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Abstract

A 3D model of microstructure containing spherical and rhombi-shaped inclusions
“falling” along a deposit direction is used to simulate the distribution of nanoscale
color pigments in paints. The microstructures anisotropy and length scales, charac-
terized by their covariance functions and representative volume element, follow that
of transerseley isotropic or orthotropic media. Full-field computations by means
of the fast Fourier method are undertaken to compute the local and effective per-
mittivity function of the mixture, as a function of the wavelength in the visible
spectrum. Transverse isotropy is numerically recovered for the effective permittivity
of the deposit model of spheres. Furthermore, in the complex plane, the transverse
and parallel components of the effective permittivity tensor are very close to the
frontiers of the Hashin-Shtrikman’s domain, at all frequencies (or color) of the in-
cident wave. The representative volume element for the optical properties of paint
deposit models are studied. At fixed accuracy, it is much larger for the imaginary
part of the permittivity than for the real part, an effect of the strong variations of
the electric displacement field, exhibiting hot-spots, a feature previously described
in the context of conductivity.

Keywords Homogenization; Optical properties; Representative volume element;
Deposit models; Random media; FFT method

1 Introduction

The purpose of this paper is to propose a quantitative approach to model the nanostructure
of a paint and to predict its optical properties. This work is part of the ANR research
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project LIMA (www.lima-project.org), aiming to design computer-aided formulations of
paints.

The optical properties of a paint are the result of the interaction between light and its
components. The overall optical properties of a coating can be described by the optical
indices n derived from the wavelength depending dielectric permittivity ε of the medium
by means of the relation n =

√
ε [13]. In the case of a paint, the coating is a mixture

of different components with different permittivity, and its optical properties are ruled by
the apparent effective permittivity of the mixture. Automotive paint, like other types of
paint, is a complex compound made of many elements. The three main component of
paint are binder, pigments and solvent. The binder, usually made of natural or synthetic
resins, is the film-forming component for paint and its main component. The pigment (or
filler) are particles that generate the color of paint. It is usually made of metals oxides
like titanium (T iO2), iron(III) (Fe2O3) or alumina (Al2O3). The chemical composition of
the pigments defines the color of paint and the shape of the droplets of pigments. Finally,
the solvent is the diluent used to dissolve the binder and adjust the viscosity of paint.
Its contributions to the overall dielectric properties of paint are negligible, and therefore
not considered in this work. Accordingly, paint is modeled as a two phases composite
with a binder matrix and inclusions of pigments with different local permittivity. The
present model is not limited to two phases structures as there could be microstructures
with different pigments types.

Nanoparticles of pigments like hematite can show a broad variety of different shapes,
depending on their fabrication conditions: pseudocubic particles [22], porous nanorods [29],
nano-ellipsoid pigments [28], hollow spindle particles [15], nanorings [4]. Hierarchical struc-
tures can be obtained, such as flower-like aggregates [5] or core/shell particles [14]. In [16],
optical properties of ellipsoidal hematite nanoparticles are measured on specimens. This
variety of shapes for particles of a given pigment is expected to provide a wide range of
optical properties of a paint. In addition to the shape of individual particles, their dis-
tribution in space (such as alignments, clusters, or isotropic arrangement) is expected to
change the optical properties of a mix, and therefore the final aspect of a coating.

The color of paint is induced by the microstructure and the contrast between a matrix
with real permittivity and oxide or metallic inclusions with complex permittivity. The
imaginary part of the complex permittivity, even if small compared to the real part, is
the main contribution to the color of a pigment as it accounts for the dissipative part of
the tensor. When a light ray hits the microstructure of paint it is reflected completely
by the resins, of real permittivity, and reflected with dissipation by the pigments. This
dissipation allows only certain frequencies to be reflected therefore giving a particular color
to the paint.

Examples of paint microstructures with inclusions similar to the ones used in the
automotive industry may be found in [23, 2]. The typical radius for a spherical pigment of
Al2O3 is between 1 nm and 5 nm. As for T iO2 we have that the diameter of the polyhedral
crystals varies between 10 and 60 nm. Figure 1 shows the shape of Fe2O3 droplets. The
image shows rhomboidal shape pigments with a greater diagonal between 40 and 70 nm.
For such a range of sizes, well below the wavelength of the natural light, the quasistatic
approximation rules out the apparent permittivity and therefore it can be estimated using
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the equations of electrostatics, as, made in section 3 below.
This paper is organized as follow: deposit models are introduced in section 1, opti-

cal properties and numerical computations are introduced in 3. Results for the effective
permittivity tensors are discussed in sections 4 and 5. Finally computations of the repre-
sentative volume element are given in section 6.

2 The Deposit Model

Microstructure models suitable for paints should take into account the anisotropy induced
by the application of droplets [2]. During the paint forming process, the pigments undergo
the influence of a force, be it gravity or the force applied by a spray bell, which is statisti-
cally oriented along the same direction. This unidirectional force is not taken into account
in traditional hard-core models of non overlapping particles, which are purely isotropic.
On the contrary, in the hypothesis where the droplets are isotropic, this unidirectional
force induces transversely isotropic microstructures. Deposit models, as described below,
are instead more appropriate for the modeling of paints.

2.1 3D deposit models

The “deposit model” considered in this work is derived from the theory of random sets
originally introduced by G. Matheron [17]. Deposit models are RACS (“random closed
sets”) with a privileged direction called the deposit direction, and make use of a convex
RACS called the elementary grain. Its definition is briefly recalled below.

Hereafter, we set n = 3 and use the coordinate system (ex, ey, ez) where v = −ez is
the deposit direction. Additionally the domain E containing the microstructure is chosen
as a cube Q ⊂ R

3 of size L. The highest z-coordinate z = supQ z, defines the top z cut
in Q as π = {(x, y, z) ∈ Q}. Inclusions “fall” in the direction v from the top z-plane
until it touches either the microstructure’s floor or another inclusion. Grains are inserted
from an elementary grain A′ and a 2D Poisson process Φz = (xi, yi)i∈I in the square
π ∩ Q, i.e. the grain A′ is moved in the direction v until it hits either the bottom of the
cube zm = infQ z or another already inserted grain. This is repeated until it is no longer
possible to place an elementary grain in the microstructure. More precisely, the “stop
condition” is as follows: the algorithm stops when n1 inclusions could not be inserted in
the microstructure; moreover it tries to insert each inclusion n2 times (from n2 random
points). Slightly higher volume fractions are achieved by choosing n1, n2 > 1; in the
simulations n1 ≈ 600 and n2 = 5 have been chosen.

It is noted that even if the grains are isotropic, the deposit model is expected to be
anisotropic along the direction v. For instance, if the elementary grains are spheres,
the model is transversely isotropic along v. In the other directions, transverse to v, the
microstructure should have the same anisotropy as the grains. Moreover the model is
by construction stationary (invariant over translations), and ergodic, which means that
the spatial averages of the properties of the model approximate the expected value over
realizations. These properties will be useful for determination of the representative volume
element in Section 6. One common drawback of deposit models is the limited range
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of attainable volume fractions, which are often low. The deposit models method will
accordingly be enhanced in order to achieve higher volume fractions.

2.2 Microstructure simulation

The deposit model is modified so as to introduce periodicity in directions transverse to v,
i.e. x and y. This generalization is straightforward. The periodicity has been introduced
for two main reasons. First, the microstructure should be seen as a small representative
volume of the microstructure for which boundary effects are undesirable, and periodicity
reduce them. Second, the numerical FFT method used to compute effective properties
assume periodic boundary conditions. The latter are more consistent with periodic mi-
crostructures.

The most common pigment shapes observed in literature for automotive paint are
spherical droplets and polygonal droplets, as discussed in Section 1, although more fancy
shapes such as cuboids, diamonds, roses, cigars have been manufactured (see e.g. [23] for
some examples). Due to the variety of pigments used in the automotive industry, the
shapes considered here are not comprehensive. The grain shapes considered in this work
consist of (i) spheres with identical radius r = (1/25)L; (ii) spheres with radius chosen as
a random uniform variable between (1/30)L and (1/60)L (iii) rhombus-shaped inclusions.
The latter are parametrized as 3D structure with two greater and minor diagonals d1 =
(1/10)L and d2 = 0.7d1 and a width h = (7/100)L, consistently with images in Figure 1.
Finally, each grain is either (iii-a) left as is; (iii-b) randomly rotated in the (x, y) plane; (iii-
c) randomly rotated in the (x, y) plane and in the (y, z) plane. Obtained volume fractions
vary between 12% and 23% and is dependent on the size of the inclusions with respect to
L and of the rotations.

Figures 2 shows examples of microstructures (i), (iii-b) and (iii-c) with spheres and
rhombi inclusions. Rotation angles used to generate microstructure (iii-c) are uniform
random variables in [0, π/2]. The resulting volume fraction is about 18% for the mi-
crostructures (i) and (iii-b) and 10% for microstructure (iii-c). Resolutions of 6003 to
12003 voxels (namely 0.6µm3 to 1.2µm3) were considered; for microstructure (i), these
contain about 690 and 5, 500 inclusions, respectively. It is noted that the algorithm for
generating the grains and the deposit generation are separated. To minimize discretization
effects, rotations are handled analytically (i.e. in a vectorial way).

2.3 Morphological properties of simulations

The covariance function C(h) is useful to quantify the typical lengths and privileged
directions of deposit microstructure. It is defined for the set A, as the probability P for
two points to be in A:

C(h) = P{x ∈ A, x+h ∈ A}
The covariance function C(hex,y,z) in the three directions x, y and z is shown in Figure
(3) for a deposit model made of spheres of equal radius (10 voxels). The function is equal
to CQ(0) = 0.16, the spheres volume fraction, when h = 0. The strong anisotropy of the
deposit model results in highly different covariance functions in the x, y and z direction.
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As expected however, due to the symmetries of the spheres model, covariances in the x
and y directions are almost the same. One can observe that the covariance reaches a local
minimum for a distance |h| close to the diameter of the spheres. This is the property
of a hard-core process, and is a known consequence of the repulsion distance between
centers of spheres resulting from the non-overlapping condition. The covariance shows
two scales in the deposit direction, the larger scale obtained when the covariance reaches
its asymptotic value C(0)2 (for a range Az ≈ 0.14 = 168 voxels) corresponds to the typical
size of aggregates (8-9 spheres) generated by the deposition.

3 Local and effective optical properties

The physical behavior of materials is often given in terms of macroscopic constitutive laws;
they describe the responses of the system to some given solicitation. The local constitutive
equations assume that the material is a continuous medium, and, in many cases of interest,
offer a very good approximation of the properties when atomistics effects are negligible.
For a brief overview of homogenization and effective properties in the context of electric
or optical properties, see [8, 11].

When the typical size of the microstructure heterogeneities are much smaller than the
light wavelengths, typically in the range 300 − 500 nm for the visible spectrum, electro-
statics rule the calculation of the apparent dielectric permittivity. This is in particular
valid for nanometric pigments. The system is accordingly governed by the quasi-static
Maxwell equations:

∇ ·D = 0, ∇× E = 0, (1)

where the vector fieldsD andE are the electric displacement and electric field, respectively,
assuming the charge density is negligible. Moreover the electric field and the electric
displacement are related by the constitutive equation D = εE where ε is the permittivity
of the local phase and is heterogeneous. It is noted that the condition ∇×E = 0 implies
E = −gradΦ where Φ is the potential field associated to E.

The above equations are completed with periodic boundary conditions on the unit
square Q

E, D, periodic, 〈E〉Q = E0. (2)

By linearity, the overall displacement reads 〈D〉Q = ε∗ · E0 where the (second-order)
symmetric tensor ε∗ is the microstructure apparent permittivity. The tensor components
are computed by means of the average field 〈D〉Q for E0 = ex, ey and ez. Components of
ε∗ should be averaged over different realizations; assuming ergodicity, one microstructure
gives an approximation of the effective permittivity of the considered model if it is large
enough. In particular, the transverse isotropic nature of the permittivity tensor is only
recovered after averaging or if finite size effects are negligible. In this case, the effective
tensor is defined by its diagonal components ε∗xx ≈ ε∗yy and ε∗zz, whereas ε∗xy, ε

∗
xz and ε∗yz

are of several orders smaller.
Hereafter, the matrix is made of glass and the inclusions are T iO2 droplets. For the

local permittivity of the two components values as measured in [24], are used. They are
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shown in Figure 4, where the permittivity values for the glass and TiO2 are represented
as functions of the wavelength of incident wave.

Full-fields computations are undertaken using the Fast Fourier FFT algorithm of Eyre
and Milton [3] and the software Morph’hom, developed at the Centre de Morphologie
Mathématique. It is especially efficient for computing the response of large-sizes sys-
tems [26], and to deal with local singularities in anisotropic or nonlinear composites [27, 6].
Figure 5 is an example of the fields in the microstructure. The image represents the real
and imaginary part of the dielectric displacement D along the x axis when a macroscopic
electric field E0 = ex is applied. The field is stronger where the colors are brighter. As
expected, this image shows higher average displacement in the inclusions than in the em-
bedding matrix. The applied average field, oriented toward the horizontal direction in the
maps, induce hot spots (corresponding to the brightest yellow points) around corners of
two nearly-touching inclusions (e.g. top-right on each of the fours maps).

Numerical results are compared to available analytical bounds, “Zero-order” (ZO),
Wiener (W) and Hashin and Shtrikman’s (HS) bounds. Each of these bounds delimit
the minimal admissible subdomains of the complex plane where the effective permittivity
components stand [19], depending on the available microstructural information. These
are respectively: no information beside the permittivity functions of glass and T iO2 is
known (ZO); the local permittivity and the phase volume fractions are known (W); the
microstructure is, additionally, isotropic (HS). As a consequence, the domain (HS) is
enclosed in domain (W) itself enclosed in domain (ZO), and each of these are made of
two points (or corners) and delimited by circular arcs. Additionally, (ZO), (W) and
(HS) bounds are exact to zero, first and second order in the contrast, in the limit where
the contrast of properties is infinitesimal. Additional third or fourth-order bounds rely
on more complex microstructural information [10] and are not used in this work. We
refer to Chapter 27 of [20] for a review. Although (HS) bounds are valid for isotropic
microstructures only, they provide helpful approximations for deposit models which are
transversely isotropic but close to isotropic.

4 Anisotropy of the permittivity tensor

The full permittivity tensor of deposit models is first computed on microstructures of types
(i) and (iii) with wavelength 381.24 nm, i.e. violet color, using full-fields computations.

4.1 Spheres

As previously observed for the microstructure in section (2.3), transverse isotropy is re-
covered with a good approximation. For instance, for a microstructure with spherical
inclusions and 16% volume fraction, the effective permittivity reads, in F/m:

ε∗S-16% =





2.834 + 4.542 10−3i 7.8 10−4 + 1.4 10−5i −9.8 10−4 − 1.9 10−5i
− 2.837 + 4.603 10−3i 2.1 10−4 + 3.0 10−6i
− − 2.856 + 4.977 10−3i
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where the component ε∗ij is on line i and column j, if (1, 2, 3) = (x, y, z), and the matrix
is completed by symmetry. The tensor is, with a good approximation, a diagonal matrix
because the element outside the diagonal are close to zero, accordingly the eigen values are
close to the diagonal values of the matrix. On the diagonal, the component ε∗zz is slightly
different from ε∗xx ≈ ε∗yy, as a consequence of the deposit direction. This effect is however
small in the case of spheres. Furthermore, the imaginary part is much smaller than the
real part. This accounts for a small dispersion and high percolation effect of the glass
resin. Moreover, the difference between ε∗zz and other diagonal components is stronger
for the imaginary part than it is for the real part. Indeed, using the anisotropy indicator
ν123(a) = (1/2)(|a11 − a33|/a11 + |a22 − a33|/a22), it is found that ν123(Reε

∗) = 0.7%
whereas ν123(Im ε∗) = 8.9%. Accordingly, the deposit model transverse isotropy has a
much stronger effect on the effective imaginary part.

The same remarks apply to the effective permittivity tensor for a microstructure with
spherical inclusions and higher volume fraction 18%:

ε∗S-18% =





2.900 + 5.251 10−3i 1.5 10−3 + 2.8 10−5i −7.6 10−4 + 1.4 10−5i
− 2.899 + 5.236 10−3i −1.8 10−4 + 2.7 10−6i
− − 2.919 + 5.633 10−3i





where, in this case, it is found that ν123(Re ε∗) = 0.7% whereas ν123(Im ε∗) = 7.4%. Yet
again, the deposition direction has a much stronger effect on the imaginary part than
on the real part. This difference however is reduced when the volume fraction increases;
this is related to connection effects in the microstructure: when the number of spheres
is small, paths passing through connected inclusions tend to be oriented in the deposit
direction. On the contrary, when the volume fraction increases, these paths take much
more arbitrary directions.

4.2 Rhombus-shaped inclusions

The full permittivity tensor of a deposit model of aligned rhombi inclusions with 18%
volume fraction reads:

ε∗R-Al. =





2.949 + 6.418 10−3i 4.2 10−4 + 8.1 10−6i 4.4 10−4 + 1.0 10−5i
− 2.857 + 4.635 10−3i −2.0 10−4 − 3.4 10−6i
− − 2.990 + 7.443 10−3i





The material is not transverse isotropic anymore but orthotropic, as a consequence of the
inner anisotropy of the inclusions. Rhombi are not isotropic in the (x, y) plane because
they are aligned along the same preferential directions. This anisotropy is even stronger
than the one introduced by the deposit model. Transverse isotropy is recovered in the
rotated rhombi microstructure where

ε∗R-Rot. =





2.908 + 5.615 10−3i 1.5 10−2 + 2.9 10−4i −1.1 10−4 − 1.4 10−6i
− 2.915 + 5.764 10−3i −9.4 10−4 − 2.1 10−5i
− − 2.976 + 7.111 10−3i
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It is found that ν123(Re ε∗) = 2.2% whereas ν123(Im ε∗) = 25%. The high values are a
consequence of the inclusions anisotropy, and not only of the anisotropy induced by the
deposit model.

Hereafter, the diagonal values of the effective permittivity tensor ε∗ for the various
spherical and rhombus-shaped microstructures are computed at varying wavelengths in
the visible spectrum. These bounds delimit domains in the complex plane; for the sake
of clarity, such domains are only plotted at the lowest and highest wavelengths, plus the
point with the highest effective imaginary value.

5 Bounds for the effective response

Cole-cole graphs representing the effective permittivity eigen values at varying wavelengths
are shown in Figure 6a, for microstructures with spherical grains. As expected, the numer-
ical results respect the Wiener bounds, represented, for the sake of clarity, at the smallest
wavelength only (λ = 381nm). At other wavelengths, the Wiener bounds are not violated
either (not shown). It appears that the eigen value transverse to the deposit microstruc-
ture, i.e. ε∗xx ≈ ε∗yy, is very close to one of the two “corners” of Hashin and Shtrikman’s
domain. The same phenomenon is observed at all wavelengths (not shown). This HS
corner corresponds to the lower HS bound if the permittivity were real, and is attainable
by Hashin’s coated sphere assemblage with glass as the coating sphere.

The very small difference between the HS lower bound and the effective properties of
a model of non-interpenetrable spheres has been observed previously for the thermal and
elastic properties of fibre composite materials generating by 2D sections a hard-core struc-
ture of discs, when the inclusions conductivity is higher than the embedding matrix [21].
It is in particular valid when there is a minimal distance of repulsion between the spheres,
or when spheres only rarely touch. Spheres connexions are indeed not favoured by the
deposit model in the (x, y) plane, which explains the numerical results obtained for the
transverse permittivity eigen value.

The eigen value parallel to the deposit direction, ε∗zz, however, is different from the lower
HS bounds, and close to one of the arc circles joining the two corners of HS’s domain,
precisely the one with the overall lowest imaginary part. Yet again, this phenomenon
is observed at all wavelengths (not shown). This effect, although it is probably only an
approximate result, is a consequence of the higher level of connexions between touching
spheres in the z direction for the deposit model, and of the fact that the spheres have
non-zero imaginary part. The fact that the effective permittivity in the parallel direction
is close to one of HS’s circle arc mimic the behavior of these composites in the real case.
It is noted that the 2D HS bounds (not plotted) do not provide any useful approximation
of the effective permittivity components, so that the effect of 3D deposition can not be
neglected.

Cole-cole plots for the effective properties eigen values are shown in Figure 6b for
aligned rhombus-shaped inclusions with volume fraction 18%. The latter are within the
Wiener bounds but violate the Hashin and Shtrikman bounds. Indeed, the microstructure
is in this case not isotropic. As seen in the plots, the effective properties are close to
the “lowest” arc circle of the Wiener bounds. Here again, the percolation paths of the

8



embedded glass, much more dense in the deposit models than that of the inclusions,
account for this effect. It is noted (see [20]) that points on the lowest Wiener curve are
exactly realizable by a model of coated ellipsoids where glass is the coating phase. The
latter model mimic the inclusions anisotropy in the present case.

Although the real part of the effective properties of the microstructure differ very
little when considering spherical or rhombus-shaped polyhedrons, this is not true for the
imaginary part. The latter show noticeable differences with higher values for rhombi. This
behavior stands even in the case of transverse isotropy and leads to higher absorption
effects at the considered wavelength, and to color differences, as the latter are highly
sensitive to very small difference in the imaginary part.

6 Representative Volume Element

The representative volume element (RVE) is a concept used to define the volume V of
an heterogeneous material that is, under an assumption of ergodicity, sufficiently large to
be statistically representative of the composite[12]. As recalled in section 3, the ergodic
property of the model is useful to compute the effective properties E and D by means
of spatial averages over the volume V . From the classical geostatistical theory [18] the
variance D2

Z(V ) of the average value 〈Z〉V over the volume V is defined for a stationary
ergodic random function Z(x) and D2

Z(V ) ≃ D2
Z

A3

V
, when V is large enough, where D2

Z

is the point variance of Z(x) and A3 is the integral range of Z. Equaling Z with the
displacement field component Dx, the latter provides a direct relation between error de-
viations due to finite size effects on the apparent permittivity, and the volume size. More
precisely, for n realizations of volumes V ≫ A3, the absolute error on the effective property
is ηabs =

2DZ(V )√
n

and the relative error is ηrel = ηabs/Z. Accordingly, when considering one

realization (n = 1), as in this work, the RVE size V depends on the error ηrel by

ηrel(V ) ≃ 2

√

D2
ZA3

V 〈Z〉 , V ≫ A3. (3)

The ergodic property of the microstructure was used to compute D2
Z(V ) over different

(independent) subvolumes of increasing size from 303 to 3003 or 6003 voxels, within deposit
models with 6003 and 12003 voxels image.

The variances of the volume fraction D2
Q(V ) and of the real and imaginary part of

the displacement field D2
Re (Dx)

(V ) and D2
Im (Dx)

(V ) are plotted as a function of V in
log-log scale in figure 8. The microstructures contains about 1600 spheres, with uniform
radius distribution between 20 and 40 nm. The spheres volume fraction is 16% and the
discretization is 1 voxel/nm. The number of voxels is 12003. It is noted that the 6003

microstructures is not representative enough to estimate A3. As shown in Figure 8, indeed,
the variances exhibit a scaling law ∼ 1/V ν with ν ≈ 0.5 or 0.7 for the displacement
fields and microstructure resp., in an intermediate regime when V < (600nm)3. This
particular behavior is a consequence of boundary effects. At the top of the microstructure,
corresponding to planes with the highest z coordinate, the deposit model indeed contains
much less inclusions, as only spheres that are contained within the boundaries are included
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at the end of the deposit process. Scaling with non-integer exponents for the variance have
been found previously in degenerate microstructures exhibiting infinite range correlations,
such as fiber media (see [1, 9]).

The variance D2
Im (Dx)

(V ) for the imaginary part of the displacement field is much

higher than for its real part D2
Re (Dx)

(V ). This effect is to be compared with the field
maps 7, where the electric displacement field exhibits hot spots. Such hot spots are
located in-between two spheres that touch each other or are very close to each other along
the direction of the applied macroscopic field, which in this case in the x direction (left-
right on the image). This is reminiscent of the thermal response of granular materials
as described in [25]. In the deposit models, hot spots influence the average field over
subdomains, and according to the map, their effect must be stronger on the imaginary
part of the displacement field, where they are much more contrasted. They are also very
few and are far from each other, as seen in the top-left map of Figure 7, where only two
of them are visible, and therefore induce a high spatial heterogeneity.

The 12003 voxels microstructure is large enough to observe the expansion predicted in
equation 3. For the microstructure, the point variance and integral range is found to be
equal to

D2
Q = 0.135, A3(Q) = (6.38nm)3. (4)

For the displacement field, a numerical fit on the FFT data provides

A3(Re (Dx)) = 3.55 105 ≈ (71nm)3, (5)

A3(Im (Dx)) = 4.16 105 ≈ (75nm)3 (6)

It is checked a posteriori that the expansion 3 holds when V & A3. Furthermore, the
relative errors computed for the first component of the electric displacement Dx and for
the volume fraction are:

ηrel(Re (Dx)) = 0.82%, ηrel(Im (Dx)) = 8.84%, ηrel(Q) = 0.07%,

Alternatively, to achieve an accuracy of 1% the following minimal volume sizes (in voxels
or nm3) should be used:

VRe (Dx) = 10503, vIm (Dx) = 51303, vQ = 2043,

The hot spots where the displacement field has a local maximum induce size effects which
are much bigger than the inclusion size: in the 12003 (nm3) simulation the size effects are
visible up to cubes of 1003 (nm3) volumes whereas the pigment volume is of the order of
603 (nm3). Such effects are obviously invisible to the human eyes, but pigment with larger
(micrometer) size could induce similar phenomena.

7 Conclusion

This work focuses on the representation, at the micro and mesoscopic level, of a paint layer,
and of its optical response, in the simpler quasi-static hypothesis. A general transverse
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isotropic deposit model suitable to paint layers has been developed, that is generic and
practical to implement. Expansion of this model should be studied to increase the pigments
volume fractions, e.g. by adequately choosing the position of the pigments before the latter
“fall” in the microstructure.

Full-field FFT computations have been undertaken on the various deposit models. The
resulting properties are, as expected, transversely isotropic or orthotropic. For the deposit
microstructure with spherical pigments, the effective permittivity is very well approxi-
mated by the (complex equivalent of) the lower Hashin-Shtrikman bounds in the direction
transverse to the deposition. In the direction parallel to it, the effective permittivity lies
along the “lower” border of the Hashin-Shtrikman complex domain.

The presence of high local field fluctuations necessitates the use of very large mi-
crostructure realizations, that are able to simulate a representative volume element (RVE,
typically 1000nm3 in the present case). The RVE size is much larger than the pigment
size, in particular for the imaginary part of the displacement field, which generates the
color at the macroscopic scale. Stronger effects are expected in real paint materials where
the pigments tend to aggregate with each other and form clusters, requiring multiscale
microstructure models, such as already made in [7].
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theory for infinite-contrast two-dimensionally periodic linear composites with strongly
anisotropic matrix behavior: Dilute limit and crossover behavior. Phys. Rev. B,
(104111), 2008.

[28] Y. Xu, S. Yang, G. Zhang, Y. Sun, D. Gao, and Y. Sun. Uniform hematite α-
Fe2O3 nanoparticles: morphology, size-controlled hydrothermal synthesis and forma-
tion mechanism. Materials Letters, (65), 2011.

[29] G.-Y. Zhang, Y. Feng, Xu Y.-Y., D.-Z. Gao, and Y.-Q. Sun. Controlled synthesis of
mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Materials
Res. Bulletin, (47), 2012.

13



Figure 1: SEM micrograph of Fe2O3 powders (c) 2012 Mona Ben-Achour, PhD thesis,
Centre des Matériaux, Mines ParisTech.

Figure 2: Cut along the middle plane z ≡ z/2 of deposit microstructures with spherical
inclusions of fixed radius (left), randomly rotated rhombi in the (x, y) plane (middle)
and randomly rotated rhombi in the (x, y) and (y, z) plane (right). The microstructure
resolutions are 6003 voxels or nm3.
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Figure 3: Covariance CQ(hex,y,z) in the x, y and z directions (transverse and parallel to the
deposit direction, dotted and solid lines, resp.) of a deposit microstructure with spheres
of equal radius. The value h is normalized by the microstructure size. The covariances
are equal to the volume fraction of spheres f = 16% at h = 0 whereas they tend to the
asymptotic value f 2 ≈ 0.025 at long distances (thin horizontal line).
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Figure 4: Permittivity functions ε of glass (dots) and T iO2 (up and down triangles) in
Farads per meter, as a function of wavelength λ in the visible spectrum, in nanometers.
The imaginary part of the permittivity of glass is 0. That of T iO2 was multiplied by 50
for comparison on the graph.
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Figure 5: 2D cut along the middle plane z ≡ z/2 of the real (left) and imaginary part
(right) of the x-component of the displacement field Dx, for the rhombus-shaped deposit
microstructure with aligned and non-aligned inclusions, with 6003 (top) and 12003 (bot-
tom) voxels discretization. A macroscopic electric field 〈E〉Q = E0 = ex is imposed in the
x direction.
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Figure 6: Cole-cole plots of the effective permittivity components ε∗xx,yy,zz (symbols +, •
and× resp., joined by dotted gray lines), as computed by FFT, for a deposit microstructure
made of spheres (a) or aligned rhombi inclusions (b) with volume fraction 18%. The
wavelength takes the values λ = 381, 400, 416, 433, 455, 480, 505, 527, 562, 575, 650, 706,
771, and 893nm (right to left). Domains delimited by the Wiener and Hashin-Shtrikman’s
bounds are shown in green and red, resp., for the values ω = 381, 893 and 433nm with
corresponding FFT results shown in blue.

18



Figure 7: 2D cut along the middle plane z ≡ z/2 of the real (left) and imaginary part
(right) of the x-component of the displacement field Dx, for the spherical deposit mi-
crostructure (ii). The 3D microstructures in the top (resp. bottom) maps contain 405
(resp. 7529) spheres with uniform radius distribution between 20nm and 40nm. The dis-
cretization employed is 6003 voxels or nm3 (top and bottom, resp.). The spheres volume
fraction is about 16% and a macroscopic electric field 〈E〉Q = E0 = ex is applied in the x
direction.
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Figure 8: Variance D2
Dx

(V ) of the mean of the real and imaginary parts of the electric
displacement component Dx over V , and of the microstructure volume fraction D2

Q(V ) as
a function of the subvolume size V in a deposit model of spheres with 12003 voxels. These
quantities are equivalent to the apparent permittivity εxx and to the volume fraction of
spheres, respectively (a macroscopic electric field 〈Ex〉 = E0

x is applied). The asymptotic
expansion D2

Dx,Q
(V ) ∼ 1/V (with different prefactors) is recovered when the subvolume

V is larger than 600nm3. At smaller sizes, the variance exhibits a slower decrease, as
D2

Dx
∼ 1/V 0.5 andD2

Q ∼ 1/V 0.67 for the displacement field and microstructure respectively
(dotted gray lines).
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