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Summary: In this paper, a new 3D roughness parame-

ter, Sreg, is proposed to quantify the regularity of a
surface, independent of the amplitude and the scanning

length units of the surface. The efficiency of this

parameter is tested on noisy periodical surfaces with
degrees of anisotropy. This parameter lies between zero

(perfect noise) and 100% (a perfect periodic surface).

This parameter enables the identification of the
anisotropy directions of regularity for a given surface.

For a periodical surface, the greater the noise, the lower

the anisotropy. A direction function is proposed to
analyse the direction of regularity of a rough surface,

which then permits characterization of the directional

regularity of the topography. The regularity parameter
can be used for several purposes: to identify the

direction of periodical structures formed by laser-pulsed

radiations on the surface of solid workpieces; to
examine the reproducibility of surface machining

methods such as finishing process; and to identify the

surface regularity produced by abrasivemachining, such
as precision surface grain, abrasive slotting, and lapping.
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Introduction

Surface roughness refers to the evolution of the

surface compared with the mean of the surface. The

standard DIN4760 defines the orders of deviation
(DIN4760, ’82). Benardos and Vasniakos (2003)

describe these orders. They indicate that:

� First and second orders of deviation relate, respec-

tively, to the form (i.e., flatness, circularity, etc.) and

to waviness. These deviations are due to machine tool
errors, deformation of the workpiece, erroneous

setups, clamping, vibration, and workpiece material

in homogeneity.
� Third and fourth orders of deviation refer to periodic

grooves, cracks, and erosions, which are connected to

the shape and condition of the cutting edges, to chip
formation, and to kinematics processes.

� Fifth and sixth orders of deviation refer to thematerial

structure of the workpiece, which is connected to
physical–chemical mechanisms acting on a grain and

to lattice scale (slip, diffusion, oxidation, residual

stress, etc.).

Many parameters associated with machining pro-

cesses and/or workpiece properties influence surface

roughness. Figure 1 represents an ordered nonexhaus-
tive diagram of these parameters. Consequently, studies

of the surface topography of manufactured elements are

developed with two principal objectives of analysis:
the effect of machining parameters and the adverse

consequences in the workpiece properties (Venkateh

et al., ’99a,b). Different roughness parameters have
been proposed to qualify a machined surface. The more

common parameters are: the arithmetical mean height of

the surface (Sa), the root mean square height of the
surface (Sq), and themaximum height of the surface (Sz).
These parameters do not disclose the complexity of

the surface (Bhushan, ’99). Nevertheless, this paper
proposes to quantify the organization of surfaces
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through the integration of a new scale invariant

roughness parameter. This parameter is called the

“regularity parameter,” and it is used in order to identify
the influence of various processes on the topography of a

machined surface.

The Regularity Parameter

Mathematical Definition

Fourier analysis is a well-known signal processing
method used in surface topography (Whitehouse, 2011),

widely used in solving engineering problems. However,

in some applications such as surface roughness
characterization, this method is not necessarily the

most appropriate one, particularly to treat multi-scale

aspects of the morphology (Dubuc et al., ’89). Indeed,
the relevance of parameters calculated from Fourier

analysis on “industrial” 2D surfaces is weak (Dong and

Stout, ’95). If the surface cannot clearly show periodic
structures, no precise analysis can be developed with

Fourier analysis (Chien et al., 2011). Moreover the

calculation of a single scalar parameter corresponding to
the whole Fourier transformation signal leads to a loss of

information (Mallat, ’89). Ultimately, Fourier analysis

does not enable the definition of the “regularity” of a
surface (Weiting et al., 2009). This “regularity” should
correspond to the level of the reproducibility of the same

“sub-signal” or “sub-information” on the whole signal
(Novák et al., 2009). Therefore, to study the regularity

of a surface, a regularity parameter is proposed. It is

supposed that the parameter has an upper limit value of
100% for perfect 2D periodic surfaces and a lower limit

value of 0% for uncorrelated 2D random surfaces

(“white noise”). To calculate this parameter the
following steps are applied:

First, a normalized autocorrelation function (ACF) is
defined for any integers X and Y, such that: Other papers
do not use Boldface in equations

ACFðX ; Y Þ ¼ 1

S2qðn� X Þðm� Y Þ
Xn�X

i¼1

Xm�Y

j¼1

zi;jziþX;jþY

ð1Þ

where Zi,j is the value of the signal for the point (i, j) (i.e.,
height of the surface) with 1 � i � n and 1 � j � m. Sq
is the well-known standard deviation of the amplitude

(root mean square parameter) of the surface.
In order to express this function in polar coordinates,

Cartesian coordinates (X, Y) are changed to polar

coordinates (R, u). The ACF function will be considered
as expressed in polar coordinates (i.e., ACF (R, u)) until
the end of this paper.

Secondly, an autocorrelation length l(u, l) for a fixed
threshold value of the autocorrelation function ACF (R,
u) is defined in terms of polar coordinates (R, u). This
value, l, depends on the threshold value, l, and
corresponds to the last value R, such that ACF (R,
u) � l. l is also called the inverse lag length and is

taken as equal to 0 in this paper.
Then, a correlation integral j(u, l) is introduced:

jðu; lÞ ¼
Zlðu;lÞ

0

ACFðR; uÞ dR ð2Þ

Thirdly, the series ik(u, l) of integrals is defined:

ikðu; lÞ ¼
Zkþ1ð Þl u;lð Þ

k=ðu;lÞ

ACFðR; uÞ dR ð3Þ

with 1 � k � kmax. kmax corresponding to the maximum

value of index k in any u direction. Thus, (kmax þ 1) l(u, l)
is lower than the minimum length of the signal in any
direction. This latter value corresponds to the minimum

value between n and m. The sequence of ik values

represents a kind of successive harmonics of the
regularity of the surface.

Finally, the regularity vector, Sreg (u, l), is defined for
any (u, l) value as:

Sregðu; lÞ ¼ 100

Pkmax

k¼1 ikðu; lÞ
kmaxjðu; lÞ ð4Þ

This parameter lies between 0 (uncorrelated random
surfaces) and 100 (perfect periodic surfaces without

noise). Its most important property is to be mathemati-

cally independent of the amplitude parameter. The

Fig 1. diagram representing paramters that influence surface
roughness (Benardos and Vasniakos, 2003).
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scalar mean regularity parameter, Sreg (l), is defined as
the mean of the regularity vector, Sreg (u, l) elements:

SregðlÞ ¼
PN u

p¼1 Sregðup; lÞ
N u

ð5Þ

where Nu corresponds to the number of regularly spaced
up values that have been studied. Usually, this value lies
between 100 and 200, in order to cover a sufficiently

large set of directions into the plane.

Simulated Examples

To test the relevance of the defined regularity
parameter, Sreg, in the measurement of the order of

surfaces, a large number of square surface shapes have

been simulated. Each surface contains 1,000 � 1,000
points, uniformly distributed on a square. These shapes

are gathered in four sets:

� The first set of surface shapes is a distribution of

Gaussian noise, having a null mean value and

standard deviation of 1. These surfaces are named
“Gaussian noisy surfaces” with symbol WN.

� The second set has the form of concentric open

cylinders, identified as polar surfaces (see Fig. 2).

This set is obtained by sweeping a sinusoidal signal
around the amplitude axis (Z-axis).

� The third set has the form of homogeneously

distributed bumps, identified as isotropic sine surfaces
(see Fig. 3a). This set is obtained by multiplying

together two trigonometric functions. In these surfa-

ces, the perfect sine form is clearly identified in the
X and Y directions. Then a stationary uncorrelated

Gaussian noise WN is added to these surfaces.

Zðx; yÞ ¼ sinð2pxÞ�cos 2pyþ p

2

� �
þ sWN ð6Þ

where s represents the noise level, and WN is a
distribution of Gaussian noise having a null mean value

and a standard deviation equal to 1.

For a given set, different levels of noise are attributed.
Figure 3b and c shows, respectively, the effect of the

added Gaussian noise on sine surfaces. At zero noise
level, the surface shape is distinctly outlined (see

Fig. 3a). As noise level increases, the amplitude of the

surface increases, and its shape becomes more and more
deformed (see Fig. 3b at 0.1 noise level). At a 1 noise

level, the shape of the surface is scarcely recognizable

(see Fig. 3c). The shape will continue to be deformed
until it reaches the form of aGaussian noise. At a level of

1.8, the sine shape surfaces have pure Gaussian noise

forms and cannot be distinguished.

� The fourth set is composed of anisotropic sine surfaces

that allow testing of the directions of anisotropy.

This set is named “anisotropic sine surfaces” and is
obtained by multiplying together two trigonometric

functions and incorporating a factor a, as represented
in Equation 7. For a ¼ 1, the obtained surface has an
isotropic sine shape (see Fig. 3a).

Zðx; yÞ ¼ sinð2pxÞ � cos 2
1:5py

1:5a
þ p

2

� �

þ sWN ð7Þ
The number of bumps on the sine surfaces decreases

when the anisotropy factor increases, because the

wavelength of these surfaces in the Y direction increases

when the value of the factor increases. For example,
a sine surface whose anisotropy factor is equal to 2

(represented in Fig. 4a) has a shorter wavelength than a

surface whose anisotropy factor is equal to 4 (repre-
sented in Fig. 4b). For high value of anisotropy factor,

the 3D sinus shape converges to a 2D sinus and becomes

perfectly orthotropic (Fig. 4c). The value of the factor a
varies between 1 (isotropic sine surface) and 16 (high

anisotropic sine surface).

Results and Discussion

In order to evaluate the direction of the anisotropy on
a surface, polar coordinates are used. For each surface,

181 regularity parameters are calculated by varying the
Fig 2. (a) Isotropic polar surface and (b) its associated
autocorrelation function.
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angle u between 0˚ and 180˚. These calculated values are
used to draw the curve that represents the regularity
values (Xr(u), Yr (u)), where Xr (u) is the projection of the
regularity vector on the X axis, given by:

X rðuÞ ¼ SregðuÞ � cosðuÞ ð8Þ
And Yr(u) is the projection of the regularity vector on

the Y axis, given by:

YrðuÞ ¼ SregðuÞ � sinðuÞ ð9Þ
Figure 5 represents the anisotropy direction curves of

the surfaced shaped by Gaussian noise. The curves have

the form of a circle of radius approximately equal to
0.22%. This proves that the Gaussian noise surfaces do

not have a specific anisotropic direction, which means

that Gaussian noise surfaces have an isotropic shape.
The regularity values are close to zero, which indicates

that a pure noisy surface possesses a null regularity.

Figure 6 illustrates the anisotropy direction curves for
the set of surfaces shaped according to polar coor-

dinates. It is evident that these surfaces do not have a

precise isotropy and that, therefore, the surface has no
distinct periodicity direction. However, the regularity

value lies between 15% and 16%, regardless of the

Fig 3. Isotropic sine shape: (a) noise ¼ 0, (b) noise ¼ 0.1, and
(c) noise ¼ 1.

Fig 4. A sine surfaces with different anisotropy factors: (a)
a ¼ 2, (b) a ¼ 4, and (c) a ¼ 16.
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direction. This means that the surfaces are quite

isotropic. It can be noticed that the level of order is

quite low, as determined by the fact that the curves
create a perfect periodic shape in polar coordinates, if

and only if the origin is taken at zero: the periodicity is

only constant for this case. If a profile is extracted
randomly from the surface, the period will never be

stationary, as can be seen on the ACF in Figure 2b; as a

consequence, the order never reaches 100%.
Figure 7 represents the anisotropy direction curves

that belong to the set of isotropic sine surfaces. In these

surfaces, the perfect sine form is clearly identified in the
X and Y directions. It is detected in Figure 7 by the

regularity parameter, which has a 90% value in these
two directions. In addition, several features are noticed:

� These curves are symmetrical with respect to the 45˚
axis because the 2D signal is symmetrical to this axis.

� A high value of regularity is obtained at 45˚. On this

axis, the 2D signal is perfectly periodic, and the
regularity of the surface increases.

� The order diminishes as noise decreases, keeping the

shape of the curves in all directions. The method
is then robust, and the regularity of the surface

diminishes.

� The isotropic sine shape surface tends to a white-
noise shaped surface at a very high noise level.

Figure 8 gives the anisotropy direction curves for the

set of sine shape surfaces generated with a different
anisotropy factor. These figures show that the higher

regularity parameter is always obtained in the Xr

direction, i.e. the axis along which a sinusoid is
obtained, regardless of the anisotropy factor and the

noise level. However, it is noticed that the regularity

parameter value decreases when the anisotropy factor
increases until it reaches a value of a ¼ 6. This is due to

the fact that the more the anisotropy factor increases, the

greater the difference between the generated surface and
the isotropic sinusoid shape surface. However, pass over

this value of a ¼ 6, the regularity increases in all
directions (except on the Xr) to progressively obtain a

perfect circle with regularity equals to the regularity in

the Xr direction, i.e. 90%. In fact, curves converge to a
2D sinusoidal surface. For theses surfaces, the regularity

is maximal because, whatever the direction, a period

will clearly appear in the autocorrelation function ACF
(X, Y).

The evolution of the mean regularity parameter of

sine shape surfaces towards different noise levels and
anisotropy factor values is represented in Figure 9. Its

maximum value is about 90%. This high value identifies

the periodicity of these surfaces. By adding the white
Gaussian noise, this maximum value remains stable

until a certain critical level of anisotropy. From this

critical level, it decreases rapidly and tends to a value of
0.1. The value of the critical noise level at which the

regularity parameter begins to decrease depends on the

incorporated anisotropy factor. The means parameter
confirms all results achieved from anisotropy direction

curves, which indicates that this scalar parameter is a

relevant one.
It is relevant to compare our approaches to

Spectroscopic Anisotropy Micro-Ellipsometry (SAME).

This optical technique, also call theReflectionAnisotropy
Spectroscopy (RAS), allows quantification of the

regularity of a surface at a nanoscopic level, i.e. the

molecular assembly of ordered surfaces (Aspnes
et al., ’88). The reflected light yields information on

anisotropy of the surface, due to the interaction of

Fig 5. Anisotropy direction curves for the set of white noise
surfaces.

Fig 6. Anisotropy direction curves for the set of polar surfaces.
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radiation with matter and the use of Jones vector/

matrices as models (Berkovits et al., ’85). Using a linear
optical probe with visible light, this nondestructive

method (Weightman et al., 2005) is well adapted

to quantify the self-assembly of nanostructures,
i.e. Epioptic techniques (McGilp, ’95; Richter and

McGilp, ’93). This method permits a quantifying of the

perfect symmetry of a crystallographic plane: the (100)
on a FCC is perceived as perfectly structured (no

roughness), and FCC(110) surfaces possess intrinsic

structural anisotropy. The state of a surface on clean Cu
can be described as a 2D, nearly free electron gas. The

RAS allows quantifying order the occupied surface state
on Cu(111), after the surface is confined by a circle of Fe

atoms (Sun et al., 2003). RAS can be used to monitor

molecular assembly on macroscopic ordered surfaces,
where the surface induces order in the molecular layer

substrate-influenced molecular assembly to create a

chemically functionalized surface. Using the Monte-
Carlo simulation, Bigerelle et al. have shown that the

order of these surfaces increases during the self-

assembly processes (Bigerelle et al., 2006). In a purely
topographical process, Martin et al. prepared flat and

smooth metal surfaces for molecular adsorption in an

aqueous environment (Isted and Martin, 2005) and
showed that peaks on the RAS spectrum result from the

modification of the anisotropy of the surface (Martin

et al., 2004). The aim of using RAS to quantify the order
of the roughness is particularly illustrated on the change

of the Sq (RMS) of the Au(110) ion bombardment

surface, which decreases the regularity of the surface
(Martin et al., 2003).

The regularity parameter can be used in multiple

applications:

� To identify the direction of periodical structures

formed by laser pulsed radiations (Young et al., ’83;
Pedraza et al., 2003; Zheng et al., 2009) on the surface
of solid workpieces. This identification qualifies the

success of the process, since the structures appear
only in a certain range of pulse duration and power,

depending on a radiation wavelength and on the

material’s surface conditions (Syvenkyy et al., 2007).
� To examine the reproducibility of surface machining

methods such as the finishing process (Barletta,

2006), by comparing the values of this parameter on
several specimens on which the same process

conditions have been applied.

� To identify the surface regularity produced by
abrasive machining, such as precision surface grain,

Fig 7. Anisotropy direction curves for the set of isotropic sine
surfaces with different noise levels.

Fig 8. Anisotropy direction curves for the set of anisotropic sine
surfaces.

Fig 9. Evolution of the mean regularity parameter (l ¼ 0)
versus the noise level for the generated sine surfaces associated to
different anisotropy factor (a).
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abrasive slotting, and lapping (Ohbuchi and
Matsuo, ’95; Chardrasekar et al., ’87).

Conclusion

A nondimensional parameter is defined and tested, in
order to characterize the regularity of surface topogra-

phy. It was shown that the isotropy of surface roughness

was identified using this parameter. The regularity
parameter can thus be termed an “isotropy index” and

can be used to quantify the influence of different

processes on surface topography. This parameter
quantifies the effect of noise in the surface. On a

perfect, uncorrelated surface, a value close to zero of this

parameter was found. The anisotropy direction is well
identified by the regularity parameter. This essential

information could be used to measure the most typical

roughness surface. This unscaled parameter is comple-
mentary to the autocorrelation length to assess the long

range structure of the surface autocorrelation. For noisy

isotropic surfaces, the order parameter is around 0.3%,
and 80% for a perfect 2D sinusoid surface.

This parameter can be used in a multi-scale analysis

to quantify the scale on which order will appear, by
maximizing its value during multi-scale decomposition.

Despite the good results obtained in this application,

further experimental works remain to be done, in order
to validate the formula of the regularity parameter.
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