N
N

N

HAL

open science

Metamodel Assisted Evolutionary Algorithm for
Multi-objective Optimization of Non-steady Metal
Forming Problems

Mohsen Ejday, Lionel Fourment

» To cite this version:

Mohsen Ejday, Lionel Fourment. Metamodel Assisted Evolutionary Algorithm for Multi-objective Op-
timization of Non-steady Metal Forming Problems. 13th ESAFORM Conference on Material Forming,

Apr 2010, Brescia, Italy. pp.Pages 5-8, 10.1007/s12289-010-0689-0 . hal-00851431

HAL Id: hal-00851431
https://minesparis-psl.hal.science/hal-00851431
Submitted on 14 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://minesparis-psl.hal.science/hal-00851431
https://hal.archives-ouvertes.fr

METAMODEL ASSISTED EVOLUTIONARY ALGORITHM
FOR MULTI-OBJECTIVE OPTIMIZATION
OF NON-STEADY METAL FORMING PROBLEMS

M.Ejday', L. Fourment"

! Mines ParisTech — CEMEF (Centre for Material Forming), Sophia Antipolis, France

ABSTRACT: Multi-objective optimization problems are considered in the field of non-steady metal forming processes,
such as forging or wire drawing. The Pareto optimal front of the problem solution set is calculated by a Genetic
Algorithm. In order to reduce the inherent computational cost of such algorithms, a surrogate model is developed and
replaces the exact the function simulations. It is based on the Meshless Finite Difference Method and is coupled to the
NSGA-II Evolutionary Multi-objective Optimization Algorithm, in a way that uses the merit function. This function
offers the best way to select new evaluation points: it combines the exploitation of obtained results with the exploration
of parameter space. The algorithm is evaluated on a wide range of analytical multi-objective optimization problems,
showing the importance to update the metamodel along with the algorithm convergence. The application to metal
forming multi-objective optimization problems show both the efficiency of the metamodel based algorithms and the
type of practical information that can be derived from a multi-objective approach.

KEYWORDS: Multi-objective optimization, Metamodel Assisted Evolutionary Algorithm, Meshless Finite Difference
Method, Genetic Algorithm, Forging, Wire drawing.

1 INTRODUCTION 2 MULTI-OBJECTIVE OPTIMIZATION

Evolutionary Multi-Objective Algorithms (EMOAs) can PROBLEM (MOOP)

be regarded as the best techniques for determining the A Multi-Objective Optimization Problem (1) can be

Pareto Optimal Front (POF) — the set of optimal defined as the search for the best set of solutions
solutions - of Multi-Objective Optimization Problems

T .
(MOOPs), as they provide a good diversity of points on X = (X1 X, x) (where 7 is the number of

the calculated Pareto set, even for difficult problems. optimization parameters) that minimizes a number of M
However, they generally require a very large number of conflicting (or not) objective functions and that satisfies
function evaluations, which sometimes makes these a number of constraints which constitute the decision
strategies impracticable when these evaluation are quite space S . Two goals are simultaneously followed: to find
time consuming, as it often occurs in the metal forming solutions that as close as possible to the POF and that are
context. The number of evaluations can be significantly diverse enough to represent the front, as well as possible.
reduced by replacing most of exact calculations by fast

surrogate functions. This constitutes the frame of Minimize/Maximize ¢,(X) m=1..,M
Metamodel assisted EMOA (M-EMOA), which is g,(X)z0  j=1..,J

considered and studied in this paper, for a range of non- subject to h(X)=0 k=1..K O
steady metal forming applications. The Multi-Objective xl<x <x’ i=l..n

Optimization Problem is presented in section 2, the
metamodel in section 3, and the coupling between the
metamodel and NSGA-II [1] in section 4. Section 5 3 METAMODEL
allows assessing the proposed approach through a
number of academic test problem, while real world metal
forming applications are presented in section 6.

Literature suggests many metamodelling techniques to
approximate expensive functions out of the knowledge
of these functions values at a limited number of master
points. Kriging [2] and Response Surface methodologies
[4] are often used, as well as the Moving Least Square
approach [7]. A variant of this latter is selected here: the
Meshless Finite Difference Method (MFDM) [5]. In
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order to compute qo(X i) = @, the value of @ at any

point X; of the parameter space, the Liszka-Orkisz
interpolation [6] consists in writing a second order
Taylor’s series expansions in the neighbouring of X, at

any of the ¢/ master points X B where ¢)(X j) =@ is

known:
,f—a+2bx!;+ ch,fi,’ﬁO[ J3j )
k,1=1
a=@ A, =X, -X, . D(kl)Z Ln:
with: x;;=x‘]; _x,- b —(D¢7 (] ) 3)

The (a,b,c) solution minimizes the quadratic sum,
E (a,b,c) (4), of the ¢ Taylor’s series expansions

errors that can be written for all the available master
points:

E(a,b,c)I
—Zw (a+Zb Zc,wx;xfj'

A HM=1
where the weights @, =||4/ "_6

]2 )
-9

are naturally derived

from the errors of the Taylor’s expansions (2). It should
be noticed that all master points are considered, contrary
to the Moving Least Square Method [7] that requires
defining or computing a specific radius value to exclude

distant points. The minimization of E (a,b,c) with

respect to (a,b,c) results into the resolution of the

following linear system (5):
AX =B 5)
E (a,b,c), the quadratic sum Taylor’s series expansions

errors, provides an indication of the interpolation error
4@ of @ at point i:

g T

4 METAMODEL ASSISTED NSGA-IT

In the proposed metamodel assisted NSGA-II, M-
Updated, the initial metamodel M, is first constructed

by ¢ master points provided by a Latin Hypercube
Design Of Experiment [8]. It is utilized to approximate
the function values for the individuals of the initial
population £, of size N, generated by NSGA-II. At
each new generation <N, (N, being the maximum
number of generations), a M, metamodel is iteratively

enriched into M,,, by adding 8 new master points.

1+1

They are selected as the best @ first individuals of the
P population, which are sorted in growing rank by

using the concept of domination [1] and decreasing
crowding distance using the crowding distance criterion
[1]. The sorting, specifically carried out for updating the
metamodel, is based on the merit function @- A@,
contrary to the standard parts of the algorithm that use
the surrogate function @, as also proposed in [1]. The
new metamodel M,,, is then used to estimate the values
of the O, offspring population, as well as to update the
estimations of the P parent population. The prescribed
number of generations, N, , in such that new master
points are regularly added at each generation:

. 4
No==5 (7

Where the maximum number of master points is chosen
as: ¢,.. =20n, the initial number of master points is

+
given by: ¢ =1+n +nnT1 and the number of added

master points at each generation is 8 =2"".

5 ANALYTICAL TEST PROBLEMS

M-Updated results are presented for two analytical
problems, and are compared to those provided by
NSGA-II by exactly computing the functions for all the
individuals.

5.1 CONSTRAINT PROBLEM: C-Min-Ex

The C-Min-Ex problem is a two-objective constraint
MOOP with two-variable proposed by Deb [1]. It is
defined by (8).

Minimize f;(x,,x,)=x f,(x,x,) = 1+x

x]
subjected to: (8)
g (xl,xz) =x, +9x, 26, g, (xl,xz) =-x, +9x, 21

0.1=x<1,0=x,<5

Table 1: Parameterisation of M-Updated for C-Min-Ex

Algoritms N N, N, A 7 /.
NSGA-II 100 50
M-Updated 100 50 17 6 2 40

Figure 1 shows that, with only 40 exact evaluations, M-
Updated is not only able to take into account the problem
implicit constraints but also to find solutions that are
close to those gives by NSGA-II with 5,500 evaluations.



M-Updated

NSGA-II

0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

Figure 1: Comparison of the Pareto optimal front of C-
Min-Ex obtained by M-Updated and NSGA-II

5.2 TEST PROBLEM : KUR

This two-objective optimization problem is complex
with non-convex and disconnected Pareto optimal set
(Figure 3) separated into 3 distinct regions (Figure 2).
With 600 exact function evaluations M-Updated shows
its efficiency by finding quite good results, close to those
obtained by NSGA-II within 40,400 evaluations.

Minimize f; (X) = Z;[—lOexp(—O.L [x* +x7 )J
Minimize f; (X) =Y " [|x["* +5sin(x')] ()

-5<x <5, i=1,23

Table 2: Parameterisation of M-Updated for KUR

Algorithms N N N, A 8 v, .

NSGA-II 400 100

M-Updated 400 125 125 100 4 600

2

= NSGA-Tl
* M-Updated
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Figure 2: Comparison of the Pareto optimal fronts of
KUR test problem obtained by M-Updated and NSGA-II
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Figure 3: Pareto optimal solutions in the decision
variable space for the test problem KUR

6 METAL FORMING PROBLEMS
6.1 FORGING A CONNECTING ROD

This first metal forming application regards the preform
shape optimization of a cylindrical billet (see Figure 4)
in order to forge a connecting rod (see final shape in
Figure 5). The mono-objective optimization problem (9)
consists in finding the best homothetic ratio, x, of the
shape presented in Figure 4, in order to minimize the
component mass while preserving proper filling of
finishing dies at the end of forging (see Figure 5) — in
other words, to minimize the flash volume while
obtaining the right shape of the component. The
constraint is aggregated into the objective function via a
penalty approach:

¢(x) =volume + filling

9
0.8<x<1.05 ©)

{Minimize
The results obtained with 20 master points with both M-
Updated and MAES are compared in Table 3; MAES is
a Kriging based Metamodel Assisted Evolutionary
Algorithm developed by M. Emmerich et al [3] that
serves here as reference. M-Updated provides as good
and even slightly better results than MAES for such a
mono-objective problem.

[repartition1.don]

Time: 0
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Figure 4: Initial preform and forging dies.



Table 3: Results obtained by M-Updated and MAES

Algorithms X min @
MAES 1.021 1.099
M-Updated 1.015 1.086

Figure 5: Isovalues of distance between the part and the
dies at the end of forging (blue/drak = proper filling).

6.2 WIRE DRAWING

Two objectives are considered in the following wire
drawing optimization problem (see Figure 7 and
equation (10)): the usual minimization of the maximum
drawing force, F, __, and the less common minimization

of the material damage,D,, There are two design
variables, the entrance die semi-angle, & , and the land

length, L, (see Figure 7).
Minimize f,(a,L)=D,,,
:yMinimize f, (a,L) =F (10)

max

0.1<a,L<2

Figure 6: Simulation of the wire drawing process.
o
L)

L=g©

Figure 7: Drawing die geometry and definition of the
optimization parameters.

Figure 8 shows the POF obtained with the M-Updated
algorithm after 40 exact problem simulations. It can be
noticed that: (a) the two objectives F,, and D, are
conflicting, (b) the POF is well represented with few
calculations, (c) in a single optimization run, the POF
allows getting a wide range of optimal solutions. The

usually selected solution corresponds to the minimum
force (right end of Figure 8), but the POF shows that by
accepting a 3% increase of F,__ it is possible to get a

max

45% decrease of the material damage D,,,. .
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Figure 8: POF of the wire drawing process
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