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Introduction, contexte

Cette note peut être considérée comme un complément au cours sur les transformations géodésiques [START_REF] Beucher | Géodésie et transformations géodésiques[END_REF]. Elle est censée éclairer un point obscur concernant la définition de l'érosion géodésique numérique et la façon dont cette définition est inférée à partir de la définition de la dilatation géodésique. On verra que la définition de l'érosion géodésique numérique (sur les fonctions) n'est pas une extension de l'érosion géodésique ensembliste. On expliquera la raison de cette différence. Cela induit quelques difficultés lorsqu'il s'agit de définir des opérateurs construits à partir des opérateurs géodésiques élémentaires comme l'ouverture et la fermeture géodésiques numériques. En fait, avec la définition classique de l'érosion géodésique numérique, cela n'est tout simplement pas possible! Nous allons donc expliciter le cheminement logique permettant de passer des opérateurs géodésiques ensemblistes à leur version numérique ce qui permettra à la fois de comprendre où résident les problèmes mais aussi de définir une érosion géodésique numérique qui est une véritable extension de l'érosion géodésique ensembliste. La plupart des définitions et démonstrations seront fournies dans un cadre digital. Ces définitions pourraient être introduites dans un cadre continu, cependant cela les compliquerait inutilement.

Rappel: dilatation et érosion géodésiques ensemblistes

Rappelons la définition digitale de la dilatation géodésique élémentaire d'un X ( Y ) ensemble Y inclus dans l'espace géodésique X. On a:

(1) X ( Y ) = ( Y / B ) 3 X où B est la boule euclidienne élémentaire (hexagone ou carré de taille 1 selon la trame utilisée). Cet opérateur est évidemment croissant et extensif. A partir de la dilatation géodésique, on peut définir l'érosion géodésique élémentaire (de taille 1)

de l'ensemble Y inclus dans l'espace géodésique X en utilisant la dualité de X ( Y ) ces deux opérateurs vis-à-vis de la complémentation dans X. On arrive à la formulation suivante:

(2) X ( Y ) = X # X ( X # Y ) = X 3 [(( X # Y ) / B ) 3 X ] c = (( Y 4 X c ) 0 B ) 3 X Les opérations de plus grande taille s'obtiennent par itération:

(3

) X n ( Y ) = n X . X ... X ( Y )
Notez que dans le cas des opérateurs géodésiques, les dualités par complémentation ou par adjonction [START_REF] Henk | () == 1: for i in range(n): mamba.diff(imOut, imMask, imOut) mC.dilate(imOut, imOut, se=se) mamba.logic(imMask, imOut, imOut, "sup") else: imWrk1 = mamba.imageMb(imIn) imWrk2 = mamba.imageMb(imIn, 1) for i in range(n): mamba.generateSupMask(imOut, imMask, imWrk2, True) mamba[END_REF] conduisent à des définitions identiques (parce que, dans un contexte géodésique, les seuls éléments structurants utilisés sont des boules géodésiques). L'érosion géodésique ensembliste est croissante (l'espace géodésique X étant fixé) et anti-extensive.

Rappelons également l'interprétation géométrique de ces deux opérateurs. Le dilaté géodésique de taille n de Y correspond à l'espace balayé par les boules géodésiques de taille n dont le centre est inclus dans Y. C'est aussi le lieu des centres des boules géodésiques de taille n de X qui coupent Y. L'érodé géodésique correspond au lieu des centres des boules géodésiques de taille n de X incluses dans Y:

(4) X n ( Y ) = x c X : B X ( x, n ) _ Y (5) X n ( Y ) = x c X : B X ( x, n ) 3 Y ! -= 4 ycY B X ( y, n )

Ouverture et fermeture géodésiques ensemblistes

Dans un cadre ensembliste, il est aisé de définir l'ouverture et la fermeture géodésiques de l'ensemble Y inclus dans l'espace géodésique X. On a:

(6 

) X n ( Y ) = X n . X n ( Y ) (7) X n ( Y ) = X n . X n ( Y )
X n . X n . X n . X n ( Y ) = X n . X n . X n ( Y ) = X n . [ X n . (8) 
X n ( Y )] L'expression entre crochets est la fermeture géodésique de l'érodé géodésique de Y, .

X n ( Y ) Cette fermeture, extensive, contient l'érodé géodésique. On a donc:

(croissance de la dilation géodésique)

X n . X n . X n . X n ( Y ) q X n . X n ( Y ) Comme (croissance et anti-extensivité de l'ouverture X n . X n . X n . X n ( Y ) _ X n .
X n ( Y ) géodésique), la propriété est démontrée. Elle est bien sûr vraie également pour la fermeture géodésique. Ces opérateurs peuvent donc légitimement être qualifiés d'ouverture et de fermeture.

Exemple d'application

L'ouverture et la fermeture géodésiques ne sont pas beaucoup utilisées. L'usage de l'ouverture-reconstruction ou de la fermeture-reconstrution est beaucoup plus fréquent. On peut cependant donner un exemple simple d'utilisation de la fermeture géodésique (Figure 1). Cet exemple représente un ensemble Y formé de plusieurs composantes connexes incluses dans un ensemble X. La fermeture géodésique permet de connecter les composantes connexes de Y suffisamment proches sans trop modifier les autres composantes.

La dilatation géodésique numérique

Etendre au domaine numérique la dilatation géodésique ensembliste est aisé. Soit deux images à niveaux de gris (fonctions numériques) f et g. On supposera que . Pour f [ g définir le dilaté géodésique élémentaire de f dans l'espace géodésique défini par g, il g ( f ) suffit d'appliquer un procédé classique qui consiste à effectuer cette dilatation géodésique sur toutes les sections des sous-graphes (seuils) de f et g et d'empiler à nouveau les résultats de ces transformations pour obtenir le sous-graphe de . On sait que cette façon de faire ne g ( f ) fonctionne que si l'opérateur ensembliste est croissant, faute de quoi le ré-empilement ne générera pas un sous-graphe de fonction (Figure 2) : 

X i ( f ) = x : f ( x ) m i i < j X j ( f ) _ X i ( f ) croissant : ( X j ) _ ( X i ) X j ( ) _ X i ( )
Dans le cas de la dilatation géodésique numérique, cet empilement génère bien un sousgraphe car la dilatation géodésique ensembliste est croissante non seulement par rapport à Y, l'ensemble à dilater mais aussi par rapport à X, l'espace géodésique. En effet, en posant: , , ,

X i ( f ) = x : f ( x ) m i X j ( f ) = x : f ( x ) m j X i ( g ) = x : g ( x ) m i X j ( g ) = x : g ( x ) m j Avec i < j, on a :

(10) X i ( g ) q X j ( g ) q X j ( f ) et :

(11

) X i ( g ) q X i ( f ) q X j ( f ) Cela permet donc d'écrire : (12) X i ( g ( f )) = ( X i ( f ) / B ) 3 X i ( g ) q ( X i ( f ) / B ) 3 X j ( g ) q ( Xj ( f ) / B ) 3 X j ( g ) = X j ( g ( f ))
On peut alors sans difficulté particulière donner une formulation algébrique de la dilatation géodésique d'une fonction f dans l'espace géodésique défini par g (on dit encore que la dilatation de f s'effectue sous g). On a:

(13) g ( f ) = ( f / B ) . g = inf ( f / B, g ) (le passage d'opérateurs ensemblistes à leur équivalent numérique est immédiat). L'extension de la dilatation géodésique au domaine numérique est immédiate essentiellement grâce à la bonne propriété de croissance de l'opérateur ensembliste par rapport à l'espace géodésique.

On peut donner une interprétation géométrique de cet opérateur sur les sous-graphes de f et de g en introduisant la notion de cylindre géodésique. Un cylindre géodésique défini C g ( x, n ) dans le sous-graphe G(g) d'une fonction g, d'origine x, point du sous-graphe et de rayon n est constitué des points de G(g) à une distance géodésique inférieure ou égale à n de tout point y appartenant au demi-axe vertical (Figure 3). Le sous-graphe du dilaté géodésique ] -∞, x ] est donc constitué de l'ensemble des cylindres géodésiques de G(g) dont l'origine est g ( f ) dans G(f). La dilatation géodésique numérique est évidemment croissante et extensive. 

L'érosion géodésique numérique, analyse d'une confusion

L'érosion géodésique numérique est généralement introduite à partir de la dilatation géodésique numérique en faisant intervenir la dualité par inversion autour d'une valeur pivot [START_REF] Beucher | Géodésie et transformations géodésiques[END_REF]. On définit alors l'érosion géodésique numérique élémentaire (de taille 1) de la fonction f au-dessus de la fonction g (on a en effet ) comme l'opération:

f m g (14) g ( f ) = p -p-g ( p -f ) = sup ( f 0 B,

g ) où p est une valeur pivot quelconque (le résultat est indépendant de cette valeur pivot).

Cette transformation cependant n'a rien à voir avec une possible extension aux images de gris de l'érosion géodésique ensembliste! En effet, dans cette définition, on a subrepticement changé d'espace géodésique. On est passé de l'espace G(g), sous-graphe de g à son sur-graphe. Tout se passe comme si, dans le cas ensembliste, on avait défini l'érosion géodésique dans l'espace géodésique X c (Figure 4). Y contiendrait alors X et on définirait l'érosion élémentaire comme: X ( Y ) (15) X ( Y ) = ( Y 0 B ) 4 X On remarquera d'ailleurs que les sections de l'érodé géodésique numérique élémentaire sont définies avec cette formule. (18) g ∏ ( f ) = g (f) ( g ) L'opérateur ainsi défini est toujours supérieur ou égal à . g ( f ) On voit ainsi que, si on transpose en numérique l'exemple ensembliste précédent (cf. Figure 1), en remplaçant les ensembles X et Y par deux fonctions f et g définies par (fonctions indicatrices valuées) :

f ( x ) = m si x c Y f ( x ) = 0 sinon g ( x ) = M si x c Y ( M ú m ) g ( x ) = 0 sinon l'opérateur
ne donne pas le même résultat que dans le cas ensembliste puisqu'il s'arrête g ( f ) après la dilatation. Peut-on contourner cette difficulté et définir une érosion géodésique numérique dans le même espace géodésique que la dilatation? La réponse est oui, en utilisant simplement la dualité par adjonction [START_REF] Henk | () == 1: for i in range(n): mamba.diff(imOut, imMask, imOut) mC.dilate(imOut, imOut, se=se) mamba.logic(imMask, imOut, imOut, "sup") else: imWrk1 = mamba.imageMb(imIn) imWrk2 = mamba.imageMb(imIn, 1) for i in range(n): mamba.generateSupMask(imOut, imMask, imWrk2, True) mamba[END_REF] et les cylindres géodésiques. Considérons les sous-graphes et des fonctions f et g (on a . On peut définir G ( f ) G ( g ) f [ g) l'érosion géodésique de G(f) par des cylindres géodésiques de taille n, , comme C g ( x, n ) l'union de tous les ensembles Z inclus dans G(g) tels que leur dilaté géodésique soit inclus dans G(f) : 

(19) g [ G ( f )] = 4 Z : G(g) n ( Z ) _ G ( f ) Cette formulation est équivalente à : (20) g [ G ( f )] = 4 x c G ( g ) : C g ( x, n ) _ G ( f ) L'
( x, n ) X j ( f ) X j ( f ) X j ( g ) donc écrire : (22) X i g n ( f ) = 3 j[i X j (g) n ( X j ( f ))
Pour appartenir à la section X i à l'altitude i de l'érodé géodésique de f sous g, un point x doit également appartenir à tous les érodés géodésiques ensemblistes des sections situées à X j ( f ) une altitude das la section correspondante. j < i X j ( g ) On retrouve, avec cette formulation, une technique connue pour forcer un opérateur à être croissant lorsqu'on l'étend au domaine numérique. Elle est appliquée notamment pour étendre les concepts d'amincissement et d'épaississement [1]. Notez qu'il existe deux façons de procéder pour obtenir ce résultat (Figure 5). On peut, soit intersecter toutes les sections inférieures ou égales à i, soit faire l'union de toutes les sections supérieures ou égales à i. Dans le cas présent, la première solution s'impose alors que la seconde prévaut dans le cas des amincissements et épaississements (la première approche conduit à définir d'autres opérateurs appelés sur-épaississements et sur-amincissements, cf. [1, pages 125-127]).

Figure 5 : Les deux approches permettant de générer un sous-graphe de fonction par empilement d'ensembles obtenus à l'aide d'un opérateur ensembliste ψ non croissant. La procédure à droite (intersection des sections d'altitude inférieure ou égale à i) est utilisée pour l'érosion géodésique. La procédure par union des sections supérieures (à gauche) n'est présentement pas utilisée (elle l'est, en revanche, pour les amincissements).

Partant de la formule précédente, on peut montrer que l'érosion géodésique digitale élémentaire de f sous g peut s'écrire: f ∏ = g f = g est aussi anti-extensif car :

(24

) ( f -m ) V B [ f -m (25) ( f -m ) . g = ( f . g ) -( g . m ) = f -( g . m ) = f -( f . m ) = f C.Q.F.D.
La Figure 6 illustre les différentes étapes de la construction de cette transformation. Cet opérateur fournit un résultat identique à l'opérateur ensembliste quand on l'applique à des fonctions indicatrices.

Figure 6 : Exemple d'érosion géodésique élémentaire d'une fonction f sous une fonction g. En haut, à gauche: les fonctions initiales. En haut, à droite : la fonction m (indicatrice de l'égalité de f et de g). En bas, à droite : érosion euclidienne de la fonction

. En bas, à fm droite : érosion géodésique de f sous g. 

g ( f ) permet donc de réaliser de véritables ouvertures et fermetures dont les propriétés et le comportement sont similaires aux opérateurs ensemblistes. Ainsi, en reprenant l'exemple précédent (Figure 1) avec des fonctions indicatrices en lieu et place d'ensembles, le lecteur pourra vérifier qu'on obtient le même résultat.

Conclusion

Cette extension au numérique de l'érosion géodésique ensembliste n'avait, à ma connaissance, jamais été proposée auparavant. Le problème soulevé par le changement subreptice d'espace géodésique avait certes déjà été perçu mais aucune solution n'y avait été apporté. Il est vrai que les opérateurs d'ouverture et de fermeture géodésiques ne sont pas beaucoup utilisés. Ainsi, dans l'exemple donnée plus haut de connexion "dirigée" de composantes connexes, on peut se contenter d'une dilatation géodésique qui fait aussi bien le travail. Néanmoins, il suffit qu'un nouvel outil apparaisse pour lui trouver tôt ou tard un intérêt. On peut ainsi envisager de définir des opérateurs numériques plus complexes (gradients, chapeaux haut-de-forme, épaississements, amincissements, etc.) dans des espaces géodésiques définis par des fonctions. Un domaine où ces opérateurs pourraient démontrer leur utilité est celui des applications où de multiples modalités d'images sont accessibles. Enfin, cet opérateur montre à la fois l'intérêt de l'adjonction pour définir un opérateur dual mais aussi ses limitations lorsqu'il faut passer de cette définition générale à une définition plus opératoire.

Annexe A -Formulation algébrique de l'érosion géodésique de f sous g

Rappelons d'abord quelques définitions et formules reliant les sections d'un sous-graphe de fonction et les opérateurs algébriques d'addition et de soustraction. Nous donnerons ces définitions dans le cas continu avant de les transcrire dans le cas discret. Appelons : X ( f ) = x : f ( x ) m la section fermée (au sens topologique) au niveau du sous-graphe G(f). De même : Y ( f ) = x : f ( x ) > La section ouverte (au sens topologique) à la même hauteur. On a :

X ( f + g ) = x : ( f + g )( x ) m ( f + g )( x ) m e f ( x ) m et g ( x ) m -, ≤
ou encore :

X ( f + g ) = 4 X ( f ) 3 X -( g ) X ( f + g ) = 4 X -( f ) 3 X ( g )
De même :

X ( f -g ) = 4 X -( f ) 3 X ( -g ) Mais : X ( -g ) = x : g ( x ) [ -= Y - c ( g ) X ( f -g ) = 4 X -( f ) 3 Y -c ( g ) X ( f -g ) = 4 X + ( f ) 3 Y c ( g )
On peut aussi écrire :

Y ( f + g ) = X - c ( -f -g ) Y ( f + g ) = 4 X --( -f ) 3 X ( -g ) c Y ( f + g ) = 3 X -- c ( -f ) 4 X c ( -g ) Y ( f + g ) = 3 Y + ( f ) 4 Y -( g ) Soit : Y ( f + g ) = 3 Y -( f ) 4 Y ( g )
De même :

Y ( f -g ) = 3 Y -( f ) 4 Y ( -g ) Y ( f -g ) = 3 Y -( f ) 4 X -c ( g ) Y ( f -g ) = 3 Y + ( f ) 4 X c ( g )
Dans le cas discret (fonctions à valeurs entières), on a :

Y i ( f ) = x : f ( x ) > i = x : f ( x ) m i + 1 = X i+1 ( f )
On peut alors montrer que:

X i ( f + g ) = 4 j X i-j ( f ) 3 X j ( g ) X i ( f -g ) = 4 j X i+j ( f ) 3 X j+1 c ( g )
Ou encore :

X i ( f -g ) = 3 j X i+j ( f ) 4 X j c ( g )
En reprenant la formule (2), on peut écrire:

X j (g) ( X j ( f )) = X j ( f ) 4 X j c ( g ) 0 B 3 X j ( g )

Annexe B -Récapitulatif des divers opérateurs géodésiques

Cette annexe récapitule les différents opérateurs d'érosion et de dilatation géodésiques élémentaires disponibles. On montrera qu'il existe un autre opérateur de dilatation qui n'a pas été mis en évidence dans ce document. On essaiera également de définir les opérations permettant de passer d'un opérateur (une érosion par exemple) à un autre (la dilatation).

Seule la formulation numérique des opérateurs sera prise en compte. On peut remarquer qu'en dépit d'une formulation différente, l'opérateur ensembliste d'érosion géodésique est identique à l'opérateur numérique . En effet, le masque M (équivalent

X ( Y ) g ( f )
ensembliste de la fonction m) correspond aux points de l'espace qui appartiennent à la fois à Y et X ou à leurs complémentaires. M est donc le complémentaire de la différence symétrique Δ entre X et Y :

car M = ( X < Y ) c = ( X 3 Y ) 4 ( X c 3 Y c ) = Y 4 X c
Y _ X On a donc :

Y 4 M = Y 4 X c On retrouve bien la définition initiale de l'érosion géodésique ensembliste élémentaire.

Le tableau suivant résume les diverses opérations géodésiques élémentaires applicables à une fonction f dans un espace géodésique défini par g.

g ( f ) = ( f / B ) . g g ( f ) = [( f -m ) 0 B ] . g avec m = x : f = g f [ g g ( f ) = ( f 0 B ) -g g [ f

Dilatation Erosion

L'analyse de ce tableau amène deux remarques immédiates : -L'érosion se déduit, comme on le savait déjà, de la dilatation par inversion. Les g ( f ) g ( f ) deux fonctions f et g sont pivotées, puis la dilatation est réalisée. Enfin l'inversion du résultat fournit l'érosion. En notant l'inversion d'une fonction f, on a : f f / B . g = f 0 B . g Si on inverse ce résultat :

f 0 B . g = ( f 0 B ) -g = g ( f )
-Il manque la définition d'une dilatation géodésique élémentaire de f au-dessus de g qui serait la contrepartie de l'érosion lorsque . Cette dilatation peut cependant se g ( f ) f m g construire par inversion à partir de l'érosion . On la notera (attention à ne pas g ( f ) g ( f ) confondre le surlignage de cet opérateur avec l'inversion). On a : Le tableau des opérateurs géodésiques élémentaires peut alors être complété comme suit : 

avec g ( f ) = f -m 0 B . g m = x : f = g Soit : f -m 0 B . g = f -m / B -g = [( f . m ) / B ]
g ( f ) = ( f / B ) . g g ( f ) = [( f -m ) 0 B ] . g avec m = x : f = g f [ g g ( f ) = [( f . m ) / B ] -g Avec m = x : f > g g ( f ) = ( f 0 B ) -g g [ f
( f ) = [( f . m ) / B ] . g Avec m = x : f [ g g ( f ) = [( f -m ) 0 B ] . g avec m = x : f m g f [ g g ( f ) = [( f . m ) / B ] -g Avec m = x : f > g g ( f ) = [( f -m ) 0 B ] -g Avec m = m : f < g g [ f Dilatation Erosion
Certes, les masques introduits dans et sont "fictifs" (dans l'érosion, il est vide et il g ( f ) g ( f ) recouvre tout l'espace dans la dilatation). Cependant, ces nouvelles définitions font mieux ressortir la structure interne de ces opérateurs ainsi que leurs similarités. Néanmoins, la réalisation d'une érosion à l'aide d'un opérateur simple appliqué à la dilatation afin de disposer d'un pont plus opératoire que la dualité par adjonction entre ces deux transformations demeure difficile à mettre en évidence, du moins dans le cas numérique. Compte tenu que nous disposons des formulations directes pour réaliser ces transformations, l'intérêt d'un tel pont est cependant assez faible.

Annexe C -Opérateurs géodésiques dans la librairie MAMBA Image

Cette annexe est destinée aux utilisateurs de la librairie Mamba. Le module "geodesy" de la librairie a été modifié. Il contient dorénavant les opérateurs géodésiques élémentaires nouvellement définis. Ainsi, on dispose de deux érosions géodésiques et de deux dilatations géodésiques. Ce sont:

- 

Figure 1 :

 1 Figure 1 : Exemple de fermeture géodésique d'un ensemble Y dans un espace géodésique X. A gauche, les ensembles initiaux, à droite, fermeture géodésique de l'ensemble Y.

Figure 2 :

 2 Figure 2 : Principe de l'extension au domaine numérique d'opérateurs ensemblistes croissants

Figure 3 :

 3 Figure 3 : Cylindres géodésiques définis dans le sous-graphe d'une fonction g. A droite, sections d'un cylindre géodésique bidimensionnel. Chaque section correspond à une boule géodésique. On a évidemment B 1 _ B 2 _ B 3 .

Figure 4 :

 4 Figure 4 : Equivalent ensembliste de l'érosion géodésique numérique. Dans ce cas de figure, on a . Y q X

  g ( f ) = [( fm ) 0 B ] . g Où m est la fonction indicatrice définie par : m ( x ) = v max si f ( x ) = g ( x ) m ( x ) = 0 sinon (on supposera f et g positives et bornées : ). 0 [ f [ g [ v max La démonstration de cette formule étant assez longue, elle a été reportée en annexe A. Cet opérateur est croissant et anti-extensif. Il est croissant car, en supposant , on a f [ f ∏ . En effet, le lieu des points où est inclus dans l'ensemble des points où . Il m [ m ∏

  g Or : m = x : f < g = x : f > g On arrive à la définition suivante : avec g ( f ) = [( f . m ) / B ] -g m = x : f > g La Figure 7 illustre cette opération.

Figure 7 :

 7 Figure 7 : dilatation géodésique élémentaire d'une fonction f au-dessus de g.

  

  Ces deux opérations sont croissantes. L'ouverture géodésique est anti-extensive (tout point de est inclus dans une boule géodésique de taille n elle-même incluse dans Y). La fermeture géodésique correspond au complémentaire dans X de l'ouverture géodésique du complémentaire dans X de Y. C'est donc un opérateur extensif. Cet opérateur est également idempotent. En effet:

	X n ( Y )	
	L'ouvert	correspond à l'ensemble des boules géodésiques de taille n incluses dans Y.

X n ( Y )

7. Ouverture, fermeture géodésique

  

		On peut alors, en concaténant les opérateurs	g ( f )	et	g	, définir deux nouveaux ( f )
	opérateurs que nous appellerons ouverture et fermeture géodésiques : ( f ) g ( f ) = g . g g ( f ) = g . g ( f )	(26) (27)
	Ces opérateurs sont croissants.	g ( f )	est anti-extensif. En effet, en considérant le sous-graphe
	, il est constitué par l'union de tous les cylindres géodésiques dont le centre est inclus G ( g )
	dans	G g	. Tous ces cylindres sont donc inclus dans G(f). On a donc bien	. g ( f ) [ f
	On peut montrer, mutatis mutandis, que	g ( f )	est extensif. Ces deux opérateurs sont égale-
	ment idempotents. Cela se montre aisément de manière similaire à la démonstration ensem-
	bliste. Cette propriété découle des propriétés de croissance et d'extensivité/anti-extensivité
	des opérateurs et . g g		
	Cette nouvelle érosion géodésique	g	, définie dans le même espace géodésique que	,

  Ces opérateurs fonctionnent avec des images binaire, 8-bit et 32-bit. Ils seront incorporés dans la version 1.1 de Mamba.Les anciens opérateurs geodesicErode et geodesicDilate ont été conservés pour des raisons de compatibilité avec la version précédente de Mamba. L'opérateur geodesicDilate n'est qu'un alias de lowerGeodesicDilate, tandis que geodesicErode reprend soit lowerGeodesicErode soit upperGeodesicErode selon qu'on travaille avec des images binaires ou numériques.Voici les sources Python de ces nouveaux opérateurs que vous pouvez coller dans le module geodesy.py (en supprimant les anciens geodesicErode et geodesicDilate). Performs a upper geodesic dilation of image 'imIn' above 'imMask'.The result is put inside 'imOut', 'n' controls the size of the dilation. 'se' specifies the type of structuring element used to perform the computation (DEFAULT_SE by default).

	upperGeodesicErode correspondant à	. g ( f )
	-lowerGeodesicErode correspondant à	g	. ( f )
	-upperGeodesicDilate correspondant à	. g ( f )
	-lowerGeodesicDilate correspondant à		.
	"""		
	This module provides a set of functions to perform geodesic computations using
	Mamba based functions.		
	It includes build and dualbuild operations, geodesic erosion and dilation,
	computation of maxima and minima...		
	it works with imageMb instances as defined in mamba.
	"""		
	# Contributors: Serge BEUCHER, Nicolas BEUCHER
	from mambaCore import ERR_BAD_DEPTH
	import mamba		
	import mambaComposed as mC		
	def upperGeodesicDilate(imIn, imMask, imOut, n=1, se=mC.DEFAULT_SE):
	"""		

g ( f )

Warning! 'imMask' and 'imOut' must be different. """

La section au niveau i de l'érosion géodésique numérique élémentaire peut s'écrire :

Nous avons

. La fonction m a pour sections à tous les niveaux un même ensemble f [ g contenant tous les points x pour lesquels . Cet ensemble correspond alors à la f

Calculons alors la section au niveau i de la fonction . On a : fm

Soit encore :

Le terme (a) peut s'écrire :

Le terme (b) s'écrit :

Ce qui donne :

On peut donc écrire :

ce qui démontre la formule (23).

def lowerGeodesicErode(imIn, imMask, imOut, n=1, se=mC.DEFAULT_SE): """ Performs a lower geodesic erosion of image 'imIn' under 'imMask'. The result is put inside 'imOut', 'n' controls the size of the erosion. 'se' specifies the type of structuring element used to perform the computation (DEFAULT_SE by default).

The binary lower geodesic erosion is realised using the fact that the dilation is the dual operation of the erosion.

Warning! 'imMask' and 'imOut' must be different.

"