered. 

The phenomenon is shown more clearly in Figure 7 where 
the cost benefit analysis described in Section III.C is 
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represented for Case B. In the chart it is possible to see how 
the cost of operating the battery becomes greater than the 
expected value of the PV production that can be saved for 
quantiles larger than 90%. It is also shown how the profit of 
the system reaches its maximum value around the quantile of 
30%. In Case A in the same condition the two values are 
respectively 35% and 5%, whilst in Case C (shown in Figure 
2), thanks to the lowest cost of the battery the optimum is 
around 65% and the cost of battery operation is never larger 
than the expected value of the PV production. 

 

 Figure 7: Cost benefit analysis of the flexibility requested at 
different forecast quantiles for the first day of the simulation using a traning 

dataset of seven days for Case B. 

V. CONCLUSION 

The paper has investigated the effect of uncertainty level 
in PV forecasts on the forecast-based optimal battery 
scheduling algorithm. Rather than considering artificially 
different uncertainy levels we consider the realistic case of 
forecasting models set-up for new PV plants that dispose little 
data history. This factor that affects accuracy was quantified in 
the paper and is expected to be frequent in real systems as new 
PV plants come into operation. The research shows that the 
performance of the forecasts increase quickly after about 1-2 
weeks of training to become roughly constant and this 
behavior is repeated by the performance of the optimal battery 
scheduling algorithm, which increases of about the 50% after 
two weeks of training. This latter conclusion on the data 
history indicates a time buffer that could be considered for 
integrating new PV plants into the PV-battery optimization 
schedules. This is considered a positive result, since it shows 
that historically trained forecast algorithm can be used with 
success also after reduced training periods, at least in similar 
applications. 
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