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ABSTRACT 

This paper introduces the concept of critical ball. Critical balls are maximal balls which are necessary and sufficient to describe and rebuild 

sets, contrary to maximal balls where some redundancy exists. A general definition of a critical ball is given in continuous spaces and some of 

its main properties are depicted. Thanks to a slight modification of their definition, critical balls can also be used in digital spaces. Then, we 

explain how to extract them rapidly through the use of two residual transformations. Finally, some examples of use of critical balls for shape 

description and image segmentation are briefly presented. 
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I. MAXIMAL AND CRITICAL BALLS 

Maximal balls and skeleton 

A ball B(x, λ) centered at point x of radius λ included 

in a set X is maximal if this ball is not covered by any 

other ball included in X. Obviously, if X is part of an 

Euclidean space, the balls B(y, μ) which cover B(x, λ) 

have a larger radius (μ>λ) but this is not compulsory in 

non Euclidean spaces. 

The set of all the maximal balls center points consti-

tute the well-known skeleton by maximal balls S(X) of X:  ܵሺܺሻ ൌ ሼݔ א ܺǣ ǡݔሺܤ׌  ሽ       (1)݈ܽ݉݅ݔܽ݉ ሻߣ

Critical balls, general definition 

Through its skeleton, a particular function q, called 

quench function, can be associated to any set X.  The 

support of q is the skeleton S(X). For each point x be-

longing to S(X), q(x) is equal to λ, radius of the maximal 

ball centered at x. The quench function q(x) can be con-

sidered as a descriptor of X as the initial set can be en-

tirely rebuilt only from q(x). Indeed, we have: ܺ ൌ ڂ Ɂ୯ሺ୶ሻሼxሽ௫אௌሺ௑ሻ                 (2) 

where δr is the dilation by a ball of radius r. 

 However, all the maximal balls are not necessary to 

rebuild a set. Figure 1 illustrates this. Only two maximal 

balls are necessary to rebuild and describe the set X (in 

fact, X is obviously the union of two balls) whereas an 

infinity of maximal balls are considered in S(X). The 

maximal balls of X which are necessary and sufficient to 

describe and rebuild X are called critical balls and their 

centers define the skeleton by critical balls SC(X) of X [1]. 

 

Figure 1 : X is the union of two balls, which are the only critical balls, but an 

infinity of maximal balls exists (light grey), their centers corresponding to the 

skeleton of X (dark grey). 

A critical ball BC(x, λ) of X is a maximal ball which is 

not covered by any combination of other maximal balls of 

X. ׍ሼܤ௞ሽǡ ௞ܤ ് ஼ܤ ஼ǣܤ ؿ ڂ ௞௞ܤ             (3) 

We can show that the critical skeleton SC(X) of X ex-

ists (to prove this, it is simpler to use topological closed 

balls, contrary to the maximal balls skeleton which is 

generally defined with topological open balls). It is also 

easy to prove that a critical skeleton is unique. It is im-

possible to find two different sets of critical balls which 

cover the same set X. Another interesting property is the 

following: if a point of X is covered by a unique maximal 

ball, this ball is critical. Conversely, if a ball is critical, 

there exists at least one point of X which is included only   

in this critical ball (this point is likely a boundary point, 

hence the use of closed sets).  

This definition of a critical ball suffers from two major 

defects. Firstly, it is not appropriate for digital spaces as 

the uniqueness property is not verified anymore. Se-



condly, this definition is not very useful to design an 

efficient and fast procedure to extract them.  

II. DIGITAL CRITICAL BALLS  

Covering in digital spaces 

In digital spaces, critical balls are polygons: squares, 

hexagons or dodecagons and octagons depending of the 

digital grid in use (more sophisticated polygons may also 

be used). 

 

Figure 2: Two different sets of critical hexagons (grey hexagons are different) 

cover the initial set (at left). The uniqueness property is not fulfilled with critical 

polygons of same size.  

However, in this case, the uniqueness of the covering 

is no longer verified as illustrated in Figure 2, where 

different sets of critical hexagons can be used to cover the 

initial set. This is due to the fact that, contrary to the 

Euclidean disk, any maximal polygon can be covered by 

other polygons of the same size.  

Digital critical balls 

The previous problem can be overcome by a new de-

finition of a critical ball in a digital space. 

A digital ball Bi, of size i, is critical if there exists no 

combination of maximal balls Bj, with ݅ ് ݆, which is 

covering Bi: ܬ׍ ൌ ሼ݆ଵǡ ǥ ǡ ݆௡ǣ ݆௞ ് ݅ሽܤ ݐ݄ܽݐ ݄ܿݑݏ௜ ؿ ڂ ௃א௝௝ܤ    (4) 

This slight relaxation of the definition (which changes 

nothing in Euclidean spaces) avoids choosing between 

critical balls of equal sizes. As this choice is not really 

possible, we keep all of them.  

III. CRITICAL BALLS EXTRACTION 

Residual operators 

How critical balls can be extracted? The simplest way, 

but also the more tedious one, would consist in extracting 

each maximal ball and testing that it cannot be covered by 

the others. Fortunately, a faster approach can be designed 

based on residual operators [2]. 

A residual operator is built from two sequences {߰௜} 

and {ߞ௜} (with ߰௜ ൒  .௜) of operators called primitivesߞ

The index i may be any integer parameter taken from a set 

I: a size, an ordering value, etc. 

A residual transformation is therefore a doublet of 

operators defined as follows: ൜ ߠ ൌ ڂ ሺ߰௜ െ ݍூא௜ሻ௜ߞ ൌ ሺ߰௜ݔܽ݉݃ݎܽ െ  ௜ሻ              (5)ߞ

 ሺ߰௜ െ  ௜ሻ is called residue of index i. θ contains theߞ

highest residue appeared at each point, whereas q, called 

associated function, indicates for each point, the index 

value of this highest residue. 

Note that the skeleton S of a set X and its corres-

ponding quench function are residual operators, accord-

ing to Lantuejoul�s formula where ߰௜ ൌ  ௜ is an erosionߝ

of size i of X and ߞ௜ ൌ ߛ ל  ௜ the elementary opening ofߝ

this erosion [4]: ܵሺܺሻ ൌ ڂ ൣ߳௜ሺܺሻ െ Գא൫߳௜ሺܺሻ൯൧௜ߛ          (6) 

The quench function corresponds to the value i for 

which the corresponding skeleton point appeared. 

Ultimate opening, dual operator 

Two other residual operators can be used to sort crit-

ical balls of a set X. The first one is called ultimate 

opening and its associated function, granulometric func-

tion. In fact, it is this latter one which will be used. 

The ultimate opening of a set X is defined by: ߠ ൌ ڂ ሺߛ௜ିଵ െ Գא௜ሻ௜ߛ                 (7) 

Each residue corresponds to the difference between 

two successive openings ߛ௜ିଵ and ߛ௜ of X. We can see 

easily that this ultimate opening, when defined on a set X, 

is equal to the set itself. The granulometric function is 

more interesting. It is defined by: ܿ ൌ ௜ିଵߛሺݔܽ݉݃ݎܽ െ  ௜ሻ             (8)ߛ

For each point ݔ א ܺ, c(x) indicates the size of the 

greatest maximal ball which contains x and which is not 

entirely covered by balls of larger sizes. 

The granulometric function can be obtained with the 

quench function of the skeleton. Let us define: ௜ܵ ൌ ሼݔ א ܵሺܺሻǣ ሻݔሺݍ ൌ ݅ሽ           (9) 

The valued indicator function ݇ௌ೔ of Si is given by: ቊ݇ௌ೔ሺݔሻ ൌ ݔ ݂݅ ݅ א ௜ܵ݇ௌ೔ሺݔሻ ൌ Ͳ ݂݅ ݊ݐ݋              (10) 

We have: 



ܿ ൌ Գא௜݌ݑݏ ቀߜ௜൫݇ௌ೔൯ቁ             (11) 

where ߜ௜ is the size i dilation of a function. 

A dual operator c�, called anti-granulometric function, 

can also be defined. It is simpler to define it from the 

various sets Si. 

Let ݇Ԣௌ೔ be the dual indicator function: ቊ ݇Ԣௌ೔ሺݔሻ ൌ ݔ ݂݅ ݅ א ௜ܵ݇Ԣௌ೔ሺݔሻ ൌ ൅λ ݂݅ ݊(12)            ݐ݋ 

Then: ܿԢ ൌ ݅݊ ௜݂אԳ ቀߝ௜൫݇Ԣௌ೔൯ቁ             (13) 

where ߝ௜ is the size i erosion of a function.  

This operator indicates the size of the maximal balls 

which are not totally covered by balls of smaller sizes 

(Figure 3). 

 
Figure 3: Initial set X (left), granulometric function c (upper right) and an-

ti-granulometric function c� (lower right), both of them are built with maximal 

hexagons. 

Critical balls sorting 

Then, according to the previous digital definition of 

critical balls, points x of X which are covered by critical 

balls verify the following identity: ܿሺݔሻ ൌ ܿԢሺݔሻ                  (14) 

We define: ݁ ൌ ܿ ൌ ܿᇱ݄݊݁ݓ ܿ ൌ ܿԢ           (15) 

The centers of the critical balls of X can be extracted 

by the following procedure. Let us consider again Si, as it 

is defined in Eq.(9) and let us define: 

௜ܧ ൌ ሼݕ א ܺǣ ݁ሺݕሻ ൌ ݅ሽ            (16) 

Then the critical skeleton SC(X) is given by: ܵ஼ሺܺሻ ൌ ڂ ሾ ௜ܵ ת Գא௜ሻሿ௜ܧ௜ሺߜ           (17) 

Figure 4 illustrates the different steps of the extraction 

of the critical skeleton SC with the help of the quench 

function q and of the function e. 

 
Figure 4: Initial set X(upper left), quench function (upper right), the function e 

containing points of X covered by a critical hexagon (lower left) and critical 

skeleton SC(X) (lower right). 

IV. APPLICATIONS 

Shape description 

The skeleton S(X) of a set X is not a very good shape 

descriptor as too many maximal balls are involved. The 

critical skeleton SC(X) is a better shape descriptor. Two 

kinds of sets can be considered: sets X where ܵ஼ሺܺሻ ൌܵሺܺሻ � these sets are called critical sets � and sets where 

this identity is not verified. Note that a convex set is 

always critical. The reverse is not true. This description of 

any set X by its critical balls allows a faster implementa-

tion of basic morphological transformations which use 

this set as structuring element.  

Image segmentation 

When a set X is not critical, it is interesting to deter-

mine the minimal assembly of connected critical sets Xi 

allowing its description and eventually its segmentation: ܺ ൌ ڂ ௜ܺ  ǡ ǡ݈ܽ݉݅݊݅݉ ܫ ܺ௜ ூא௜݈ܽܿ݅ݐ݅ݎܿ         (18) 

We have in this case: 



ܵ஼ሺܺሻ ൌ ڂ ܵ஼ሺ ௜ܺሻ௜אூ                 (19) 

To achieve this, a difficulty comes from the fact that 

the critical skeleton SC (together with the skeleton S) is 

not connected. Fortunately, this connection can be ob-

tained by geodesic thinnings [3]. Then, each connected 

component of SC (after connection) can be used to rebuild 

the corresponding critical set. A new segmentation of the 

initial set X is obtained by this means (Figure 5). 

 

Figure 5: A connected skeleton (upper right) of the initial set (upper left) 

containing all the centers of maximal balls is obtained by geodesic thinning. A 

connected critical skeleton can be extracted from the previous one (lower left) 

and each of its connected components allows to rebuild the critical sets which 

compose the initial set (lower right). 

This approach allows better segmentations through a 

better definition of markers for the objects to be sepa-

rated. It is in particular the case when the objects present 

irregular shapes, as illustrated in Figure 6. Critical balls 

provide better markers than more classical approaches 

based on distance functions and ultimate erosions [5]. 

 

Figure 6: Heap of rocks (upper image) and result of the marking process after 

use of a granulometric function and extraction of the critical balls. These balls 

are eroded, the size of erosion is proportional to the size of each critical ball. 

V. CONCLUSION 

The concept of critical ball and of critical skeleton 

leads to a better description and classification of shapes. 

The notion of critical set can also be refined. It is inter-

esting, for instance, to analyze the successive openings of 

critical sets in order to verify whether these openings are 

critical or not. Through the use of residual operators, 

extracting the critical balls of a set is rather simple, even 

when sophisticated polygons are used. Note also that this 

notion can be easily extended to 3D shapes and also to 

grey scale images (as shown in the last example), as 

residual transformations can equally be defined on these 

kinds of images. 
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