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Résumé — Stress Corrosion Cracking (SCC) represents a significant cause of failure in pressurised

water reactors and many efforts have been made to address this problem [1]. It involves the combined

action of the environment, mechanical stresses and material properties on the damage of engineering

components. Current SCC models developed to predict crack growth behaviour or SCC susceptibility

criteria do not fully incorporate the complex multiphysical processes that occur during oxidation at the

scale of the microstructure. The aim of the work is to formulate a multi-physics modelling framework

based on continuum thermodynamics able to describe the growth of an oxide film on a polycrystalline

material using the phase field method.

Mots clés — oxidation, phase field, multicomponent-diffusion, phase diagrams, multi-physics

1 Introduction

We propose a model for simulating the growth of oxide films β on γ, an austenitic iron-based alloy

containing chromium. The model is based on the phase field method, which relies on the treatment of

interfaces as diffuse entities of given thickness δ in contrast to sharp interface modelling. Oxidation is

then seen as a phase transformation, which is modelled by the motion of diffuse interfaces. This method

avoids to track interfaces as in sharp interface modelling, associated with a significant computation cost

especially for complex phases morphologies in three dimensions. To this end, a continuous field φ is

introduced as an additional degree of freedom termed as order parameter which features the following

properties ; it is uniform in the bulk of each phase and varies rapidly and continuously in the interfaces.

2 Constitutive Modelling

2.1 Building of the free energy F for ternary (Fe-Cr-O) biphased systems (β-γ)

An interface free energy density noted fφ and bulk free energy densities accounting for mechanics

and chemistry, resp. fσ and fc are considered. They are assumed to depend on the following set of

independent state variables {c
β
O, c

β
Cr, c

γ
O, c

γ
Cr, ε

∼

β
el, ε

∼

γ
el, φ, ∇φ} where c denotes molar fractions, ε

∼
is the

strain tensor and φ the so-called order parameter discriminating the phases. The total free energy is

supposed to be :

F =
Z

V
f dV =

Z

V

(
fc + fσ + fφ

)
dV . (1)

The different couplings between the interfacial, chemical and mechanical contributions are handled by

common variable dependencies :

fc = fc(c
β
O, c

γ
O, c

β
Cr, c

γ
Cr, ε

∼

β
el, ε

∼

γ
el, φ) , fσ = fσ(c

β
O, c

γ
O, c

β
Cr, c

γ
Cr, ε

∼

β
el, ε

∼

γ
el, φ) and fφ = fφ(φ, ∇φ) . (2)

In the present work, a substitutional lattice diffusion is here assumed. Consequently, the concentration of

iron can be removed from the set of state variables :

cα
Fe = 1− cα

Cr − cα
O . (3)
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2.1.1 Interface free energy

The interface free energy is composed of a double well g(φ) and a gradient energy term such that the

phase field variable φ is bounded above and below, with upper and lower bounds respectively 1 and 0 :

fφ = fφ(φ,∇φ) = 3γ

(
2z

δ
g(φ)+

δ

z
‖ ∇φ ‖2

)

, (4)

where g(φ) = φ2(1− φ)2, γ is the interface energy, δ the interface thickness and z = ln(0.95/0.05). At

equilibrium, when chemical and mechanical driving forces are zero, minimizing fφ gives the equilibrium

profile of φ [2] :

φeq(x) =
1

2

(

1− tanh
(zx

δ

))

. (5)

Such profiles are used in the simulations as initial conditions for φ.

2.1.2 Bulk free energies, a necessary interpolation due to the diffuse interface

As shown above, the interface is attributed a non-zero volume of thickness δ. At any material point,

the bulk free energy is postulated to be a mixture of the bulk free energies of the phases in contact (Fig.

1), such that this interpolated bulk energy varies from the bulk energy of β to that of γ in the diffuse

interface :

fc = h f β
c +(1−h) f γ

c and fσ = h f
β
σ +(1−h) f

γ
σ with h = h(φ) = φ2(3−2φ) , (6)

The same hypothesis is made for the state variables and their dual quantities (Fig. 1) :

∀i ∈ {Cr,O},

{

ci = hc
β
i +(1−h)c

γ
i

µ̃i = hµ̃
β
i +(1−h) µ̃

γ
i

and

{
ε
∼
= hε

∼

β +(1−h)ε
∼

γ

σ
∼

= hσ
∼

β +(1−h)σ
∼

γ . (7)

It is worth stressing that this partitioning is similar to the averaging rules found in homogenisation theory

in physics of heterogeneous materials. It can be noted that an "homogenisation" procedure is needed to

eliminate the excessive degrees of freedom [3]. To this end, particular bounds can be chosen, i.e. Reuss-

like or Voigt-like. In the present work, the following choice of bounds is done [2, 4] :

∀i ∈ {Cr,O}, µ̃i = µ̃
β
i = µ̃

γ
i and ε

∼
= ε

∼

β = ε
∼

γ , (8)

where µ̃α
i =

∂ f α

∂ci

is the diffusion potential of species i and σ
∼

the stress tensor. The the sake of simpli-

Fig. 1 – Schematic representation of the interpolation procedure of the bulk free energies and variables

in the diffuse interface.
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city, the chemical free energies are taken as elliptic paraboloids with respect to concentrations and the

mechanical energy is given the usual quadratic form :

∀α ∈ {γ,β}, f α
c = ∑

i

kα
i (cα

i − c∗α
i )2 and f α

σ = σ
∼

α : ε
∼
, (9)

where c∗α
Cr , c∗α

O the concentrations minimising the chemical free energy density of the phase α. cα
i are

constants fitted together with the curvatures kα
i to recover two particular phase diagrams.

2.2 Continuum thermodynamics

2.2.1 Derivation of the balance equations using the principle of virtual power

The principle of virtual power is a straightforward way for deriving the balance equations, that will

be numerically solved. It consists in multiplying work-conjugates π, ξ and σ
∼

by virtual generalised

velocities implying virtual powers. The virtual power of internal forces in a volume V with boundary S

reads :

P
⋆
int =

Z

V
pintdV =

Z

V

(

πφ⋆−ξ ·∇φ⋆−σ
∼

: ∇u ⋆
)

dV , (10)

We define ζ and t as respectively the external microtractions and tractions acting on the boundary sur-

face :

P
⋆
ext =

Z

S
(ζφ⋆ + t ·u ⋆)dS . (11)

By summing external and internal virtual powers and using the properties of divergence, one obtains :

Z

V

(

πφ⋆−∇ · (ξ φ⋆)+φ⋆∇ ·ξ −∇ · (σ
∼
·u ⋆)+(∇ ·σ

∼
) ·u ⋆

)

dV +
Z

S
(ζφ⋆ + t ·u ⋆)dS = 0 . (12)

Using the divergence theorem :

Z

V

(

(π+∇ ·ξ )φ⋆ +
(
∇ ·σ

∼

)
·u ⋆
)

dV +
Z

S

((

ζ−ξ ·n
)

φ⋆ +
(
t −σ

∼
·n
)
·u ⋆
)

dS = 0 , (13)

where n is the unit normal vector. Because (13) is valid for every {φ⋆,u ⋆}, the local form of the balance

laws must hold :

{
π+∇ ·ξ = 0 for V

ξ ·n = ζ for S
and

{
∇ ·σ

∼
= 0 for V

σ
∼
·n = t for S

. (14)

The remaining balance equations are the two mass balances for O and Cr :

{
ċO = −∇ · J O for V

J O ·n = jO for S
and

{
ċCr = −∇ · J Cr for V

J Cr ·n = jCr for S
. (15)

2.2.2 First principle

Neglecting the kinetic energy for an isothermal phase transformation, the first principle of thermo-

dynamics reads :
Z

V
ėdV =

Z

V
−pintdV , (16)

where e is the internal energy density and pint the total power of internal forces.

2.2.3 Second principle

The second principle of thermodynamics reads :

Z

V
ṡdV ≥

Z

S
Φ ·n dS , (17)
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where s is the entropy density and Φ the entropy flux. By performing a Legendre transformation, the

time derivative of the free energy density can be written with respect to the time derivatives of e and s

assuming that θ is homogeneous and remains constant, i.e. ∀(X , t), θ(X , t) = θ0 :

ḟ = ė−θ0ṡ . (18)

The second principle (17) combined with the above Legendre transformation (18) can be written in the

form of the Clausius-Duhem equation for the isothermal case :

Z

V

(
ė− ḟ

)
dV ≥ θ0

Z

S
Φ ·n dS . (19)

2.2.4 Internal energy density, free energy density and entropy flux

To describe the internal energy, the forces acting on the system must be defined. The micro-forces

and micro-stresses respectively denoted by π and ξ , accounting for mass exchange and surface tension

respectively, are the work-conjugate generalised velocities of the state variables φ and ∇φ. Hence :

pint = πφ̇−ξ ·∇φ̇−σ
∼

: ε̇
∼el

. (20)

Using (16), the time derivative of the internal energy density becomes :

ė = −πφ̇+ξ ·∇φ̇+σ
∼

: ε̇
∼el

. (21)

The total time derivative of the free energy density is expanded using the chain rule :

ḟ =
∂ f

∂c
β
O

ċ
β
O +

∂ f

∂c
β
Cr

ċ
β
Cr +

∂ f

∂c
γ
O

ċ
γ
O +

∂ f

∂c
γ
Cr

ċ
γ
Cr +

∂ f

∂ε
∼el

: ε̇
∼el

+
∂ f

∂φ
φ̇+

∂ f

∂∇φ
·∇φ̇ . (22)

The entropy flux is then defined as follow using (8) :

Φ = ∑
i

µ̃iJ i

θ0

. (23)

2.2.5 Derivation of the constitutive laws

Following the solute partitioning assumption (7) the time derivative of the averaged concentration

becomes :

ċi = hċ
β
i +(1−h)ċ

γ
i +h′φ̇(c

β
i − c

γ
i ) . (24)

Combining (21), (22), (24) and (23) in the Clausius-Duhem equation (19) :

−

(

π+
∂ f

∂φ
−h′∑

i

µ̃i

(

c
β
i − c

γ
i

)
)

φ̇+

(

ξ −
∂ f

∂∇φ

)

·∇φ̇+

(

σ
∼
−

∂ f

∂ε
∼

el

)

: ε̇
∼

el

+∑
i

(

h

(

µ̃i −
∂ f β

∂c
β
i

)

ċ
β
i +(1−h)

(

µ̃i −
∂ f γ

∂c
γ
i

)

ċ
γ
i − J i ·∇µ̃i

)

≥ 0 ,

(25)

and assuming that the dissipation is independent of ∇φ, c
β
O, c

γ
O, c

β
Cr, c

γ
Cr and ε

∼el
, the following constitutive

laws are obtained :

ξ =
∂ f

∂∇φ
, σ

∼
=

∂ f

∂ε
∼

el
and µ̃i =

∂ f β

∂c
β
i

=
∂ f γ

∂c
γ
i

. (26)
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2.2.6 Derivation of the complementary laws

Simplifying the Clausius-Duhem equation with the constitutive laws gives :

−

(

π+
∂ f

∂φ
−h′∑

i

µ̃i

(

c
β
i − c

γ
i

)
)

φ̇−∑
i

J i ·∇µ̃i ≥ 0 . (27)

The dissipative force πdis is defined as :

πdis = π+
∂ f

∂φ
−h′∑

i

µ̃i

(

c
β
i − c

γ
i

)

. (28)

The dissipation equations are then obtained by introducing diffusion and interface positive mobilities,

respectively Li and Mφ, into the dissipation potential Ω, assumed quadratic :

Ω = −
Li

2
‖ ∇µ̃i ‖

2 −
Mφ

2
π2

dis , (29)

Thus :

J i =
∂Ω

∂∇µ
= −Li∇µ̃i and φ̇ =

∂Ω

∂πdis

= −Mφ

(

π+
∂ f

∂φ
−h

N

∑
i=1

µ̃i(c
β
i − c

γ
i )

)

, (30)

where the mobility of i is taken as a mixture of the mobilities in phases β and γ :

Li = hL
β
i +(1−h)L

γ
i . (31)

Furthermore, the above evolution equation for φ (30) can be rewritten using (14), (26) and (4) in a form

where all contributions appear clearly :

1

Mφ
φ̇ = 3γ

(
δ

z
∆φ−

z

δ
g′(φ)

)

︸ ︷︷ ︸

interface

−h′(φ)








f β
c − f γ

c −∑
i

µ̃i(c
β
i − c

γ
i )

︸ ︷︷ ︸

chemical

+ f
β
σ − f

γ
σ

︸ ︷︷ ︸

mechanical








︸ ︷︷ ︸

driving force

. (32)

The grand potential ω defined as :

∀α ∈ {β,γ}, ωα = f α −∑
j

∂ f α

∂ci

ci where f α = f α
c + f α

σ , (33)

can be introduced in (32) to give :

1

Mφ
φ̇ = 3γ

(
δ

z
∆φ−

z

δ
g′(φ)

)

︸ ︷︷ ︸

interface

−h′(φ)
(

ωβ −ωγ
)

︸ ︷︷ ︸

driving force

, (34)

where the driving force is now simply the difference between the grand potentials of β and γ.

The driving force can be geometrically interpreted in Fig. 2 where the free energies of phases β

and γ are plotted vs. the concentration for a binary alloy. Indeed, due to (33), the difference ωβ −ωγ is

the vertical distance between the parallel tangents to the respective free energy curves (dashed lines).

At equilibrium, the driving force vanishes, i.e. ωβ = ωγ, and the common tangent rule (black line) is

recovered.
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Fig. 2 – Free energy vs. concentration for a binary alloy : the parallel tangent construction

2.3 Time and space discretization of the balance equations

In this section, the balance equations are discretized using finite elements and solved with the

Newton-Raphson algorithm. For this purpose, a residual vector R is henceforth defined :

R =







Rφ

RcO

RcCr

Ru







, (35)

where Rφ, RcO
, RcCr

and Ru are the residuals of each degree of freedom which derive from the balance

equations (14) and (15) :

Rφ =
Z

V

(

πφ̇⋆−ξ ·∇φ̇⋆
)

dV +
Z

S
ζdS Ru =

Z

V
σ
∼

: ∇u̇ ⋆dV +
Z

S
t dS

RcO
=

Z

V
(ċOcO

⋆− J O ·∇c⋆
O)dV +

Z

S
jOdS RcCr

=
Z

V
(ċCrcCr

⋆− J Cr ·∇c⋆
Cr)dV +

Z

S
jCrdS

. (36)

The degrees of freedom φ, cO, cCr and u are then spatially discretized over all finite elements containing

n nodes with shape functions N. Brackets denote scalar and vector nodal values of a given degree of

freedom. The matrices B and B are defined to compute the gradients of the scalar and vector fields.

a = N{a} ∇a = B{a}
b = N{b } ∇b = B{b }

. (37)

Time discretisation is carried out by finite difference :

ȧ = N({a}t+∆t −{a}t)/∆t and ḃ = N({b }t+∆t −{b }t)/∆t . (38)

The residuals can now be discretized :

{R} =







{Rφ}
{RcO

}
{RcCr

}
{Ru }







, (39)

with :

{Rφ} =
R

V

(

πN −ξ B
)

dV +
R

S ζdS {Ru } =
R

V σ
∼

: B dV +
R

S t dS

{RcO
} =

R

V (N{ċO}N − J OB)dV +
R

S jOdS {RcCr
} =

R

V (N{ċCr}N − J CrB)dV +
R

S jCrdS
. (40)

The volume and surface integrals are computed using a Gauss integration procedure.
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The Jacobian matrix J, which is the derivative of the vector-valued residual {R}, is written as follows :

J =

[
∂Ri

∂s j

]

, (41)

where Ri is the residual of the ith degree of freedom and s j the jth degree of freedom. The Jacobian matrix

is updated at each time increment.

Given a desired maximum value for the residual as a convergence criterion, adaptive time stepping

is applied depending on the number of necessary iterations. Furthermore an adaptive mesh refinement

strategy is also applied especially to handle large 3D computations with low interface volume fractions.

3 Preliminary results in ternary alloys

Kinetic calculations involving diffusion-controlled transformations, such as oxidation, rely on a re-

levant description of the equilibrium phase diagram, i.e. with proper phase boundaries connected with

tie-lines. If for metallic alloys, recovery of their topology is generally not a big issue, phase diagrams with

oxygen involve stoichiometric compounds and features complex fan-shaped two-phase fields as show in

Fig. 3, where our domain of interest (γ +Cr2O3) is coloured in blue. To reproduce the blue domain, the

Fig. 3 – Experimental ternary diagram of Fe-Cr-O at 1200◦C [6].

chemical free energy densities of phases Cr2O3 and Fe-γ are taken as elliptic paraboloids following (9).

Large curvatures k
Cr2O3

Cr and k
Cr2O3

O have been chosen to restrict chromia to a stoichiometric compound.

On the contrary, the curvature k
Fe−γ
Cr is much smaller to extend the domain of stability of austenite to

significant contents in Cr. Indeed, k
Fe−γ
Cr is low to allow the substitution of Fe and Cr atoms. These free

energy densities are shown in Fig. 4 :

cCr

0.0
0.2

0.4
0.6

0.8
1.0

c
O

0.0
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Fig. 4 – Chemical free energies of Cr203 (red) and

Fe-γ (blue) with the corresponding tie-lines (colou-

red lines), projected in the ternary section in Fig.

5

0.0 0.2 0.4 0.6 0.8 1.0Fe Cr

O

% Cr

Fig. 5 – Simulated diagram (phase field method)
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In multicomponent alloys, the common tangent construction to find two-phases equilibria can be

generalized into a common tangent hyperplane rule. Indeed, chemical equilibrium is reached when the

chemical potentials of each component are equal between phases γ and Cr203 as shown in (42) :

µ
Fe−γ
Fe (c

Fe−γ
Cr ,c

Fe−γ
O ) = µ

Cr2O3

Fe (cCr2O3

Cr ,cCr2O3

O )

µ
Fe−γ
Cr (c

Fe−γ
Cr ,c

Fe−γ
O ) = µ

Cr2O3

Cr (cCr2O3

Cr ,cCr2O3

O )

µ
Fe−γ
O (c

Fe−γ
Cr ,c

Fe−γ
O ) = µ

Cr2O3

O (cCr2O3

Cr ,cCr2O3

O )

. (42)

Solving for Eqs. (42) gives a range of tie-lines connecting the equilibrium concentrations of both phases

as shown in Fig. 4. From a practical point of view, in codes devoted to the calculation of phase dia-

grams, each tie-line is obtained by solving Eqs. (42) supplied with overall balances involving an overall

composition in the two-phase field (diamonds in Fig. 5). As shown in Fig. 5, the phase field model of

section 2 with the free energies discussed above gives the expected phase diagram at equilibrium when

the mechanical contribution is neglected. It is a first step toward the computation of the high temperature

oxidation in Fe-Cr alloys.

4 Conclusions and prospects

We have extended a previous formulation of a phase field model incorporating elasticity and plasticity

[4] to the case of multicomponent alloys, in view of its application to the oxidation of Fe-Cr alloys. Future

work will focus on the computation of the oxidation process, accounting for grain boundaries as well as

for dislocation enhanced bulk diffusion. Finally, the effect of stresses on the kinetics of oxidation and on

the morphological evolutions will be investigated.
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