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AUTOMATIC OPTIMIZATION TECHNIQUES
APPLIED TO A LARGE RANGE OF INDUSTRIAL TEST CASES
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ABSTRACT: The use of material processing numerical simulation has spread widely in recent years in the engineering
industry. It allows a strategy of trial and error to improve virtual processes without incurring material costs or
interrupting production and therefore save a lot of money. On the other hand, it requires user time to analyze the results,
adjust the operating conditions and restart the simulation. Automatic optimization seems the perfect complement to
simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results
on a very large range of applications within a few tens of simulations and without any specific automatic optimization
technique knowledge. In the frame of the LOGIC ANR French project, ten industrial partners have been selected to
cover the different area of the mechanical forging industry and provide different examples of the forming simulation
tools. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined
examples, and the use of new multicore hardware to compute several simulations at the same time reduces the needed
time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization
of a common rail and the cogging of a bar.
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1 INTRODUCTION

The use of material processing numerical simulation has
spread widely in recent years in the engineering industry.
It allows a strategy of trial and error to improve virtual
processes without incurring material costs or interrupting
production and therefore save a lot of money. On the
other hand, it requires user time to analyze the results,
adjust the operating conditions and restart the simulation.
Therefore this process is often interrupted before the
optimum is reached for lack of time. Automatic
optimization seems the perfect complement to
simulation. Despite this, if nice academic example can
be found, there is very little coupled use in the industry.
The reasons are many:

(a) Difficulty in applying optimization techniques to a
complex reality and to formalize a particular optimality
criterion which is often a mix between the quality of the
part (criteria based on thermo-mechanical history and
lack of default) and its cost (the amount of material used,
deterioration of tools, equipment selection).

(b) Complexity of triple coupling between the core
optimization, simulation software and possibly CAD
software.

(c) Difficulties in the form of objective functions that
make difficult the use of first-order algorithms and the
time of evaluation which could exclude the zero-order
algorithms.

The French founded ANR Logic project gathers ten
FORGE end users, Cemef and Transvalor. It aims to
demonstrate that, using Metamodelling based Evolution
Strategies, it is possible to obtain industrially relevant
results on a very large range of applications within a few
tens of simulations and without any specific automatic
optimization technique knowledge. To achieve this
proof, the ten industrial partners have been selected to
cover the different area of the mechanical forging
industry and each of them came with 2 or 3 different
examples typical of its own use of the forming
simulation tools. Two years after the beginning of the
project, the first goal is reached. The optimization
module, fully embedded within the Forge2009 THM
makes possible to cover all the defined example and the
use of new multicore hardware to compute several
simulations at the same time reduces the needed time
dramatically.

The examples presented here have been selected among
the project test case to demonstrate the versatility of the
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method. They include billet shape optimization of a
common rail and the cogging of a bar.

2 MAES algorithm

Meta-model Assisted Evolution Strategies (MAES) are
regarded as quite robust algorithms with respect to local
extrema. They make it possible to solve the most
complex optimisation problems. Evolutionary algorithms
(ES) typically consist of three operators: selection,
recombination and mutation. Their cost is usually quite
high in terms of function evaluations. MAES proposed
by Emmerich et al [1] combines an ES with Kriging
meta-models to reduce the number of function
evaluations. An overview of MAES is depicted in Figure
1. It starts by randomly choosing an initial population of
(a minimum of) 2 times the number of optimization
parameters. The number of parents, A, is set to (a
minimum of) 2 times the number of optimization
parameters, while the number of children, £ is set to (a
minimum of) 4 times A.

Initialisation

| Function Evaluation H Select best individuals H Fit metamodel

Selection »| Recombination ‘ »  Mutation ’

Optimum

Figure 1: Overview of MAES.

After having run the F.E. simulations for the initial
population, the A best settings are selected, recombined
and mutated to yield g children. The results of the
previously performed F.E. calculations are used to fit a
Kriging meta-model, so instead of running the expensive
F.E. calculations for the y children, the results are first
estimated. The objective function values f are not

directly approximated by ]7 ,butby 7 —Af, where Af
is the Root Mean Square Error of the Kriging
approximation. f i f is the merit function. Based on

these predictions, only the 20% best individuals are
actually evaluated by running the F.E. simulations. In
this way, the meta-modelling technique saves 80% of
time-consuming calculations. The Kriging meta-model is
then updated, and this procedure is repeated until the
maximum number of F.E. simulations is reached.
According to the problem size, each F.E. calculation can
be run on a certain number of processors, Ngp It is
useless to appeal to too many processors because the

parallel efficiency decreases after a certain number. On
the other hand, it is quite efficient to benefit from the
parallel structure of the ES, by running the A (or a
portion of A) F.E. simulations at the same time on
different machines. Consequently, A Nx g processors can
be used for the parallel calculations, with a very high
efficiency.

3 FORGING OF A COMMON RAIL

The first application regards the shape optimization of a
cylindrical preform (see Figure 2) that is used to produce
a common rail by two steps of closed die forging (see
Figure 3). The axisymmetric preform is parameterized
using 3 parameters: its larger and smaller diameters, and
its length. The ratios between the different parts of the
shape are kept constant. The optimization objective is to
minimize the mass of the component (i.e. of the preform)
under the constraint of forming the right component (i.e.
of perfectly filling the active part of forging dies — i.e.
without taking into account the flash). The constraint is
handled by a penalty approach. The objective and
constraint function are aggregated into a single objective
function.

The MAES algorithm was set-up with a population of 45
individuals (9 parents and 36 children). At each
generation, only 9 exact calculations (20%) are carried
out on the available cluster of 32 cores - consisting of 8
nodes of 4-core processors. For each individual, the two
forging steps are calculated in parallel on the 4 cores of
each node, while the 9 individuals are calculated in
parallel on a maximum of 5 nodes, in two batches. In a
first approach, the maximum number of generations was
set to 6, for a total of 54 exact forging simulations.
Figure 2 shows two preform shapes that have been tested
by the algorithm. They have similar mass but very
different aspect ratios. In Figure 4, four simulation
results are presented. The bottom left case represents an
unfilled configuration, where the component details do
not appear. The bottom right case allows proper filling,
but the mass is quite large. In spite of its mass that is
heavier than the top right solution, the top left solution
does not provide a proper filling of the thin arm. The
evolution of both the constraint and objective functions
along with the genetic generations are plotted in Figure
5, while Figure 6 more clearly shows the weight
reduction. They show the convergence of the MAES
algorithm toward a quite satisfactory solution within
only 6 generations; the filling constraint is satisfied after
the first generation of the algorithm, and the following
generations allows minimizing the preform mass, from
26.1 kg to 25.7 kg.

Figure 2: Two preform shapes utilized for the forging of the common rail component.
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Figure 3: Closed-die forging of a “common rail” component — end of the second step of forging.

Cuil_inferieur

Figure 4: Final shape of the component for different results of optimization.
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Figure 5: Pareto plot in the mass (horizontal axis) / die
filling (vertical axis) frame of the calculated solutions at
the different generations of MAES.

4 COGGING

After cooling, a cast billet exhibits localized porosities
that can be calculated using a Yamanaka model (see
Figure 7). In order to close these porosities, the billet is
open-die forged in order to get a square section by 12
steps of cogging with a 90° rotation between each.
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Figure 6: Minimum weight of the individual of each
generation satisfying the filling constraint.

Figure 8 shows the reduction of these porosities at
different steps of cogging. The optimization problem
consists in determining the final heights of the
successive strokes n°l, 3, 5, 7, 9 (the height of stroke
n°2 is equal to the one of stroke n°l and so on), which
provide 5 optimization parameters, in order to get a
prescribed section after the 12" stroke (the remaining
two strokes have prescribed heights) and to optimize
the material deformation for closing the porosities.
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Figure 7: Isovalues of the Yamanaka porosity model at
the end of cooling of the initial billet.

Figure 8: Reduction of the 0.2 isovalue of porosity at
different phases of the cogging strokes.

The MAES algorithm was set-up in order that 15 exact
calculations were carried out in parallel (in two
batches) at each generation, each series of 12 forging
steps being calculated in parallel on the 4 cores
processors. The maximum number of generations was
set to 5, for a total of 75 exact forging simulations.

The results of this first batch of calculations were quite
satisfactory, as can be seen in Figure 9 that shows the
optimal obtained solution, in comparison to a less
satisfactory solution. The material porosities have been
almost totally closed, except at the two ends of the bar,
where they were initially larger and where the process
efficiency is lower.

i

Figure 9: 0.2 isovalue of porosity at the end of cogging
for a good (top) and for the optimal (bottom) solutions.

CONCLUSION

Optimization algorithms based on meta-modelling
techniques can be applied to actual and very complex
metal forming problems. The computational time is
well handled by the parallelization of the evolutionary
algorithm, in addition to the parallelization of the F.E.
software itself. Complex design problems can be
tackled, like the presented preform shape design for the
forging of a common rail and the achievement of an
attractive mass reduction, or like the process design for
the cogging of a bar with a large number of parameters
and the obtaining of a satisfactory micro-structure.
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