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Abstract
This document describes an efficient enhancement of the waterfall algorithm, a

hierarchical segmentation algorithm defined from the watershed transformation. The first part
of  the document recalls the definition of the waterfall algorithm, its various avatars as well
as its links with the geodesic reconstruction. The second part starts by analyzing the different
shortcomings of the algorithm and introduces several strategies to palliate them. Two
enhancements are presented, the first one named standard algorithm and the second one, P
algorithm. The different properties of P algorithm are analyzed. This analysis is detailed in
the last part of the document. The performances of the two algorithms, in particular, are
addressed and their analogies with perception mechanisms linked to the brightness constancy
phenomenon are discussed.

Résumé
Ce document décrit une amélioration efficace de l’algorithme des cascades,

algorithme de segmentation hiérarchique défini à partir d’une ligne de partage des eaux. La
première partie du document rappelle la définition de l’algorithme des cascades, de ses divers
avatars ainsi que de ses liens avec la reconstruction géodésique. La seconde partie commence
par analyser les différents défauts de l’algorithme et introduit plusieurs stratégies pour les
pallier. Deux améliorations sont présentées, la première dénommée algorithme standard et la
seconde, algorithme P. Les différentes propriétés de l’algorithme P  sont analysées. Cette
analyse est approfondie dans la dernière partie du document. On revient notamment sur le
fonctionnement des deux algorithmes et sur les analogies qu’ils présentent avec des
mécanismes de perception liés au phénomène de constance de la luminosité.
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1. Introduction

This working document aims at describing as thoroughly as possible the tasks which
have been performed by the authors to enhance the waterfall segmentation algorithm. These
tasks led to the design (the “discovery”) of a new algorithm called P algorithm, derived from
the Waterfall algorithm. This algorithm provides efficient segmentations without the major
drawbacks which penalize the initial transform.

This document is divided into different definition parts. The first one is a (long) recall
of the classical waterfall algorithm. The second one describes the various defects of this
algorithm and its preliminary enhancements. In the third part, P algorithm will be introduced
and its main properties discussed.

Although we intend to be as complete as possible, this presentation is not exhaustive.
However, we shall try to put forward the leading thread which has provided the retained
algorithmic solutions. Besides, some alternative approaches will also be addressed in order to
compare them with P algorithm and to give some clues to explain why this latter algorithm is
efficient.

On the contrary, the algorithm implementation with graphs will not be described here
for two reasons. Indeed, firstly, this presentation needs the introduction of specific notions
which are necessary in the first step. Secondly, this implementation exists only for one
algorithm (named “standard algorithm” in this paper) but not for P algorithm. Nevertheless,
this algorithmic inplementation is very important as it produces a very fast transform. This
algorithmic implementation will be presented in another document.

2. Historical recall

The initial presentation of the waterfall algorithm can be found in [2]. This
hierarchical segmentation algorithm is based on a watershed transform applied to a graph.
This algorithm has been mainly used to cope with over-segmentation problems appearing in
the non supervised watershed segmentation. It has been applied in some specific contexts as
the analysis of roads and highways scenes [6, 7, 8, 9], multimedia indexing [27], or some
particular segmentation problems [1, 15, 16, 26, 29, 30, 31]. A very fast implementation of
this algorithm has been released recently [21].

The main advantage of the waterfall algorithm lies in the fact that it is non parametric.
However, it suffers from many defects and drawbacks. Some of them are inherited from
defects of the watershed transform, some others come from the non parametric approach used
to build this operator.

3. Preliminary definitions and notations

3.1. Notations
In this paper, the following notation conventions will be applied:

- An uppercase letter will denote a set. If this set is derived from a function (for instance the
watershed lines W of a function f), it will be written as Wf. If this set is depending on some
index value i, it will be denoted Wi.
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- A lowercase letter will denote a function. If this function f is applied to another function g,
it will be denoted f(g) or fg. If this function f depends on an index value i, it will be written fi.
The value of f at point x is given by f(x).

3.2. Valued watershed
The watershed transformation of a function g produces a set of watershed lines (dams)

denoted Wg. The valued watershed wg is the function defined on Wg and taking the value of g
at each point of its support (Fig. 1):

(d)(c)

(b)(a)

Fig. 1: Original image (a), its morphological gradient  (b), watershed W of the gradient (c)
and valued watershed (d).

wg(x) = g(x) if x cWg

wg(x) = 0 if x"Wg

The valued gradient watershed is not identical to the gradient-mosaic image (where
every arc is given a constant value, see below).

3.3. Mosaic image and gradient-mosaic image
Building a mosaic image from a general greytone image f is very simple (Fig. 2):

- Firstly, build the watershed of the gradient modulus gf of the greytone image f (called
“gradient” for short).
- Compute the average grey value of f inside each minimum of gf.
- As each minimum of gf corresponds to a single catchment basin in the watershed transform,
fill this catchment basin with the grey value determined at the previous step.
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This procedure produces a simplified image made of various tiles of uniform grey
values, a mosaic image.

From this mosaic image, a gradient-mosaic image can be defined by giving to each
watershed arc the absolute difference of the grey values of the tiles separated by this arc. The
gradient-mosaic image is a particular case of valued watershed.

Note that it is possible to simply use the restriction of f inside each gf minimum to
build the mosaic image. Instead of using an average value, the f maximum values inside the
gradient minima are taken into account. The final result is very similar.

(b)                                       (c)                                    (d)

(a)

Fig.2: Mosaic image and gradient-mosaic. Illustration of the construction of the mosaic
image (a), original image (b), mosaic image (c) and gradient-mosaic image (d) where each
arc of the watershed takes a constant value.

3.4. Mosaic images for color images
The extension to color images of mosaic image notion is straightforward. A color

image f is a triplet of scalar images, each image of the triplet containing a channel of
information which depends on the chosen color representation (RGB, HLS, Lab, etc.). A
color mosaic image can be simply built by generating a mosaic image for each channel. The
only obligation, in order to avoid color smears in the resulting image, is to take the same
watershed image and the same marker set to build the three mosaic images. This watershed
and its markers can be built from the color gradient (there exist different ways to achieve
this). The markers correspond to the minima of this gradient image (Fig. 3).
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(b)(a)
Fig.3: Example of color mosaic image (b) built from the original image (a). In this example,
the mosaic image has been built from the RGB representation of the original image.

3.5. First overflow zones (FOZ)
The FOZ is a valuable concept for understanding how the waterfall transformation

works. These FOZ are sometimes called “saddle zones”. However, this term is not suitable
for at least two reasons:
- Contrary to the saddle notion, it is not necessary to deal with “smooth” (continuously
differentiable) functions to define a FOZ.
- The FOZ, as the watershed, is not a local notion: it is not possible to know a priori if a point
of the topographic surface drawn by a function belongs or not to a FOZ.

(b)(a)
Fig. 4: First Overflow Zone (FOZ). (a) In green the lower catchment basin inside each CB, in
red, the FOZ corresponding to the LCB. The second image (b) shows actual LCBs which can
be observed in the real world (view taken in the French Pyrenees)!
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When building the watershed transform, the flooding process in each catchment basin
can be divided into two steps:
- At the beginning, the flooding starting from a minimal source progressively invades a
catchment basin.
- Then, when the flooding reaches a certain height, we observe an overflow into an adjacent
catchment basin. This overflow occurs through a First Overflow Zone (FOZ). This FOZ
corresponds to the region where the watershed line appears. The flooded region in the
catchment basin covers a subset of this CB called Lower Catchment Basin (LCB).

These FOZ fulfil some interesting properties:
- For each CB, there exist at least one FOZ.
- The FOZ associated to a catchment basin is not necessarily connected. First overflows may
occur through different parts of the CB boundary.
- Adjacent CBs do not necessarily share the same FOZs as illustrated in Fig. 4a.
- When considering the boundary surrounding a CB (the watershed lines bordering it), the
points of this boundary at the lowest height belong to the corresponding CB FOZ.

4. The Waterfall transformation

4.1. The initial idea
The main purpose of the waterfall algorithm is to eliminate over-segmentation

produced by the unsupervised watershed. To achieve this, a simple perception criterion is
used , as illustrated in Fig. 5.

(c)(b)(a)
Fig. 5: A simple illustration of the perception criterion used in the waterfall algorithm.
Simple greytone mosaic image (a), its gradient-mosaic (b) (the gradient has been inverted)
and (c) gives an idea on the corresponding topographic representation of this
gradient-mosaic.

This figure shows a very simple mosaic image (see above for details about mosaic
images) and its corresponding valued watershed (see above). We clearly see on this picture a
whitish dot surrounded by a greyish background. Neither the dot nor the background are
homogeneous, fact which leads to the over-segmentation of the watershed. However, despite
the fact that the picture is over-segmented, the white dot emerges easily from the black
background because, simultaneously, the boundaries oversegmenting the dot or the
background are less contrasted than the boundaries which separate the dot from the
background. The dot and the background are marked by boundaries with a minimal contrast
(a minimal value).
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4.2. Building a graph
A simple definition of a minimal arc would consist in considering its valuation and in

comparing it to its immediate neighbours. An arc Cij which separates two catchment basins
CBi and CBj is said to be minimal if its valuation  (where fi and fj are the greyvij = fi − fj
values of the catchment basins CBi and CBj in the mosaic image) is lower than the valuations
of the other arcs surrounding CBi and CBj (Fig. 5).

Fig. 5: A simple definition of a minimal arc in the gradient-mosaic image. This definition is
too specific because it takes into account the isolated minimal arcs only.

However, this definition is too simple because it only takes into account the isolated
minimal arcs. We would like to define also connected components of minimal arcs. To
achieve this, we need to define a graph which describes the neighborhood relationships
between the valued arcs of the watershed image.

From the gradient-mosaic image, let us define the following graph:

- Its nodes correspond to the simple arcs of the gradient-mosaic image.
- Its edges join all the simple arcs surrounding the same catchment basin.
- Each node is given the value of the corresponding simple arc in the gradient-mosaic image
(Fig. 6).

Note that a similar graph can be defined from the valued watershed image. In this
case, the valuation of each node is equal to the minimum value of the gradient on the
corresponding simple arc.

In this representation, arcs surrounding the same catchment basin are adjacent.
Therefore, minimal arcs can be connected although it is not the case in the gradient-mosaic.
In fact, connected sets of minimal arcs can be easily defined from the new graph structure.

A node of the graph belongs to a minimal set if and only if there exists no descending
path starting from this node. In other words, a node (that is, a simple arc in the
gradient-mosaic) is minimum (or belongs to a minimal set of nodes) if reaching a lower node
by means of never ascending paths is not possible. All minimal connected nodes form a
minimal set. They all have the same valuation. This definition of a minimal set is, in fact,
exactly the definition of a minimum in the general case (cf. [2], page 89). It is simply applied
here on a non trivial graph structure.
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(d)(c)

(b)(a)

Fig. 6: Example of 3D graph built from the gradient-mosaic. For the sake of simplicity, all
the edges have not been shown. In (a), example of a gradient-mosaic image. The minimal
arcs are shown in bold lines in (b). In (c), the corresponding 3D graph showing that, in this
representation, many minimal arcs are connected (d).

4.3. A watershed defined on the graph
In a similar way to the watershed principle, minimal arcs of the mosaic image mark

homogeneous regions. The contours separating these regions correspond to the watershed
lines computed on the previously defined graph structure.

Building a marker-controlled watershed on this graph structure, using the minimal
arcs of the gradient-mosaic image as flooding sources, is a straightforward procedure as
illustrated in the following example.

Each arc of the initial gradient-mosaic image (Fig. 7a) is given a value corresponding
to the absolute difference of the grey values of the adjacent catchment basins in the mosaic
image. This example image is very similar to the previous blob image example (see Fig. 5).
The valuations inside the blob structure are lower than the valuations of its boundary
contours. It is the same for the values assigned to the contours outside the blob. The minimal
arcs are represented in bold lines. Fig. 7b shows the first set of minimal arcs (in blue). In the
new graph introduced above, these minimal arcs are connected and take value 2. The
flooding starting from this initial source reaches all the adjacent points with value 3 (Fig. 7c).
Then, as usual when building watersheds level by level, new sources (minimal arcs) at level 3
are added. In the example, these new minimal arcs are all oversegmenting background arcs.
They are all connected in the new graph structure and, therefore, at the second flooding step,
two flooding components ( two lakes) are present.
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(g)

(f)(e)(d)

(c)(b)(a)

Fig. 7: Watershed construction on the 3D graph. (a) Initial gradient-mosaic image, (b) in
blue, first set of minimal connected arcs, (c) first flooding step (in blue) and adjunction of a
new set of minimal arcs (in green), (d) next step of flooding, the red points belong to the
watershed lines, (e) fourth flooding step, the watershed construction goes on (red dots), (f)
final step, the flooding is over, (g) arcs corresponding to the watershed points in the inital
image.

At the third step, points at level 4 are flooded, except if they border at least  two
different lakes, as it is the case for the red points in Fig. 7d. These red points are the first dam
points appearing in the flooding process.

This process goes on, producing new dam points (Fig. 7e and 7f) until no more non
processed point remains. Then, the red points draw a watershed line in the new graph
structure. When these points are back-projected in the initial gradient-mosaic image, the
corresponding arcs draw the contour of the blob and, consequently, we get the first level of
hierarchy provided by this Waterfall transformation (Fig. 7g). 

To summarize, the Waterfall transformation is nothing but a watershed transformation
achieved on a new graph structure defined from the initial gradient watershed of the original
image.
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4.4. A simpler 2D graph
However, handling this new graph is not very easy, mainly because it is a 3D valued

and non planar graph.
Fortunately, this graph can be reduced to a simple 2D planar graph:

- Firstly, a new node is added inside each catchment basin CBi . The value assigned to this
node is equal to min(vij), where vij is the value taken by the node corresponding to the arc
separating the catchment basin CBi  and any adjacent catchment basin CBj (Fig. 8).
- Secondly, the previous edges linking nodes surrounding each catchment basin CBi  are
replaced by two successive edges linking the original nodes but going through the new added
node.

(b)(a)
Fig. 8: Principle of the initial 3D graph reduction (a) to a 2D planar graph by introducing
new nodes inside the catchment basins (b).

This transformation aims at simplifying the initial graph. However, adding new nodes
may induce somme difficulties when computing the watershed transformation in order to
obtain the first level of hierarchy. In fact, the new nodes may belong to the watershed lines.
However, these new nodes do not correspond to contours but to catchment basins. This
situation occurs when we meet “watershed zones” (see below). We shall see in the sequel
how to cope with these particular configurations.

4.5. The hierarchical image
A great advantage of this planar graph lies in the fact that it is simpler to introduce the

notion of hierarchical image.

The hierarchical image is built starting from the gradient-mosaic image (or from the
valued gradient watershed) by simply filling each catchment basin with a constant grey value
equal to the valuation of the new nodes added in the planar graph (valuation of the minimal
arc surrounding the catchment basin, Fig. 9).

This hierarchical image can be considered as an image representation of this planar
graph. This representation is isomorphic to the planar graph representation as summarized by
the following scheme:

14



Hierarchical image
q

Planar 2D graph
WTS (hierarchical image)vWTS (initial graph)q

Initial 3D graph
q

Initial gradient-mosaic

Therefore, computing the watershed transformation of this hierarchical image
produces (up to the restrictions induced by the watershed zones already mentionned) the next
hierarchical level. Both representations, planar graph or hierarchical image, are equivalent
with regard to the watershed transformation.

(b)(a)

(e)(d)(c)
Fig. 9: First definition of the hierarchical image, built by filling in the initial catchment
basins of the gradient-mosaic image (b) with values corresponding to their valuation in the
2D planar graph (a). Initial mosaic image (c), gradient-mosaic (d) and hierarchical image
(e). The differences between these two last pictures are not obvious to see (look at the
nostrils, mouth and eyes).

Before introducing a simple way to compute the hierarchical image, let us come back
to the reason why this transformation is called “Waterfall transform”.

4.6. Waterfalls, you said waterfalls?
The following illustrations aim at explaining the name of this transformation. Indeed,

in the sequel, we shall consider each catchment basin and analyse how this catchment basin
pours into the adjacent ones when water has entirely filled in its corresponding lower
catchment basin (LCB).

15



(d)

(c)

(b)

(a)

Fig. 10: Observation of the flooding process by waterfalls from CB to CB. (a) Initial image
(m1, m2 and m3 are particular minima, but they are not the only minima of the initial image),
(b) watershed of the initial image, (c) symmetrical waterfalls from CB1 and CB2, (d)
waterfalls are still symmetrical.
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(h)

(g)

(f)

(e)

Fig. 10 (continued): (e) Non symmetrical waterfalls between the catchment basins CB1-6 and
CB7,  (f) final result with the preserved watershed lines. (g) The process needs to be started
from some specific minima to work. (h) An equivalent result is obtained by performing the
watershed on a hierarchical image built by filling the initial LCBs.

Let us consider a function f (Fig. 10a) and its associated watershed transformation
(Fig. 10b). It is not necessary that this function be neither a gradient-mosaic image nor a

17



valued watershed. Some f catchment basins are numbered from 1 to 9. Let us see what
happens when flooding the catchment basin CB1 (the flooding source is the minimum m1).
When flooding CB1, an overflow towards CB2 occurs. If now we fill up CB2, its first
overflow occurs towards CB1. In this case, the overflows or waterfalls are symmetrical.
Therefore, the watershed arc separating these two catchment basins can be removed and the
associated lakes (they correspond to the lower catchment basins LCB1 and LCB2) can be
merged (Fig. 10c).

When the flooding process goes on, water coming from the merged basins CB1 and
CB2 invades CB3 which, in turn, when flooded, pours into CB1 and CB2 union. Here again,
the waterfalls are symmetrical and CB3 is attached to the flood (Fig. 10d).

Step by step, and because, in each case, waterfalls are symmetrical, all catchment
basins numbered from 1 to 6 are merged.

But when the flood pours into CB7 (Fig. 10e), the waterfall produced by the overflow
coming from CB7 does not fall into CB5. Waterfalls are no longer symmetrical. The
watershed line separating CB7 and the catchment basins CB1 to CB6 must be preserved.

Finally, all preserved watershed lines build the next hierarchy level (Fig. 10f).

Note that the symmetry of the waterfalls does not hold if we start the flooding from
any minimum (Fig. 10g ). In this case, the flooding fills the LCB corresponding to the
minimum and, if the process goes on, the adjacent LCBs will be filled up until we reach the
catchment basins separated by minimal arcs (these catchment basins correspond to the
minima m1 and m’1 in Fig. 10c). We easily see that we get the same result if we perform the
watershed of a new function h defined from the initial function f where f  LCBs are given the
value of their corresponding FOZ (Fig. 10h). But we have already met this function: it is the
hierarchical image.

4.7. Building the hierarchical image, a first algorithm
This leads to the general definition of the hierarchical image (or function) hf of a

function f. Let f be a function and {CBk} its catchment basins. Define the hierarchical image
hf of f at each point x as the following function:

- When , lower catchment basin of CBk, hf(x) = fk, where fk is the value of f on thex cLCBk
FOZ corresponding to CBk.
- If , hf(x) = f(x)x"LCBk

Building the hierarchical image seems to be a clumsy process. However, there is a
simple way to achieve it based on the dual geodesic reconstruction [3].

Suppose, at a first step, that we can determine all FOZ of all f catchment basins. Let
us define a marker function g as follows:

- If a point x belongs to a FOZ of f, g(x) = fFOZ where fFOZ is the value of f on the FOZ (it’s a
constant value)
- If x does not belong to a FOZ, g(x) = max where max is the maximum possible value which
can be given to f (for instance, max = 255 if f is a greytone image taking its values between 0
and 255).

Then the hierarchical image hf can be defined as:
, where R* is the geodesic dual reconstruction of g above f (Fig. 11).hf = Rf

&(g)
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Fig. 11: The initial image (in white) and function g (in red) used in the dual geodesic
reconstruction which fills the lower catchment basins.

4.8. A direct FOZ extraction? 
Getting the FOZ from the hierarchical image is possible, albeit not so straightforward.

For each catchment basin, its FOZ is made of the points of its boundary with the same value
as the valuation of the catchment basin itself in the hierarchical image. Therefore, the
following procedure enables their selection:

- Take restriction h’ to the interior of the catchment basins of the hierarchical image h:
h∏(x) = h(x) if x"Wf

- Dilate h’
- The points x of Wf such that  belong to a FOZ.[h∏(x)] = h(x)

Note that this procedure, when applied to the 2D hierarchical graph defined above, is
the restriction to the arc points of a threshold at value 0 of an elementary top-hat transform
applied to the 2D graph (Fig. 12).

Fig. 12: Extraction of FOZs on the 2D hierarchical graph by a top-hat transform (see text).
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Let us suppose, indeed, that point xi is a FOZ of catchment basin CB0. Therefore, we
can write:

v(xi ) = v(x0) m v(x1)
where v stands for the valuation of the point (the height of the corresponding arc).
The elementary erosion at point xi is equal to:

 (xi ) inf[v(x0), v(x1)] = v(x1)
In the same way, the erosions at points x0 and x1 are given by:

(x0) = v(x0) ; (x1) = v(x1)
So, opening γ is equal to:

(xi ) = [ (xi )] = sup[v(x0), v(x1)] = v(x0)
The top-hat transform at point xi is equal to:

TH(xi ) = v(xi ) − (xi ) = 0

Conversely, suppose that xi is not a FOZ. Then, we have:
v(xi ) > v(x0) and v(xi ) > v(x1)

The erosions fulfil the following inequalities:
(xi ) < v(xi ) ; (x0) < v(xi ) ; (x1) < v(xi)

Opening γ is therefore less than v(xi) and consequently, we have:
TH(xi ) = v(xi ) − (xi ) > 0

4.9. A simpler contruction of the hierarchical image
However, the previous way for building the hierarchical image is quite difficult to

handle because it needs the construction of the FOZs which is a rather tedious task.
Fortunately, building the FOZs is not necessary. The watershed lines Wf can be used instead.
The final result will be the same because, for any catchment basin CBk, there is at least one
point of the watershed lines surrounding CBk which belongs to CBk FOZ. Moreover, this
point is at the lowest altitude of all points of Wf surrounding CBk (Fig. 13).

Fig. 13: Building the hierarchical image by a geodesic reconstruction using the valued
watershed. Extracting the FOZ and building the previous function (in red) is not necessary.
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Finally the construction of hf, f hierarchical image, is achieved by the following steps:
- Define g:
g(x) = f(x) if and only if , watershed of fxcWf

g(x) = max if not
- hf = Rf

&(g)

The first level of  f hierarchy corresponds to  hf watershed [3].

4.10. How to prove that the waterfall algorithm and the hierarchy algorithm
produce the same result?

Consider the case of a gradient-mosaic image (the illustration is simpler but still
general). Let CB be the catchment basin containing the minimal arc (or connected set of arcs)
m1 and obtained by the hierarchy algorithm based on the watershed of the hierarchical image
(Fig. 14). Let CB’ be the catchment basin obtained by the waterfall algorithm described
above. Suppose that  and moreover that CB ⊄ CB’ and CB’ ⊄ CB. Therefore, thereCB !CB∏

exists at least one catchment basin CBi of the initial watershed transform belonging to CB
and not to CB’. In the same way, there exists at least one initial catchment basin CBk

belonging to CB’ and not belonging to CB. Moreover, this catchment basin must be adjacent
to CB. Its symmetrical overflow occurs toward a catchment basin CBj belonging to CB ∩
CB’. CBj necessarily exists. Otherwise no catchment basin of CB ∩ CB’ could pour into
CB’\CB and we would have CB’⊂ CB. As the arc Cjk separating CBj and CBk also belongs to
CB boundary, its valuation is higher than the infimum of the valuations of the other arcs
bording CBj and CBk. But this is contradictory with the fact that overflows from CBj to CBk,
or from CBk to CBj, occur through Cjk since the arc cannot belong to a FOZ of either CBj or
CBk. Consequently, CBk is included in CB. By iterating step by step this reasoning for all the
remaining catchment basins of CB’\CB, we conclude that CB’⊂ CB.

Fig. 14: catchment basin configurations used to show that the waterfall algorithm and the
hierarchy algorithm are identical (see text for further details).
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Similarly, consider the catchment basins CBi belonging to CB\CB’ and adjacent to a
catchment basin CBl included in CB’ such that the valuation of arc Cil separating CBi and CBl

is in the range between the infimum of the valuations of the other arcs bording CBi and the
infimum of the valuations of the other arcs bording CBl. Such a catchment basin must exist
otherwise there would be no flooding path from CB∩CB’ and CB\CB’ which is contradictory
with the hypothesis that both CBi and CBl belong to CB. But conversely, this invalidates the
fact that Cil belongs to a watershed line preserved by the waterfall algorithm because its
valuation must be higher than the valuations of CBi and CBl FOZ. Thus, CB and CB’ are
identical.

4.11. A hierarchisation by simply filtering FOZs?

(e)(d)(c)

(b)(a)

Fig. 15: Hierarchisation process by a simple sorting of FOZs. (a) Example of FOZ, (b) initial
watershed, (c) FOZs corresponding to the initial catchment basins (in green), (d) wrong first
level of hierarchy obtained by removing the arcs which contain a FOZ, (e) watershed zones
in yellow.

From the above description of the waterfall algorithm, one could believe that the only
arcs of the initial watershed which are removed are those which correspond to a FOZ (see
Fig. 10). As the direct extraction of FOZs is possible, it would not be necessary to compute
the successive watersheds to obtain the segmentation upper levels. Unfortunately, this
statement is not true since special catchment basins called Watershed Zones (WSZ) have to
be taken into account (Fig. 15). In this configuration, the watershed line of the hierarchical
segmentation occurs inside the catchment basin. The catchment basin itself may be
considered as a watershed zone. In the 2D graph representation, the corresponding node
belongs to the nodes which have been added in the catchment basins to the initial 3D graph
(Fig. 15b ). But there exist FOZs on each side of these WSZ. Therefore, if the previous
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algorithm was applied , these WSZ would disappear together with the corresponding
watershed line and the result of the hierarchical segmentation would be false.

The bad news is that there is absolutely no other way to get these WSZ but to build
the hierarchy upper level!

5. Properties and defects of the Waterfall Transform

The waterfall transform can be iterated to produce a sequence of hierarchical
segmentations. Starting from an initial valued watershed s0 (the first level of hierarchy), this
iterative process consists in generating the first hierarchical image h0 and to compute the
watershed transform of h0 to obtain the next level of hierarchy s1, then all the following levels
(Fig. 16):
si = w(h

i
-1)

We have obviously: 
id∞
si d

Fig. 16: General scheme of the hierarchisation process.

(f)(e)(d)

(c)(b)(a)

Fig. 17: Successive hierarchical levels produced by the waterfall algorithm of the gradient
(b) of the original image (a). (c) Initial watershed, (d) 2nd level of hierarchy, (e) third level,
(f) last level always empty.
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Fig. 17 shows an example of a hierarchical segmentation sequence. In fact, in
practice, the “infinity” is reached rapidly and number N of hierarchical levels is quite low.

(f)(e)

(d)(c)

(b)(a)

Fig. 18: Successive hierarchical levels, (b) to (f), produced by the waterfall algorithm
applied to image TOOLS (a). Most of them seem to be spoilt by many defects (significant
contours removed) so that the higher levels are really strange.

Unfortunately, many problems arise when using the waterfall transformation.
The main problem with the iteration comes from the fact that it is very difficult to

detect a “good” level of hierarchy (provided that it exists). Depending on the application, it is
sometimes possible to extract a satisfying segmentation. For instance, in the above example
(Fig. 17), the road can be extracted by analysing the shape and size of the catchment basins
appearing at each step of the hierarchy [22]. However, in most cases, this process is too
complex, especially when no a priori information on the objects to be detected is available.

The main (and maybe unique) advantage of the waterfall algorithm lies on the fact
that it does not need any parametric input. No parameter controls the hierarchisation process
since the waterfall transform is just a marker-controlled watershed applied on a graph defined
by the initial watershed transform, with a marker set made of minimal arcs.
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Conversely, many defects affect the waterfall transformation. Some of them come
directly from algorithmic biases of the watershed transform. Although they are rather
annoying, they can be reduced and, sometimes, avoided.

Nevertheless, the major defect is not due to algorithmic implementations but to the
fact that, on the one hand, the watershed transform is used to build the hierarchy and, on the
other hand, that the waterfall transformation is non parametric. This major defect has been
called the “waterfall transformation shortsightness”. To illustrate this problem, let us consider
the successive hierarchies obtained by applying successive waterfalls to the initial gradient
watershed of the TOOLS image in Fig. 18.

Five successive hierarchies appear in the hierarchisation process. However, it is
obvious that, very soon, the different hierarchy levels seem to be biased as some contours
remain in the hierarchy whilst some others are removed although they are very similar in
contrast and importance to the preserved ones.

5.1. A few words about the algorithmic biases
It is well known that most WTS transforms, when performed on a digital image,

present various defects. They are due to the fact that the algorithms are not isotropic (the
flooding process is not performed in all directions at the same time). This leads to different
results depending on the algorithm used even if we start from the same initial image. Some
algorithms are so biased that the idempotence property of the watershed transform is not
fulfilled. That is, if we start from an initial valued watershed function of an image f and if we
apply a watershed transform on it, the result is not identical:

w )w(f) = w[w(f)] !w(f)

This is a crippling defect. As a matter of fact, the successive hierarchies si produced
by the waterfall transformation must fulfil the following inclusion rule:

 or  (hierarchies supports)≤i, j , i > j : sj [ si Sj _ Si
A weaker inclusion condition is also possible (see in the sequel):

 (s0 is the initial watershed transform)≤i > 0 : s0 [ si
Therefore, any watershed algorithm which is not idempotent must be rejected.

               (a)                          (b)                        (c)                   (d)                     (e)
Fig. 19: Taking into account the WSZ. (a) Segmentation Si, (b) initial segmentation Si+1, a
watershed line appears inside a previous catchment basin CB, (c) extraction of CB (it is a
WSZ) and incorporation in Si+1, (d) in order that Si+1⊂ Si (e).

Another defect comes from the WSZ already mentionned above. The watershed
transformation of the hierarchical image may produce (and almost surely does) contours
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inside the previous catchment basins (Fig. 19). In order to cope with this problem and
preserve the inclusion of the successive hierarchies, the inside contours must be removed and
replaced by the WSZ contours. Note that this correction could be avoided if the watershed
transform preserves the inclusion of the successive segmentations. However, few watershed
implementations obey this rule. It is the case, nevertheless, for the watershed defined on
graphs. Beside its speed, it is another advantage of this implementation.

5.2. Note about the illustrations
For the sake of simplification, mono-dimensional illustrations will often be used in

the next sections. However, these illustrations must be handled carefully and must be
considered as “sections” passing through the FOZ (when they exist) of a 2D valued
watershed function (Fig. 20).
 

(c)(b)

(a)

Fig. 20: Mono-dimensional representation of a segmentation (a) and of its hierarchical
image (b). This representation must be considered as an “unfurled” section of a 2D image,
this section passing necessarily through the FOZs (c). It is important to be sure, when using
this simplification, that no ambiguity remains.

5.3. The major defect of the waterfall transform
The waterfall shortsightness can be explained by means of a simple example (Fig.

21). Let us consider the ith level si of a hierarchical segmentation (Fig. 21a). Getting the level
i+1 consists in building the hierarchical image hi (Fig. 21b) and computing the watershed of
hi. The result si+1= w(hi) corresponds to the (i+1)th level of the waterfall hierarchy (Fig. 21c).
The contours which are eliminated at the end of the process are in grey.

Let us define altitude ai(Ck) (or height) of a contour Ck of hierarchical segmentation si

presenting a FOZ Zk as the value taken by si on this FOZ (it is a constant value):
ai(Ck)=si(Zk)

Among the removed contours (they all present a FOZ by definition), three different
types can be distinguished (Fig. 21d):
1) contours Ck whose altitude is higher or equal to hi+1 , the hierarchical image corresponding
to the segmentation si+1.
2) contours of altitude lower than hi+1 but closer to hierarchical image hi+1 than to 0.
3) finally, contours whose altitude is close to 0.
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(d)(c)

(b)(a)

Fig. 21: Contour removal during one step of the waterfall transformation. (a) segmentation
si, (b) hierarchical image hi, (c) segmentation si+1 produced by hi watershed (in grey, removed
contours), (d) different types of removed contours, when compared to hi+1.

It is obvious that only the removal of this latter type of contours is legitimate. As a
matter of fact, type-1 contours are higher than contours surrounding the catchment basin in
which they are embedded. Type-2 contours are indeed lower than the hierarchical image.
However, if their altitude is close to this hierarchical image (that is close to the altitude of a
remaining contour) they should be kept.

6. Improving the waterfall transform

6.1. A first approach
From this analysis, any enhancement strategy must therefore be based on the

preservation of type-1 and type-2 contours whereas type-3 ones are legitimately removed.
This contour sorting is made through the comparison of contour altitudes of a given
hierarchical segmentation with the altitudes of the catchment basins of the current
hierarchical segmentation (that is the values of the hierarchical image).

The waterfall transformation scheme could then be modified as such:

However, this is not sufficient. Indeed, in most cases, the hierarchisation procedure
will stop very rapidly because there will be no difference between the successive hierarchical
images as illustrated in Fig. 22.

In order to avoid this freezing, the minima of the new hierarchical image h’i+1 must be
identical to the minima of hi+1. A simple way to achieve this consists in modifying the altitude
of type-2 contours. Their altitude takes the hierarchical image value (Fig. 23).
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(d)(c)

(b)(a)

Fig. 22: Reintroducing type-2 contours is not sufficient. If their height is not modified, the
hierarchisation process may stop, because the hierarchical image always presents the same
minimum.(a) Initial segmentation and hierarchical image, (b) next level of segmentation, in
green retained contours without modification of their heights (in red, next hierarchical
image), (c) the next hierarchical image shows the same minimum, which leads to an
unchanged hierarchical image (d). 

Therefore, this first procedure of waterfall improvement is the following, at each level
i of the hierarchy:

- Compute the hierarchical image hi, from the current segmentation si

- Compute the initial segmentation si+1 
si+1 = w(hi)

- Compute the initial hierarchical image hi+1, from si+1 

- Compare the altitude ai(Ck) of the contours Ck belonging to inf(si,s0) to hi+1 

- If , then Ck is preserved and added to si+1 (type-1 contour) (ai+1 = ai)ai(Ck) m hi+1

- If , the initial altitude of the contour on s0, a0(Ck), is compared to hi+1:ai(Ck) < hi+1

- If (the altitude of the initial contour is closer to the currenta0(Ck) > (hi+1 − a0(Ck))
hierarchical image than to 0), this contour is also preserved (type-2 contour). But,
before adding it to si+1, its altitude is modified:

ai(Ck) = hi+1

- If not (type-3 contour), it is removed:
ai(Ck) = 0
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(f)

(e)

(d)

(c)

(b)

(a)

Fig. 23: The different steps of the improved waterfall transformation. (a) Initial segmentation
si, (b) initial hierarchical image hi, (c) initial segmentation si+1 (black contours) and
hierarchical image hi+1, (d) in grey, removed contours, (e) in green, restored contours, the
height of type-2 contours is modified and equal to the value of the hierarchical image hi+1, (f)
Final segmentation s’i+1.
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(k)

(j)

(i)

(h)

(g)

Fig. 23 (continued): (f) Final segmentation s’i+1, (g) next step, si+1 is equal to s’i+1 and
corresponding hierarchical image hi+1, (h) initial segmentation si+2, (i) restored contours (in
green) and the removed one (in grey) and hierarchical image (in red), (j) the grey contour is
removed because its height in s0 (black contours) is not sufficient compared to hi+2, (k) final
segmentation s’i+2.

Two important points of this procedure must be emphasized:
- From one hierarchical level i to the next one, only the contours still present at level i are
considered for the comparison of their heights with the initial hierarchical image hi+1. This
restriction is insured thanks to the operation inf(si,s0).
- The initial altitude a0(Ck) of the contours Ck is always used in the comparisons. Another
option would be to compare the hierarchical image hi+1 with the preceding altitude of  type-1
and type-2 contours ai(Ck), altitude possibly modified during the previous steps. However,
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this option could lead to an excessive increase of the initial altitudes, especially when
staircase structures occur in the successive hierarchies (Fig. 24).

(d)(c)

(b)(a)

Fig. 24: What is likely to happen when comparing the previous contours si (instead of s0) in
the case of a staircase configuration.(a) Initial segmentation, we consider the evolution of the
second contour on the left. (b) Next level of hierarchy, in red, hierarchical image used for the
comparison, in green, contour kept and modified. (c) Next step, the height of the remaining
contours is continuously increasing and, at the end, it will be much greater than the double
of the original one (d).

Contrary to the initial waterfall transformation which always ends with an empty set,
in the enhanced algorithm, the last hierarchical segmentation level sN is never empty. This
can be easily proved by analysing the final step of the procedure. Indeed, suppose that,
starting from the final segmentation s’i at level i, we compute the initial watershed si+1 by
applying the watershed transform to the hierarchical image hi:

si
∏ d hi d si+1 = w(hi)

Suppose also that si+1 = 0. Level i+1 corresponds to level N where the segmentation is
empty in the initial waterfall transform. Therefore, we have:

hi+1 = 0
And:

s’i > hi+1 
So, all contours of s’i are added to si+1:

s’i+1 = s’i = s’N

The final segmentation is not empty.

It is important to note that this procedure (contour reintroduction and height
modification) does not modify the set of minima. In other words, min(hi) = min(h’i). Thus,
the successive initial segmentations si are identical, whether the classical waterfall transform
or the enhanced one (with contours re-introduction) are used.

We may notice that raising up the contours is just a “trick” to avoid the process
freezing (otherwise these contours, with their initial valuations, would be minima and the
hierarchy process would be stalled). We can equally consider the minima of the hierarchical
image hi+1 as markers of the next watershed transform. In this approach, there is no contour
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raise anymore. Nevertheless, they are preserved and added to the next hierarchy as long as
their height is closer to the hierarchical image hi+2 than to 0. It is totally equivalent to their
raise up to the double of their initial height.

There exists a variation of the previous algorithm (Fig. 25). At step i, the following
procedure is applied:

- si+1 is computed from hi

- The hierarchical image hi+1 is computed 
- The altitude of the contours belonging to s0 (that is the initial contours) is compared to the
supremum of hi and hi+1, sup(hi,hi+1).

(d)(c)

(b)(a)

Fig. 25: Variation of the previous implementation, using sup(hi,hi+1) (d) instead of hi+1 (c). (a)
Segmentation si, (b) hierarchical image hi.

Two differences exist compared to the previous implementation. In the one hand, the
comparison of the contours is made with sup(hi,hi+1). On the second hand, the initial contours
s0 are used in this comparison. Nevertheless, we can prove that we get the same result.
Firstly, the contours of the segmentation si which have been removed in the previous step will
not appear during the current step. They have been suppressed because their height was not
sufficient compared to hi. Consequently, it will not be sufficient compared to sup(hi,hi+1).
Secondly, it is obvious that the sorting of the contours, at the current step, will be identical,
whether they are compared to hi or to sup(hi,hi+1).

Note that the algorithm works also if we use  for the comparisons.
0[j[i+1
sup (hj )

Note also that, at each step si, a new level of hierarchy does not necessarily appear (no
contour may be removed). A new level appears only when at least one contour is suppressed.

Fig. 26 shows the result of the algorithm for two pictures, TOOLS and CAR. If, for
the last image, the result seems to be of good quality, the final segmentation of TOOLS
image remains too important with a rather low number of hierarchical levels.
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Fig. 26: Final hierarchy provided by the enhanced waterfall transformation of CAR and
TOOLS images.

How can this phenomenon be explained? In fact, it is due to two factors: the
appearance of maxima in the hierarchical image on the one hand, and the use of the
watershed transform, which is a lower semi-homotopic operator, on the other hand.

When closed regions or structures appear, they correspond to maxima (or
domes/summits) in the hierarchical image (Fig. 27). These maxima are not taken into account
in the construction of the next segmentation level because this level is obtained through a
WTS transform. This transform is a lower semi-homotopic operator (for further details on
semi-homotopic transforms, see [2]).

Consequently, as soon as these maxima appear, they do not contribute to the
hierarchical image building. Therefore, the standard algorithm stops very rapidly because the
hierarchical image is made of a simple catchment basin containing many maxima.

6.2. Definition of maxima and of islands in the hierarchical image
The definition of maxima among the catchment basins belonging to the segmentation

si uses a geodesic context. These maxima, indeed, are defined in relation to si+1 catchment
basin which contains the si catchment basins. A si catchment basin included in a si+1

catchment basin is said to be maximum in the si+1 catchment basin where it is embedded in, if
there is no ascending path in the hierarchical image hi starting from this catchment basin and
joining any other si catchment basin included in the same si+1 catchment basin (Fig. 28).
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(e)(d)

(c)(b)(a)

Fig. 27: The watershed transform does not take into account islands (a) which are flooded
(b) and disappear (c). Islands are likely to appear in the hierarchical images (d) during the
hierarchisation process (e).

(b)(a)
Fig. 28: Maxima in the hierarchical image. (a) Segmentation si, (b) hierarchical image and
maximal catchment basins (segmentation si+1 in red). Paths starting from these catchment
basins are all descending ones.

Remark1
From si to si+1, there always exists more than one si catchment basin included in any

si+1 catchment basin (obvious).
This definition uses every si+1 catchment basin as a geodesic space to determine which

si  catchment basin embedded in the corresponding si+1 catchment basin are maxima.
 Remark 2

Each maximum is not necessarily marking an island. In order to be the maximum of
an island, this maximum must be separated from (non adjacent to) the segmentation si+1 (Fig.
29). This means that, at some time of the flooding process, this maximum must be (and will
be) surrounded by water, as it is an island classical definition (land surrounded by water).
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(d)(c)

(b)(a)

Fig. 29: The different kinds of maxima in the hierarchical image (a). Maxima in blue (b),
island in purple (c), maximum-island in red (d), this maximum being non connected to the
segmentation si+1.

(d)(c)

(b)(a)

Fig. 30: Definition and extraction of an island. (a) Section of an island, (b) first
reconstruction, its maximum being the marker function (in purple), (c) second reconstruction,
the marker function corresponds to the initial function parts which have not been entirely
rebuilt in the previous step, (d) island and lower catchment basin are dual notions with
respect to the inversion.
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6.3. From maxima to islands
It is not easy, from the knowledge of its maximum to define accurately the extension

of the corresponding island simply because its area will depend on the flooding height (see
Fig. 27). However, it is possible to define the maximal extension of an island through a
double reconstruction: firstly, from its maximum, secondly, from the result of the first
reconstruction (Fig. 30). However, this is working for extracting a single island at once only.
In fact, the notion of an island maximal extension is the perfect dual of the lower catchment
basin notion, as it is illustrated in Fig. 30d. Therefore, islands can be obtained in the same
way as LCB are built, using a reconstruction from the watershed.

7. P algorithm

So, reintroducing the maxima seems to be compulsory to avoid a premature stop of
the hierarchical process. However, we shall see, in the next chapter, that this reintroduction
most often does not provide good results and that a more refined process must be designed to
obtain satisfactory segmentations.

7.1. Reintroducing the maxima, a first tentative approach
A first approach for reintroducing the maxima simply consists in detecting them in the

current hierarchical image hi and in adding them to the segmentation si+1. This produces a
new segmentation s’i+1 = sup(si+1,ci) where ci are the valued contours of the maxima detected
in the hierarchical image hi (Fig. 31). The hierarchical image hi+1 is then built from s’i+1.
Thanks to the reintroduction, the maxima-islands may contribute to the construction of hi+1.
Note that, in this procedure, the maxima are not systematically reintroduced (they may
disappear when they are absorbed by the successive hierarchical images).

(d)(c)

(b)(a)

Fig. 31: Principle of the reintroduction of maxima. (a) A maximum-island appears in the
segmentation si (bracketed region indicated by a green star), (b) initial segmentation si+1

where the maxima-islands are reintroduced, (c) corresponding hierarchical image, (d) the
hierarchical image obtained when the maxima are not reintroduced.

Fig. 32 shows the result of this reintroduction applied to images TOOLS and BIRDS.
If, on TOOLS image, the result seems very promising, it is not the case with BIRDS image.
Note also that, in both cases, the number of intermediary hierachical levels is quite high. This
result can be easily understood when there exists high maxima in the gradient image (these
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maxima correspond to highly contrasted regions in the original image). In this situation, the
algorithm tends to reintroduce these maxima at each step of the process. At the end, the final
hierarchical image is built from these maxima and many contours are eliminated because
their contrast is too low compared to the height of these maxima.

(b)(a)
Fig. 32: Result of the reintroduction of maxima-islands applied to TOOLS (a) and BIRDS (b)
images. Some highly contrasted features in BIRDS image explain this result. 

Note that this procedure does not prevent some maxima from definitely disappearing
during the process. Note also that their reintroduction whenever it is legitimate leads to a
great number of intermediary hierarchical levels.

7.2. P algorithm
Another way for reintroducing maxima (but not only maxima!) has emerged by

chance (it is another example of serendipity1) and is the (fortunate) consequence of a bug
which happened when implementing the enhancement of the waterfall algorithm. It has been
described previously and will be referred to as “standard algorithm”.

In order to explain the tiny difference between the standard waterfall algorithm and
this new algorithm called from now on P algorithm2, let us come back to the different steps of
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2 This algorithm has been named “P” because many discoveries made by serendipity start
with a P: Pittical, Polyceramic, Polymethylene, Polycarbonates and obviously... Penicillin!

1 The word Serendipity was introduced by Horace Walpole in 1754 to describe the fortunate
experiences lived by the heroes of a persian fairy tale “The Three Princes of Serendip”:

“They were always making discoveries, by accidents and sagacity, of things which they
were not in quest of”.



the standard waterfall algorithm as they have been described above and let us emphasize the
difference (in bold):

- Compute the hierarchical image hi, from the current segmentation si

- Compute the initial segmentation si+1

si+1 = w(hi)

- Compute the initial hierarchical image hi+1, from si+1

- Compare the altitude ai(Ck) of the contours Ck belonging to s0 [instead of inf(si,s0)] to hi+1

- If , then Ck is preserved and added to si+1 (type-1 contour) (ai+1(Ck)=ai(Ck))ai(Ck) m hi+1

- If , the initial altitude of the contour on s0, a0(Ck), is compared to hi+1:ai(Ck) < hi+1

- If  (the altitude of the initial contour is closer to the currenta0(Ck) > (hi+1 − a0(Ck))
hierarchical image than to 0), this contour is also preserved (type-2 contour). But,
before adding it to si+1, its altitude is modified:

ai(Ck) = hi+1
- If not (type-3 contour), it is removed:

ai(Ck) = 0

So, the only difference between the two algorithms lies in the fact that, in P algorithm,
all the initial contours (contours of s0) are compared, at each hierarchical level, to the
hierarchical image hi+1. In the standard algorithm, only the contours which still remain in the
segmentation si are compared to hi+1 (their initial height is compared, this is why inf(s0,si) is
used). On the contrary, in P algorithm, this slight modification leads to huge consequences:
the re-introduction of contours which have already been removed in the previous steps. Some
of these contours (not necessarily all of them) were inside maxima-islands and, consequently,
re-introducing them will allow these maxima to contribute to the construction of the next
hierarchical image and, therefore, to participate to the comparisons and the selection of the
contours kept or eliminated (maybe temporarily) in the next level of hierarchy.

(c)(b)(a)
Fig. 33: Last hierarchical level (level 8) produced by P algorithm (b) applied on the
gradient-mosaic of image TOOLS (a), compared to the result obtained with the standard
algorithm (level 4) (c).
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Before going further in the details of P algorithm, let us illustrate its behaviour on
TOOLS image (Fig. 33). Compared to the standard algorithm, this operator provides more
hierarchical levels and comes to an end with a visually very good result. As expected, some
contours are oscillating through the different hierarchies.

7.3. P Properties
In order to understand the mechanism of this algorithm, different questions must be

addressed:

- What are the oscillating contours?
-  What is the oscillation period? In TOOLS example, this period seems to be equal to 1 (the
contour disappears then reappears immediately) but we shall show in the sequel that this
period may be very long (at least in theory).
- Knowing that an oscillation may occur, an important issue is to make sure that this
oscillation will stop after a finite number of iterations and that P algorithm will produce a non
empty final hierarchy.

The following table summarises the only difference between the standard and P
algorithms:

Table 1

We have already indicated that there are two variations of the standard algorithm. In
fact, they are three, the third one is redundant compared to the others.

We see that this difference lies in the functions which are used to select the contours
to be analysed on the one hand and to compare them on the other hand. So, it is important to
keep in mind the fact that, as soon as the couple (segmentation, hierarchy) of functions has
been chosen among the two doublets [hi+1, sup(hi,hi+1)] and [s0, inf(s0,si)], only two algorithms
are possible, P algorithm being the most specific one.

Another important point must be emphasized: if, for some images (TOOLS for
instance), the results of the standard and P algorithm are quite different, for some others, only
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slight changes can be found (Fig. 34) in the final hierarchical level (although some
differences may apear in the intermediary levels). This means that some image structures are
more or less indifferent to P algorithm and its reintroduction of contours.

(c)(b)(a)
Fig. 34: Last level of hierarchy produced by the standard algorithm (b) and by the P
algorithm (c) for the CAR image (a). 

Which kinds of contours are reintroduced? The candidates are contours of s0 which do
not remain in si and which are in parts of the image where hi+1<hi. Obviously, contours which
are embedded in maxima-islands may be reintroduced, as illustrated in Fig. 35.

This configuration explains the different results obtained when applying the standard
and P algorithms to TOOLS image.

But contours inside potential maxima-islands are not the only candidates for
oscillation in P algorithm. Other contours can be concerned, as shown in Fig. 36 . In this
case, contours embedded in catchment basins standing against another catchment basin can
reappear because the hierarchical image at level i+1 is lower than the hierarchical image at
level i. It is a matter of fact, however, that, in this configuration, the standard algorithm and P
algorithm are equivalent. They produce the same final hierarchy, although the intermediary
ones, here again, may be different.

Then, regarding the standard and P algorithms, image structures can be classified in
two extremal categories:

- At one end, the first one corresponds to a classical mosaic structure where the lower levels
of hierarchy are simply embedded in the higher ones (see Fig. 37a).

- At the other end, the second one corresponds to an image structure made of maxima-islands,
some of them possibly intricated as russian dolls (Fig. 37b).

In the first case, there is no difference between standard and P algorithms. In the last
ones, differences between the two algorithms are dramatic.

Between these two opposite configurations, there exists a large range of structures
where standard and P algorithms provide different results.
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(j) s’last (P algorithm)(i) s’i+1 (P algorithm)

(h) s’last (standard algorithm)(g) s’i+1 (standard algorithm)

(f) s’i+1 (P algorithm)(e) si+1

(d) hi(c) si

(b) hi-1(a) si-1

Fig. 35: Contour reintroduction in P algorithm. (a) Hierarchical segmentation si-1, the
maximum-island has not appeared yet, (b) hierarchical image hi-1. (c) Initial segmentation si.
It is also the final one, since no contour is added (same result for standard and P
algorithms). (d) Hierarchical image hi. (e) Initial segmentation si+1. (f) All the initial contours
s0 are compared to the hierarchical image hi+1 (in red), the grey ones are removed, the green
ones are reintroduced (their height may be modified). (g) The standard algorithm does not
reintroduce the contour inside the maximum-island because it has disappeared in the
previous segmentation. (h) Last segmentation in the standard algorithm. (i) Segmentation si+1

in P algorithm. (j) Last segmentation in P algorithm.
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(c) s’i+1(b) si+1(a) si

Fig. 36: Contours which are not in islands may also be reintroduced in P algorithm . (a)
Initial segmentation, (b) next step, (c) the green contour is reintroduced.

(b)(a)
Fig. 37: Two extremal configurations with different behaviours with respect to the standard
and P algorithms. (a) In this configuration, only slight differences can be observed between
the two algoritms, (b) it is not the case in that configuration (many islands).

The standard and P algorithms act differently as soon as there exist parts in the image
where the hierarchical image hi+1 is lower than the previous hierarchical image hi. However,
as shown before, the final results will be different only if maxima-islands appear in the
hierarchical process, because the standard algorithm is unable to cope with maxima-islands
which, once they appeared, remain as maxima and therefore are removed by the watershed
transform used to obtain the initial next level of hierarchy. Reintroducing inner contours, as it
is made by P algorithm, allows, on the contrary, to keep these maxima (in fact because the
contour reintroduction makes them lose their status of maxima).

Fig. 38 shows how to generate configurations of catchment basins illustrating the
transition between the two extremal image structures described above.

Fig. 38: Transitions between two extremal configurations, example of evolution of the
topological status of catchment basins.
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7.4. The oscillation frequency
We have already claimed that the oscillation period in P algorithm, that is the number

of hierachical levels between two reappearances of a contour, is not necessarily equal to 1 but
can be much longer. This can be proved by exhibiting such a case, as in the following
illustration (Fig. 39):

(d)(c)

(b)(a)

Fig. 39: Example of an oscillation period larger than 1 in contour reappearance. (a) Initial
segmentation and corresponding hierarchical image (in red), (b) second level of hierarchy,
three contours on the left have disappeared, (c) third level of hierarchy, the green contour
remains in the segmentation, (d) fourth segmentation level, the green contours are kept but
the blue ones reappear. Three of them have an oscillation period larger than 1 (equal to 2).

Obviously, such a configuration is very complex and therefore very rare. This is the
reason why the 1-period is the most common one.

Fig. 40: Building a configuration where the oscillation period of contour C (purple contour
on the left) is equal to n. The circled values correspond to the number of intermediary
hierarchies inside the various catchment basins. In red, value of the hierarchical image at
step n-1. On the right, 2D representation of this configuration.

However, the fact that this oscillation period may be greater than one invalidates all
the attempts aiming at reintroducing immediately, in the hierarchical level where their
disappeared, the removed contours, by comparing their height with the next hierarchical
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image, since we are not sure that this next hierarchical image will be sufficient to determine
if the contour must be reintroduced or not. If the oscillation period was one, the height of
removed contours could be compared to the next hierarchical image in order to determine if
they should be reintroduced or not. However, since this period may be larger, all attempts at
reintroducing them immediately are vain.

Building a configuration where the oscillation period is as large as wanted is
theoretically possible. The principle of this construction is explained in Fig. 40. To insure
that the contour C will not reappear before the iteration n, we must have:

a(Ci ) > 2a(C), ≤i < n
since, at each step i of the hierarchisation, the value of the hierarchical image which control
the reappearance of C is equal to a(Ci) (a is the altitude of the contour).
We also suppose that:

a(Ci ) < a(Cj), ≤i > j
Although this condition is not compulsory, for the sake of simplicity, it has been

added in order to be sure that, at each step of hierarchy, the catchment basins configuration
will correspond to a staircase structure as shown in Fig. 40.  Thus, we are sure that C0 and Cn

will belong to the contours of the last initial segmentation sn. 
Then, at step n, the altitude of Cn must fulfil the inequality:

 a(Cn) [ 2a(C)
so that C may be reintroduced.

To summarize, the successive contour altitudes must fulfil the following inequalities
so that the period of the contour C be equal to n:

a(C0) > a(C1) > ... > a(Ci) > ... > a(Cn−1) > 2a(C) m a(Cn)
In the sequel, we shall use a similar configuration to prove the convergence of P algorithm.

Finally, the above example shows that there is a continuity between the standard
algorithm and P algorithm. Indeed, in the standard algorithm, the contour comparison is made
with the contour of inf(si,s0), whereas s0 is used, that is inf(s0,s0), in P algorithm. One could
therefore consider intermediary algorithms where the comparison would be performed with
inf(si-c,s0), c being a correction value controlling until which point, in the history of
hierarchies, the comparison  is carried out.

7.5. Convergence of the algorithm
Proving that P algorithm is converging, that is that the reintroduction of contours will

come to an end is a tricky task. In fact, it is not obvious that this assertion is true when the
working space is continuous (  for instance) and when the functions are defined in  (see‘2 ‘
below). So, in order to prove this convergence, we shall first assume that our working space
will be digital and that our functions (image, gradient, valued watershed, etc.) are bounded
and take integer values.  Then, the proof will be a “reductio ad absurdum”: we shall try to
build a configuration where a contour is oscillating indefinitely and we shall show that it is
just impossible. Moreover, for the sake of simplicity, we shall assume that the oscillation
period is equal to 1. The proof could be made by considering any period of oscillation but it
would be unnecessarily complicated.

Before analysing P algorithm convergence, an important problem must be addressed.
Putting aside the reintroduction of some contours, it seems that, even when dealing with
configurations where no reappearing contours are at stake, the final hierarchy produced by P
algorithm is equal to... s0!.
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As a matter of fact, P algorithm behaving as the standard one, will end up by
producing a hierarchical image hn equal to 0. But all the contours of s0 being compared to hn,
they will all reappear at the final step. In the standard algorithm, only the contours still
present at the previous step will remain.

Fortunately, a simple trick (another one!) allows to cope with this problem: just
process the reintroduced contours of P algorithm in the same way as type-2 contours are
processed in the standard algorithm. Contours which are reintroduced by P algorithm are
given the value of the hierachical image they have been compared to, whatever their original
altitude.

Nothing is changed regarding the reintroduction effects (reintroduced contours will
serve as seeds for the next watershed transform). But, at the end of the process, these
contours will be reintroduced with a height equal to 0 and, therefore, no unwanted initial
contour will appear. 

Note, however, that some specific configurations which initially presented several
minima in the hierarchical image may be reintroduced. But, all the reintroduced contours will
have the same values which means that this configuration will act as a single minimum. This
is not a problem, provided that the initial classification of hierarchies is preserved (see
below).  

(b)(a)
Fig. 41: Pair of oscillating contours. (a) Contour A in segmentation si (on the right) is
removed because its height is too low compared to hi+1 (in red). At the same time, contour B
(on the left) is reintroduced. (b)Next step, the contour B is suppressed but A cannot be
reintroduced because its height is too low compared to the hierarchical image. 

It is important to note that a pair of oscillating contours can never contribute
indefinitely to their mutual reintroduction. It is obviously the case when both contours are in
phase (a disappeared contour cannot, by any means, contribute to the reappearance of another
disappeared contour) but also when their phases are in opposition. In fact, the only
configuration which must be addressed is illustrated in Fig. 41. In this configuration, on the
one hand, the hierarchical image is built from the contour of the maximum-island containing
the reintroduced contour A and, on the other hand, its value propagates inside the other
maximum-island with a value compatible to the reintroduction of its internal contour B. If
both conditions are not fulfilled, this means that the possible reintroduction of the second
internal contour is not the consequence of the reintroduction of the first one. At the next step
of the process, the situation is reverted: the internal contour B has reappeared in the second
maximum-island whilst the contour A inside the first island has been removed. One could
believe that this  configuration toggle will continue indefinitely. However, it is not possible
because the value of the hierarchical image built from the second maximum-island is greater
than the height of the first one, and, therefore, this will not allow the reintroduction of the
first internal contour..
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(e) initial s2, h2

(d) s1, h1

(c) s0, h0

(b) relevant case(a) no oscillation

Fig. 42: Building a configuration with an ever oscillating contour. (a) First case, no
oscillation can be maintained, (b) second and relevant case. (c) Initial segmentation s0 and
hierarchical image h0. (d) Initial and final segmentation s1 and hierarchical image h1.
Contour C1 is eliminated (a(C1) < 2h1). (e) Initial segmentation s2 (contours C0 and C4) and
hierarchical image h2 (in grey, contours which are not present in this initial segmentation).

So, let us start with the configuration given in Fig. 42. The contour denoted C1 is at
stake and we shall try to make it oscillate when building the successive hierarchical levels.
The contour C1 is assumed to be inside a catchment basin CB0 which is not a potential
maximum-island. Therefore, everything on the left side of C0 has no influence on the
evolution of the hierarchies. Nothing would change if CB0 was a potential maximum-island
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since, in this case, the right side of the configuration would also appear on the left side by
symmetry.

(i)

(h)

(g)

(f)

Fig. 42 (continued): (f) Final segmentation s2 with contour C1 reintroduced. (g) Segmentation
s3 (two possibilities exist, C4 may be preserved or not).(h) Initial segmentation s4. (i)
Segmentation after n steps.

Note that two initial configurations are possible. The first one presents a set up of
catchment basins such that the initial hierarchical image h0 contains a unique minimum on the
right side of contour C2 (Fig. 42a).

Regarding the contour reintroduction, this configuration has no interest since the
value taken by h1 will be equal to C2 height and consequently C1 reintroduction will never
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happen. Therefore, we shall consider only the second configuration (Fig. 42b) where more
than one minimum appear allowing thus that the values of the different hierarchical images
are given by heights of contours on C2 right side.

The first step is straightforward (Fig. 42d). As expected, contour C1 disappears. Now,
in order to let this contour reappear in the next step, the value of h2, which is built from s2,
must be compatible with the reintroduction:

h2 [ 2a(C1)
This value is equal to the height of contour C4 (see Fig. 42e) which belongs to h1

watershed and is part of s2. So, in order to allow the reintroduction of C1, we must have:
0 < a(C4) [ 2a(C1)

Suppose that it is the case. C1 is then reintroduced and we obtain the final
segmentation of Fig. 42f.

If we continue this hierarchisation process (Fig. 42g), contour C1 vanishes again while
a new contour C5 limits the catchment basin on the right. This contour must exist (in other
words, a non unique minimum must be present in the hierarchical image h2) if we want C1 to
reappear at the next step, otherwise the hierarchisation process would stop. Contour C4 may
or may not exist in segmentation s3.

Here again the next step needs the occurence of a contour C6 (Fig. 42h) with:
 0 < a(C6) [ 2a(C1)

so that the oscillation of C1 can continue.
Now, let us examine the configuration when we have reached the initial (before

contour reintroduction) segmentation level sn, n even (Fig. 42i). Here again, a contour Cn+1 is
limiting catchment basin CBn to the right and we have:

0 < a(Cn+1 ) [ 2a(C1)
Meanwhile, n standard hierarchical levels have been processed inside catchment basin

CBn (and in particular inside the region delimited by Cn+1 and Cn, the contour which appeared
at segmentation sn-1). This means that we can define at least one sequence of n minimal values
m(hi) of the successive hierarchical images hi , these minima generating the(0 [ i [ n − 1)
successive segmentations si+1 and verifying the following inequalities:

0 < m(h0) < m(h1)/2 < ... < m(hi)/2i < ... < m(hn−1)/2n−1 < a(Cn+1)/2n [ a(C1)/2n−1

However, this is not possible anymore as soon as:
a(C1)/2n−1 < 1

That is:
a(C1) < 2n−1

log2(a(C1 )) < n − 1
n > log2(a(C1 )) + 1

Therefore the oscillation of C1 cannot be maintained indefinitely because its altitude
has an integer value. It is simply not possible to insert as many intermediary segmentation
levels as it would be necessary to maintain this oscillation. This proof uses in fact the
classical “infinite descent” theorem.

Nothing has been said about another factor which may stop the oscillation earlier: the
fact that the image to be segmented is digital and limited in space. So, it is very likely that, at
a certain step n, the hierarchical image hn presents a single minimum. We have already seen
that, in this case, P algorithm terminates.

Conversely, we can imagine a configuration defined on  with real and positive‘2

height values where P algorithm would be indefinitely oscillating (Fig. 43). In this example,
radius r of each contour Ci is equal to:
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r(Ci ) = (2i − 1)R/2i

If H denotes the altitude of the straight contour on the left and h, the altitude of the contour
(half-circle) on the right, with H > h, we define the altitude of each contour Ci by:

a(Ci ) = [H + (2i − 1)h]/2i

Each ring between two successive contours Ci and Ci+1 is populated with (i+1)
hierarchies.

However, this configuration, which looks like a fractal object, would be highly
pathologic...

Fig. 43: Example of configuration where contour C (in red) is always oscillating with P
algorithm. Each ring between two successive contours Ci-1 and Ci contains radial contours
which define i levels of hierarchy (value indicated in green)

8. Results and discussions

The last part of this document will be devoted to discussions about the properties and
characteristics of P algorithm.

Many questions arose during the standard and P algorithms definition process. Some
of these questions will be addressed here. All these questions are quite different, therefore no
specific order will be defined to answer them. This set of questions and answers should be
considered as an attempt to better explain some characteristics and properties of the
algorithms and to link them together to more general perception mechanisms.
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8.1. More results and their quality assessment
In the following figures (Fig. 44 to 53), further segmentation results obtained by P

algorithm will be presented. These results will be commented as they are introduced.
Fig. 44 shows some of these segmentation results. All these pictures are greytone

images and the algorithm has been applied either on the valued watershed or on the
gradient-mosaic image. These results are interesting (in some cases, they could even be
qualified as good) because they highlight some characteristics of the algorithm which must
be deepened.

Firstly, the quality of the result greatly depends on the contour contrast in the image.
The better the regularity and sharpness of the contrasts, the better the result of P algorithm.
This is the reason why the segmentations are better when using gradient-mosaic images
rather than valued watersheds. Indeed, in a gradient-mosaic image, the gradient values are
constant on each contour arc, thus preventing a watershed “leak” leading to bad contour
sorting in the hierarchisation, and these gradients are straightened thanks to the mosaic image
building process.

Secondly, textured regions remain very segmented in the last hierarchy. This is due to
the fact that high gradient values appear in these regions which are therefore considered as
significant despite the fact that their area is generally very low (see ROAD2 image, Fig. 45).
The same phenomenon can be observed in some noisy images, especially if they are polluted
by impulse noise (ALLOY image for instance, Fig. 46). Different possibilities exist to
minimize this effect. Image filtering can be performed before applying P algorithm. It is also
possible to remove the smallest catchment basins of the segmented image (see Fig. 45b and
Fig. 45c). 

These results and the others presented in the first part of this document seem, apart
from some defects discussed above, to be satisfactory. However, assessing the quality of
image segmentations is not an easy task. To address this problem, it has been suggested to
use the Berkeley Segmentation Dataset. This dataset provides an empirical basis for research
on image segmentation. It is composed of hand-labelled segmentations of various images
performed by human subjects [23].

However, comparing the segmentations provided by human beings with P algorithm
is not very relevant for several reasons:
- When asking various individuals to segment (draw contours of) an image, many different
results are obtained (actually, as many different segmentations as there are contributors).
Therefore, there is no “ground truth” which could be used as a reference to assess the quality
of the segmentation produced by P algorithm, except if we consider that the more a contour is
drawn by the different subjects, the greater its relevance is.
- The segmentation (contouring) process, when performed by a human operator, involves
multiple criteria (colour, shape, size, etc.) pertaining to the objects or regions to be
segmented, but, above all, it implies a high level of interpretation controlled by an a priori
semantic knowledge. It is obviously not the case with P algorithm where a single
segmentation criterion is used (usually contrast, although it would be possible to combine
multiple criteria) and which remains a “first level” process.
- Finally, the protocols used to assess the quality of the results are not always very easy to
handle. Moreover, the quotations tend to favour results where many contours are preserved,
which is not acceptable for grading P algorithm, which, on the contrary, aims at removing
irrelevant contours.
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Fig. 44: Image segmentations produced by P algorithm on greytone images. (a) IC image,
(b) segmentation applied on gradient-mosaic image, (c) ROAD4 image, (d) segmentation
of the gradient-mosaic image, (e) ROAD3 image, (f) segmentation of the gradient-mosaic
image, (g) ALPHAJET image, (h) segmentation performed on the valued watershed of the
gradient image after an alternate sequential filter.

(h)(g)

(f)(e)

(d)(c)

(b)(a)

51



Fig. 45: (a) Initial ROAD image. (b) Result of P algorithm (almost identical to the
standard algorithm). Textured regions remain over-segmented. (c) Removal of small
catchment basins by concatenating them.

(c)(b)(a)

Fig. 46: Result of P algorithm (b) applied to ALLOY image (a). Small regions are
generated by impulse noise.

(b)(a)

.
In order to illustrate these difficulties, P algorithm has been applied on a small set of

pictures coming from Berkeley Dataset. These results are presented in Fig. 47 to 53. Each
result is commented in details and compared to the set of results provided by human
contributors. Note that there are some differences between the images used for the manual
segmentation and those on which P algorithm was applied: some of them were cropped,
others were reduced to greytone pictures. We shall also recall, for each image, the
segmentation criterion which has been used together with the pre-processing, if any, applied
to the image before segmentation.

In Fig. 47, human segmentations differ on the sky (background), see Fig. 47c and 47d.
This first example shows that perception is very variable from one observer to the other. In
Fig. 48 (EAGLE image), the bird wings and beak are sometimes drawn (Fig. 48f) although
they are not easy to see, especially the left one. In HORSE image (Fig. 49), all the human
segmentations show a separation between the mare and its foal, which is clearly the result of
a semantic interpretation, to say nothing of the mare in Fig. 49f. In this example, P algorithm
has been applied on the hue image gradient. Considering Fig. 50 (CHURCH image), here
again, P algorithm cannot add contours which do not exist. They are drawn however by some
human observers (images 50b, 50d and 50f). In the BIRDS image (Fig. 51),
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 47: Human segmentation (from (b) to (f)) of the PLANE image. (g) Image used in P
algorithm (B&W image and gradient-mosaic). (h) Final segmentation with P algorithm.
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 48: EAGLE image (a). (b) to (f) Human segmentation. (h) Result of P algorithm applied
on the gradient-mosaic of the greytone image.
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 49: Horse image (a). Human segmentations (b) to (f). Hue image (g). P algorithm (h).
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 50: (a) CHURCH image. (b) to (f) Human segmentations. (g) Color mosaic-image used
in P algorithm (h).
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 51: (a) BIRDS image. (b) to (f) Human segmentations. (h) P algorithm applied on the
gradient of greytone image (g).
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(g)

(f)(e)(d)

(c)(b)(a)

Fig. 52: (a) MUSHROOM image; (b) to (f) Humans segmentations. (g) Result of P algorithm
(see text for details).
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(f)(e)

(d)(c)

(b)(a)

Fig. 53: (a) ELEPHANT image. (b) to (f) Human segmentations. (g) Cropped image used
for P algorithm (h). (i) Merging of small catchment basins.

(i)(h)(g)
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if we except the small regions appearing in P algorithm segmentation, the final result is very
similar to the segmentations provided by human subjects. In Fig. 52 (MUSHROOM image),
the supremum of the gradients in the red, green and blue channels of the original image has
been used in P algorithm. We show the effects of the textured regions on the result. These
textured regions, corresponding to very small and grouped catchment basins could be used as
markers in a classical watershed transform. Note also the great variability of the human
segmentations, which indicates a complex image. In ELEPHANT image (Fig. 53), the image
used for P algorithm has been cropped and the supremum of the three color channels
gradients has been computed. Then, small catchment basins have been merged. Note again
the high level of semantic knowledge introduced in some human segmentations, in images
53d and 53f in particular.

8.2. P algorithm, a non parametric operator?
Standard and P algorithms are said to be non parametric. However, when describing

these algorithms (see above), we saw that a contour, to be preserved in the hierarchical level i
must fulfil the following inequality:

a0(Ck) > hi − a0(Ck)

where a0(Ck) is the initial height of Ck and hi the value of the hierarchical image
corresponding to level i. This inequality can be written as:

2a0(Ck) > hi
In other words, a contour is preserved if its altitude is at least half the reference

altitude of hierarchy i. Therefore, value 2 could be considered as a parameter and we could
equally replace it by any value λ:

a0(Ck) > hi
However, setting this parameter to 2 is a “natural choice”. Without any further

information on the image to be segmented, this value is appropriate and balanced This
constant parameter could also be replaced by a function depending on altitude a0 and on the
reference altitude of the hierarchy. This extension may seem tortuous. However, this is
exactly what happens when an anamorphosis ψ is applied to the initial luminance image. An
anamorphosis ψ applied to image f produces a new image f”:

f∏ = ) f
Therefore, gradient g’ of f’ is given by:

g∏ = ∏ ) g
where g is the gradient of f and ψ’, the first derivative of ψ.

As the altitudes of contours and the values of the hierarchical images correspond to
gradient values, when an anamorphosis ψ is applied to the original image, the previous
inequality can be written:

  2 ∏[a0(Ck)] > ∏[hi ]
If we write:

(y) =
∏(y)
y

We have:
2 [a0(Ck)].a0[Ck] > (hi ).hi

2 [a0(Ck)]
(hi )

.a0(Ck ) > hi

which proves the above assertion with:
(a0, hi ) = 2 [a0(Ck)]

(hi )
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As a matter of fact, the results of standard or P algorithms are very sensitive to
anamorphosis (Fig. 54). But it is also the case for many perception processes (including the
human one): modifying the contrast and/or luminosity of an image or applying a gamma
correction on it most often leads to a dramatic modification of the perception of this image.

(d)(c)

(b)(a)

Fig. 54: Original ROAD2 image (a), same image (b) after anamorphosis (central curve),
original final segmentation by P agorithm (c), P algorithm applied on an anamorphosed
image (d).

Conversely, the previous inequality shows that, in order to get a new level of
hierarchy where a contour Ck is not embedded, another contour Cl must be present in the
vicinity of Ck, which produces a hierarchical image h1 which is, at least, equal to s1 = 2s0,
where s0 is the altitude of Ck  and s1, the altitude of Cl.

More generally, the possible appearance of an ith level of hierarchy means that there
exists a hierarchical image hi  generated by a contour which height si is at least equal to:

si = 2is0
This can be written as:

i = log2( si
s0 ) = 1

ln 2 ln( si
s0 )

The relationship between the level of hierarchy i and the minimal contrast si  of a
contour is analogous to Weber-Fechner law which relies the physical amplitudes of a
stimulus S and its perceived intensity p. Weber-Fechner law is given by:

p = k ln S
S0

where S0 is the threshold of stimulus below which it is not perceived at all [28].
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Therefore, in the standard algorithm (and to a limited extent, P algorithm), the
amplitude of contrast (given by the height of contours) is linked to the perceived intensity
(the appearance of a new level of hierarchy) through a logarithmic scaling law, with

.k = 1/ ln2 j 1, 45

8.3. Use of the intermediary levels of hierarchy: is it worth it?
In the previous examples, we have been interested only in the last level of hierarchy.

Nevertheless, both standard and P algorithms produce various intermediary hierarchical
levels. Using these lower levels could be interesting.

Remind that, in standard algorithm, a new level of hierarchy appears as soon as, at
least, one contour is removed. This numbering provides an ordering relationship between the
different contours. However, this is simply a partial order. It does not make sense to compare
contours having the same number but belonging to different catchment basins in the upper
hierarchies. Note that, due to the way numbering is performed, there is no “hole” in the
hierarchies numbering. Note also that it necessarily exists, in the final segmentation, at least
one catchment basin which contains contours which belong to all the previous hierarchies
(the proof is easy).

According to the above formula linking the hierarchical level i to the maximal height
of the corresponding contours and to the above properties, if the standard algorithm is applied
on the gradient (valued watershed or mosaic-gradient) of a n grey level greytone image, the
number of possible hierarchies cannot exceed  (E is the integer part andE log2(n − 1) + 1
hierarchy 0 is the initial segmentation). Indeed, the highest possible value for si is (n - 1),
assuming that grey level 0 exists. Conversely, the lowest possible value for s0 is 1. Therefore,
we have:

imax = E log2
max(si )
min(s0 ) = E log2(n − 1)

If n = 256, the maximal number of hierarchies is then:
E log2(255) + 1 = log2(128) + 1 = 8

84TOOLS
105ROAD4
33ROAD
53ROAD2
85PLANE
157MUSHROOM
116HORSE
64ROAD3
125ELEPHANT
135EAGLE
65IC
126CHURCH
54CAR
74BIRDS
126ALPHAJET
247ALLOY

Number of hierarchies
P algorithm

Number of hierarchies
Standard algorithm

Image

Table 2: Comparison of the number of hierarchies in standard and P algorithms.
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Regarding P algorithm, the hierarchies numbering procedure is not so simple. In fact,
because many contours may be reintroduced, the number of hierarchies is very often much
higher, as illustrated in the above table (table 2).

Another difficulty arises when choosing which hierarchy must be considered for
reappearing contours. A simple answer of this question is given thanks to a remark already
mentioned in the first part of this document (refer to Fig. 35 and to the corresponding
explanations). We saw that contours reintroduced by P algorithm are always given the current
value of the hierarchical image whatever their initial heights, even if, initially, they did not
belong to the same hierarchical level. Therefore, it is legitimate to consider this initial
hierarchical level rather than the level corresponding to the reintroduction. In other words,
hierarchies numbering must be made by keeping for each contour the hierarchical level
preceding its first disappearance, if any. This re-numbering may lead to a reduction of the
number of hierarchies when an intermediary hierarchical level is simply due to the
reappearance of some contours, albeit this situation is merely encountered (it is the case,
however, with the TOOLS image, see below).

The number of hierarchies in P algorithm is always higher (can be equal to...) than in
standard one. This difference comes from reappearing and oscillating contours and it can be
very important (see for instance the ALLOY image). However, it is not possible, in this case,
to exhibit a logarithmic law between the successive hierarchies, as it has been made with the
standard algorithm.

Nevertheless, it is possible to classify the successive segmentations produced by P
algorithm in relation to the segmentations given by the standard one. Let us denote by  theSS

i

segmentation at level i provided by the standard algorithm and by  the segmentation atSP
j

level j given by P algorithm (binary sets). We have:
≤i, j i m j : SS

i _ SS
j

Fig. 55: Comparison of different levels of segmentation in standard (in green) and P (in red)
algorithms. The black points belong to the intersection. In the enlarged region, we can see a
break in the intersection, produced by parity biases in multiple points of the watersheds.
 
Warning! When computing SS and SP segmentations, it is very important to be sure that the
corresponding contours share a common support. However, when using a representation
based on binary images, it is often not the case. This is due to the construction biases of the
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watershed transform which have already been discussed (see [2]). Therefore, the comparisons
are quite tricky in practice in order to cope with this problem. Nevertheless, we shall assume
in the sequel that this common support hypothesis is fulfilled. Therefore, the inclusion
notation must be regarded as the symbol of a more complicated operator which corrects the
biases introduced by the watershed construction before comparing the different
segmentations. This kind of bias is illustrated in Fig. 55.

The previous inclusion (even when interpreted as the complex operation discussed
above) is not true with P algorithm. Therefore, we define the segmentation  by:SP

∏j

SP
∏j = 3

k[j
SP

k

We have, then:
≤i, j i m j : SP

∏i _ SP
∏j

This operation is in fact equivalent to the renumbering described above.
It is now possible to compare the segmentation  with the standard ones by findingSP

∏i

the standard segmentation  such that:SS
i

 SS
j+1 _ SP

∏i _ SS
j

j ranging from 0 to N, the number of standard segmentations. By convention, is equal to SS
N+1

.
This ordering is illustrated on Fig. 56 for TOOLS image. Note that, as explained

above, the segmentations  and are identical.SP
∏4 SP

∏5

Note also that most of the extra segmentations produced by P algorithm are included
in the last segmentation of the standard algorithm. Therefore, we could wonder if it is
possible to speed up the construction of the various levels of segmentation in P algorithm by
building first the successive levels of the standard one (which can be done very quickly
thanks to a process based on threaded graphs, [21]), then, by defining the last levels of P
algorithm from the last level of the standard one. However, such a procedure has not been
designed yet and it may not exist. Note that the last level of segmentation in standard
algorithm is, most of the time, not equal to an intermediary level of P algorithm. It is then
likely that the information needed to produce the next hierarchical level in P algorithm has
been lost.

8.4. P and standard algorithms boil down to a simple threshold on the gradient
images. Yes and no...

If we consider the construction of the successive segmentation levels in P and
standard algorithms, it seems that the last level boils down to a simple threshold applied on
the gradient watershed images. Is this assumption true? To answer this question, let us
consider the two algorithms separately.

In standard algorithm, the last segmentation level SN (set of contours) is, by
definition, obtained by a threshold of the previous hierarchical segmentation sN-1 at value λ/2,
λ being the height of the (unique) minimum of the hierarchical image hN.

Remark: This threshold must be applied on segmentation sN-1, where each pixel of each
contour has the same value (the FOZ value). Otherwise, if the threshold is applied on the
segmentation where each contour pixel keeps its original value, the threshold operation must
be followed by a clipping in order to remove the open contours.
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SP
∏7

SP
∏6

SP
∏5=SP

∏4

SS
3

SP
∏3

SP
∏2=SS

2

SP
∏1=SS

1

SP
∏0=SS

0

P ALGORITHMSTANDARD
ALGORITHM

Fig. 56: Comparisons of standard and P algorithms hierarchical levels.
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(f)(e)(d)

(c)(b)(a)

Fig. 57: Last hierarchical image in standard algorithm (a), single minimum (its height is 4)
in red (b), threshold of the initial segmentation s0 at value 2 (c), final segmentation in
standard algorithm (in black) and additional contours (in red) remaining in the previous
threshold after clipping (d), last hierarchy in the classical waterfall transform (e) and (f)
points in this ultimate step at the lowest altitude (red points in green boxes, their altitude is
equal to 4).

So, the last level of segmentation in standard algorithm is indeed obtained by a
threshold, but a threshold of sN-1 and not of s0! As a matter of fact, thresholding the initial
segmentation at height λ/2 will produce a result where some contours remain, although they
have been suppressed during the working-out of the algorithm and are therefore not present at
level N-1 (Fig. 57). Furthermore, there is no way to know the value of λ other than
performing the successive steps of the standard algorithm or, at least, of the classical
waterfall algorithm, the height of the minimum of the last hierarchical image in the classical
waterfall transform being, by definition (see the first part of this document) equal to λ.

Regarding P algorithm, on the contrary, the last level of segmentation can be obtained
by a threshold (possibly followed by a clipping) at height λ/2 of the initial segmentation s0

(Fig. 58). However, determining value λ is even more difficult with P algorithm than it was
with the standard one, where it was possible to simply use the classical waterfall transform.
Indeed, this value is unique. It is a global parameter applied on the whole image. But, it is not
easy to determine it directly from the original values of the initial segmentation image s0.
This threshold value can be considered as an “anchor”, that is a contrast value used as a
reference to sort the various contours in two classes: the relevant ones and those which can
be discarded at first sight. The word ‘anchor” has been used on purpose. Determining the
reference anchor value is a well-known problem in lightness perception studies [18]. Many
propositions have been made to solve this anchoring problem which is of primary importance
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for the interpretation of experiments performed to explain the light constancy phenomenon in
perception [11]. Although the problem addressed here is quite different (we are dealing with
contrasts and not with luminance intensities), it is amazing to see that similar questions arise
when considering P algorithm on the one side and perception mechanisms on the other side.

(c)(b)(a)
Fig. 58: (a) Single minimum (in red) of the last hierarchical image in P algorithm (its height
is 52), (b) threshold at value 26 of the initial segmentation s0, (c) result of clipping (actually,
it is identical to the last P algorithm level).

In conclusion, P algorithm can be reduced to a simple threshold of the initial
segmentation. This threshold is global and applied on the entire image. However, the
threshold value cannot be simply determined as it depends on multiple factors: grey values
and contrasts of the different regions but also their topological status. 

8.5. Contours reintroduction, complexity. P algorithm and perception: some
analogies

We saw previously that some perception mechanisms (Weber-Fechner law,
anchoring, etc.) can be  retrieved in the standard and P algorithms. There is also an
interesting property of P algorithm, not shared with the standard one: its amazing tendency to
separate figures from the ground. Ground/figure separation is a fundamental law of Gestalt
Perception theory [32].

Gestalt theory states that grouping is the main process in human visual perception.
This grouping is performed according to a limited number of Gestalt laws: proximity,
similarity, continuity, closure, figure/ground, “surroundedness”, size/area, symmetry,
“pragnanz”, etc. [17]. These laws are empirical and may be collaborative or antagonist. They
have been sometimes used in image analysis to build algorithms and operators which
simulate them. However, most of the time, these operators are very specific. They are built to
detect or extract objects or sets which present given characteristics in relation with a single
Gestalt law. For instance, symmetrical objects are detected by calculating effectively the
amount of symmetry of each object, alignments of points are obtained by counting how many
points are included in (or not too far from) test lines drawn in all possible directions [14]. In
these approaches, Gestalt principles are used to define the geometrical features or models
which are looked for.  But, by no means, Gestalt law is ever emerging from the designed
transformation. It is only a starting point, a major specification of its definition.

On the contrary, as a matter of fact, many morphological transforms (even the basic
ones) are, per se, exhibiting some gestaltist properties. If grouping means connecting, most
morphological operators are connecting, that is grouping operators. Obviously it is the case
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with dilation, but also with closing (closure is, surprisingly, a very important Gestalt law). In
the same way, the watershed transform is a very powerful grouping operator applying Gestalt
laws as vicinity, similarity (similar neighbouring grey pixels are gathered inside the same
catchment basins), closure (the watershed lines always define closed contours). Note that, if
the watershed transform is generally considered as a segmentation tool, from the Gestalt
theory point of view, it is a grouping, a merging tool. The average grey value, in the greytone
image, of the pixels belonging to the same minima of gradient (or to the same marker when
the watershed is controlled by markers) can be considered as an anchor value which the
neighbouring pixels are compared to, to decide if they belong or not to the same catchment
basin. This grouping process is reinforced by the waterfall transformation (the standard one)
according to the same gestalt laws. The result of this hierarchical operator is the appearance
of regional or global gestalts, compared to the initial catchment basins which can be
considered as local gestalts.

With P algorithm, two new Gestalt laws are addressed: figure/ground separation and
“surroundedness”. In each case, no Gestalt principle is a priori introduced in the design of the
algorithms. On the contrary, simple rules, based on flooding from markers (or anchors) are
applied and Gestalt laws are emerging from these basic procedures. Regarding the
figure/ground separation, it is again a simple rule, namely the contour reintroduction, which
allows the emergence of this gestalt process.

We saw previously that this reintroduction may occur in any catchment basin and may
be cyclic. It is often (but not always) when this reintroduction occurs in maxima-islands that
a figure/ground segmentation is likely to happen. We already analyzed the possible
oscillation of this reintroduction. It is also interesting to look at the conditions and
characteristics of this reintroduction in more details.

Let us consider two regions, denoted F and G, F been surrounded by G. F can be seen
as a potential figure while G is a potential ground. Both regions may contain intermediary
segmentation levels. The fate of F and G during P algorithm processing will deeply depend
on many factors controlling the contour reintroduction inside F. Among them, the number of
FOZ present on the boundary of region F and the status of F itself: is F going to be a simple
maximum or a maximum-island (see Fig. 29)? We shall come back to these factors in the
sequel, but the first parameter at stake is the relative number of intermediary hierarchies in F
and G. These numbers characterize the relative complexities of F and G regions.

Let us analyse the different configurations which may occur when a potential figure F
is surrounded by a ground G. F contains a number nH(F) of intermediary hierarchies and G, a
number nH(G) (Fig. 59). 

Let us consider the different configurations according to nH(F) and nH(G).

nH(F) > nH(G) (Fig. 59c)
In this case, when all the hierarchies in the background have disappeared, at least one

hierarchy remains in the figure. The final result is therefore the emergence of the figure over
the background . The figure itself is segmented. Note that, in any case, only the last level of
segmentation of the figure remains, even if there are more than one hierarchy level in the
figure when the last hierarchy level of the background disappears (Fig. 59f).

Indeed, in this configuration, the background catchment basin is in fact a watershed
zone (WSZ) and the last minimum of the hierarchical image is inside the figure. One could
equally say that, in this case, the background is a maximum-island. Although, in this
configuration, it may seem strange that the “land” surrounds the “water”, it is totally
compatible with the definition of an island when the space is bounded, on a sphere for
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instance (Fig. 60). Note also that the result is unchanged whatever the algorithm, P or
standard.

(k)(j)(i)

(h)(g)(f)

(e)(d)(c)

(b)(a)

Fig. 59: Figure/ground separation according to the complexity of the hierarchies. (a)
Potential figure F and ground G with respectively nH(F) and nH(G) internal hierarchies. (b)
Corresponding real configuration. (c) Case where nH(F) > nH(G) and successive steps of P
algorithm (d) with minima in red and final result (e). When more than one hierarchy level
remains in F (f), the process continues since two minima appear in F and the next level of
segmentation produces a WSZ (h). (i) Case where nH(F) = nH(G), figure F is simply outlined,
(j) minima inside F and G and (h) final result with F outlined. 

nH(F) = nH(G) (Fig. 59i)
This is the limit case of the previous configuration. The figure is simply outlined.

Here again, the result is the same, regardless of the algorithm. Note also that nH(G) may be
equal to 0 without changing the final result in any way.
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(e)(d)

(c)(b)(a)

Fig. 60: Example illustating the ambiguity of the island concept in a bounded space (a sphere
in the example). In (a) and (b), one agrees to see an island, but from (c) to (e), the notion
becomes ambiguous, although there is absolutely no modification of the topology of the
island and of the sea “surrounding” it.

NH(F) < nH(G)
This configuration may produce different results with P and standard algorithms if

some contour reintroduction occurs inside the figure in P algorithm. However, some specific
conditions must be fulfilled in order that, not only a contour reintroduction occurs, but also
that this reintroduction is efficient and produces a figure/ground separation.
First of all, the contour reappearance must happen at the right time. This right time depends
itself on the configuration of region G and on the status of region F. It depends also on the
occurrence in G of the single minimum surrounding F. Let us illustrate this by taking some
simple examples.

In the first example (Fig. 61), the successive steps of P algorithm show that the figure
is seen as a simple maximum standing against the boundary of the catchment basin appearing
at segmentation level s2 (Fig. 61f). The catchment basin corresponding to the figure has a
unique FOZ (the contour marked by the green point at Fig. 61e). The value of the hierarchical
image (Fig. 61g) leads to the reintroduction of the inner contours of the figure and, at the end,
to the final result where a figure/ground separation occurs. The configuration of the ground
corresponds to the mosaic type described in Fig. 37. In this example, the final segmentation is
the result of a particular combination of events: appearance of the minimum surrounding the
figure in the last level of hierarchy, simple maximum (not a maximum-island) status for
figure F, height of the last minimum allowing the reintroduction, etc.

The second example (Fig. 62) seems very similar to the previous one: similar initial
image, same configuration for the ground, same number of intermediary hierarchies.
However, a slight difference in the grey region layout leads to the appearance of two FOZ in
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figure F (Fig. 62b), which makes it possible to become a watershed zone (WSZ) (Fig. 62c.).
Therefore, no contour reintroduction is possible and no figure/ground separation is achieved.

(j)(i)

(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 61: (a) Initial image, (b) gradient watershed, initial segmentation s0, (c) minima of the
hierarchical image h0, (d) segmentation s1, (e) minima of the hierarchical image h1 in red, the
green point corresponds to the unique FOZ of the central catchment basin, (f) result of the
initial segmentation s2 before contour reintroduction, (g) corresponding hierarchical image
h2, (h) final segmentation s’2 with the reintroduced contours, (i) next step of P algorithm,
initial minima of h’2, (j) final result, figure/ground separation.

The third example (Fig. 63) shows what happens (or is likely to happen) when the
ground configuration is different. In this example, the last hierarchy level (si+1) appearing in
the background gives it a “russian doll” structure (as already described in Fig. 37). The
appearance of the minimum surrounding the figure at the previous step (si) will induce the
reintroduction of the inner contour of the figure and, therefore, a figure/ground separation
(Fig. 63b to 63d).
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(f)(e)

(d)(c)(b)(a)

Fig. 62: (a) Initial image, (b) segmentation level s1 with, in red, the minima of h1 and, in
green, two FOZ on the boundary of the central catchment basin. (c) Result of the watershed
of h2, in red a watershed line marking the central CB as a WSZ (d). (e) and (f), final result,
the ground is segmented.

In Fig. 63e, at level si, two minima appear. If we suppose that at least two FOZ are
present on the boundary of region F, it will become a WSZ at level si+1 (Fig. 63f), thus
preventing the early reintroduction of the inner contours and the final result will be the same
as in the previous configuration (Fig. 63b). On the contrary, if a unique FOZ is present on the
boundary of F (Fig. 64a), a contour reintroduction will occur at segmentation si+1 and a
figure/ground separation will happen at the next level of segmentation. However, in this case,
the ground corresponds to the immediate surrounding of F. The situation may still change in
the next hierarchical levels. 

So, the contour reintroduction is controlled by the topological status of the figure and
by the configuration of the ground which, in return, control the occurence of the minimum
surrounding the figure and the time of this occurence. To be efficient, this time of occurence
must be different according to the configuration of the background (mosaic or russian dolls
type).

It is obvious that, to be reintroduced, a contour must exist in the figure. In other
words, nH(F) must be strictly positive. Indeed, if nH(F) = 0, by definition, no contour in the
figure exists which could be possibly reintroduced. Now, there is another important factor
which controls the contour reintroduction: it must be given some time to happen. If the
difference between nH(F) and nH(G) is not sufficient,  no reintroduction will be possible. Let
us suppose that nH(F)>0 and that nH(G) = nH(F)+1. This configuration is illustrated in Fig. 65
with nH(F) = 1 and nH(G) = 2 (we shall obtain the same result in the general case).
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(h)(g)

(f)(e)

(d)(c)

(b)(a)

Fig. 63: (a) The circular catchment basin containing a contour (dotted lines) which has been
removed in a previous step is surrounded by a unique minimum of the hierarchical image hi

(b). It is therefore a maximum-island. (c) and (d) Monodimensional representations. The
initial watershed of hi (contour in black) produces the hierarchical image hi+1 which goes
through the maximum-island, thus allowing the possible reintroduction of the inner contour.
In (e), the potential maximum-island is surrounded by two minima of the hierarchical image
hi. If at least two FOZ appear on its boundary, it will become a WSZ (f). (g) and (h) are the
corresponding monodimensional representations . Note the differences between (d) and (h).
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(d)(c)

(b)(a)

Fig. 64: (a) Case where a single FOZ is present on the boundary of the potential figure F.
Initial segmentation in the next step (b). (c) Reintroduced contours and (d) final result.

(d)(c)

(b)(a)

Fig. 65: (a) and (b), Configuration where no reintroduction occurs because the process
cannot be initiated due to the too early appearance of the last hierarchy, (c) and (d).
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In this configuration, no reintroduction occurs (see Fig. 62c) because the hierarchical
image at the next step will be equal to 0. The difference between nH(F) and nH(G) is not large
enough to let the reintroduction mechanism take place. To do so, we need to have:

nH(G) > nH(F) + 1

This condition may seem strange but, in fact, it can be explained easily if we consider
that the figure contains, not nH(F) hierarchies, but  by simply assuming thatnH

∏ (F) = nH(F) + 1
the last hierarchical level belongs to the figure. This assumption is in accordance with the
Gestalt interpretation where the contour of the figure is supposed to belong to the figure itself
which is, in a way, put on the ground (if the figure was not here, its outline would not appear,
so it is obvious to assume that its contour and the corresponding hierarchical level belongs to
it). In the sequel, we shall come back to the case . According to this newnH(G) = nH(F) + 1
numbering, we have the following equivalences:

(1)  nH(F) > nH(G) w nH
∏ (F) > nH(G) + 1

(2)  nH(F) = nH(G) w nH
∏ (F) = nH(G) + 1

(3)  nH(F) + 1 = nH(G) w nH
∏ (F) = nH(G)

(4)  nH(F) + 1 < nH(G) w nH
∏ (F) < nH(G)

(with ).nH
∏ (F) > 0

The configurations (1) and (2) correspond to . We know that, in thisnH
∏ (F) > nH(G)

case, a figure/ground separation always happens. In case (3), there is no figure/ground
separation. Finally, in the last case, a figure/ground separation may occur if the conditions
discussed above are fulfilled. But it is not enough, because there is a third factor controlling
the contour reintroduction. It is the relative level of contrast of the last hierarchical level
(height of the minimum in the hierarchical image)  in figure F and ground G. In the above
examples, we assumed that, when the right conditions are put together, the contour
reintroduction systematically happens. However, this reintroduction will occur if the level of
contrast lC(F) in the figure is at least equal to half the level of contrast lC(G) in the
background:

lC(F) m lC(G)/2

In other words, if the level of contrast in the figure is in the same range as or higher
than the level of contrast in the ground, some interior contours of the figure will be
reintroduced, if the other conditions allowing this reintroduction are fulfilled. As a result, the
figure will be outlined in the final segmentation.

The contours reintroduction is controlled by the complexity of the hierarchies inside
figure F compared to the complexity of the hierarchies outside the figure (ground G). This
complexity depends, at least, on two parameters:

- the number of hierarchies nH 
- the level of contrast of the last hierarchical level lC (height of the minimum in the
hierarchical image).

The different situations regarding these two parameters are summarised in  Fig. 66.
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Fig. 66: Summary of the different configurations for the possible F/G separation. Blue
region: a F/G separation always occurs, either in P or in standard algorithms. Yellow
region: a F/G separation may occur if a certain number of other conditions are fulfilled in
P algorithm only (see text). The red region corresponds to the singular configuration

 where F cannot be considered as a possible figure.( nH = 0)

The differences  and  are plotted in thenH = nH
∏ (F) − nH(G) lC = lC(F) − lC(G)/2

graphics since the occurence of a figure/ground separation depends only on these differences
(when putting aside the geometrical and topological structures of the two regions).

Note that the parameters  and  are not independent but, on the contrary, highlynH lC
correlated in most cases. Indeed, if a catchment basin (a region) contains nH hierarchical
levels, the level of contrast lC of the last hierarchical image is, at least, equal to:

lC = 2(nH−1)

(refer to Weber-Fechner law discussion).

Therefore, in most cases  and  vary in a similar way: when  is positive, nH lC nH
 is also positive. So, using  is often redundant since the relative complexities of figurelC lC

F and ground G can simply, in most cases, be expressed by the difference of hierarchies
embedded in the two regions. This situation is encountered in the standard algorithm where
complexity is simply expressed by the number of hierarchies. When a region F is surrounded
by a region G of lower complexity, F is considered as a figure which emerges from G. If not,
F is considered as equivalent (although more contrasted) to the other regions which compose
G. F could also be seen as a “hole” inside a structure spreading on G, especially when nH(G)
is much higher than nH(F). In particular, it is the case when  (Fig. 65).nH(G) = nH(F) + 1
Region F is reduced to its outline, as if it was a simple hole in region G. In this configuration,
F is no longer a figure but, on the contrary could be considered as a “background” appearing
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under G. This situation, where a reversal of the status of F occurs, is similar to the change of
status of the “island” and the “sea” illustrated in Fig. 60.

Regarding P algorithm, complexity is no more simply expressed by . The relativenH
levels of contrast lC(F) and lC(G) intervene. The figure/ground separation is always controlled
by the relative complexity between F and G but, in this case, it is defined by a combination of
the contrast levels and of number of hierarchies.

Complexity is higher in F than in G if the number of hierarchies in F is higher than in
G or if the level of contrast of the last hierarchy inside F is higher than the level of contrast in
G. Considering this new definition of complexity,  could be seen as the primarynH
parameter (the most important) of this definition and  the secondary one. In fact, it is notlC
the case:  is the primary factor (this is what is controlling the specific contourlC
reintroduction of P algorithm), whereas  is the secondary one, knowing that, when  isnH nH
positive and according to the correlation between nH and lC considered above,  is verylC
often also positive. This more sophisticated definition of complexity explains also (see Fig.
23) why P algorithm provides a better figure/ground separation than the standard one.

The relative complexities of the figure and the ground is a phenomenon well known
for years by psychologists and researchers who studied some visual perception mechanisms
related to simultaneous lightness contrast [13]. This complexity has been called articulation.
 

(b)

(a)

Fig. 67: Illustration of the SLC illusion (a). This illusion is reinforced when the complexity
(”articulation”) of the ground increases (b).

The simultaneous lightness contrast (SLC) is a lightness illusion illustrated on Fig.
67. Two identical grey patches placed on two backgrounds with different grey levels appear
to have different lightnesses (Fig. 67a). This effect has obviously no direct relationship with
P or standard algorithms (just because the grey values used in the algorithms are not the
perceived ones but the sensed ones). However, there is an interesting additional phenomenon
which can be observed when the backgrounds are “articulated”, that is when they are
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replaced by a patchwork of regions whose average grey level is equal to the previous
background grey levels: the SLC is then increased (Fig. 67b). So, the articulation
(complexity) of the background has an influence on the lightness of the figure. This is
amazingly similar to what happens with P algorithm. As shown before, the ground
complexity or “articulation” is modifying the perceived complexity of the figure (through the
contour reintroduction process) and therefore may change the level of hierarchy of this figure
compared to the background level of hierarchy. In the case of SLC (and also for many other
lightness illusions), the favored explanation of the phenomenon calls on the concepts of
frameworks and anchoring. Frameworks are perceptual groups of regions obtained by
applying gestalt grouping principles. These frameworks are generally nested, from the local
one (the patch and its surrounding in the SLC illusion) to a global one (the entire image).
Assessing the patch lightness is performed by evaluating it in each framework in comparison
with anchoring values acting as references. The final perceived lightness is obtained by
averaging the different framework-linked lightnesses. Although the description of the
anchoring theory of lightness perception is not the subject of this document (refer to [10] and
[12] for details), it is striking to notice that the mechanisms at work are very similar. The
nested catchment basins produced by the standard algorithm segmentation in the successive
hierarchies can be considered as frameworks. In each catchment basin, the levels of contrast
and the number of hierarchies can be considered as anchors. Let us illustrate this
phenomenon on the simple example of Fig. 68.

(f)(e)(d)

(c)(b)(a)

Fig. 68: (a) Initial segmentation. (b) Minima of the hierarchical image considered as
“anchors”. (c) New level of segmentation and new anchors, two of them corresponding to the
minima of the hierarchical image (in red), the last one (in green) corresponding to a simple
FOZ. (d) Next level of segmentation with a new anchor. (e) Reintroduced contour. (f) Final
anchoring.
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Let us consider the initial segmentation (hierarchy 0) on Fig. 68a. The hierarchical
image built from this initial segmentation presents some minima and the contours covered by
these minima can be considered as anchors (Fig. 68b). The initial watershed of this
hierarchical image merges some catchment basins and the resulting segmentation can be
considered as a higher level framework (it is, according to the definition, a grouping of
regions in relation with Gestalt laws of proximity, similarity, as already mentioned in the
above discussion). In this new framework, new anchors appear. They correspond to contours
which have the same value as the hierarchical image (height of their FOZ). Note, however,
that, in this configuration, these anchors may be present in the minima of the hierarchical
image but also in the WSZ (Fig. 68c). Then, each contour of the initial segmentation is
compared to its associated anchors (that is, anchors having the value of the hierarchical
image covering the contour) and, if they are similar (the level of contrast of the contour is at
least half the anchor value), the contour is reintroduced. In other words, the level of hierarchy
of the contour is increased and becomes equal to the level of hierarchy of the anchor. At this
step, no modification occurs. The procedure is continued. The new framework (Fig. 68d)
exhibits new anchors (a unique one in this case since there is a single minimum in the
hierarchical image and no WSZ). This time, the contour inside the central catchment basin is
reintroduced since its level of contrast is similar to the anchor (Fig. 68e). In other words, the
level of hierarchy of the reintroduced contour is modified and takes the value of its anchor.
Thus, the level of hierarchy of each contour in the image is not simply determined by the
level of hierarchy and value of its anchor in the local framework, but by the level of hierarchy
and value of any anchor belonging to any framework in which it is embedded. At the end of
the procedure (Fig. 68f), a single anchor remains (a single minimum of the hierarchical
image) in the last framework made of the entire image.

P algorithm is just a way of changing the order of the hierarchy levels (or
synchronizing them) by taking into account local and global anchoring information, just as
anchoring in SLC is a way of changing the importance order of the lightness of the various
regions in the image.

Finally, keep in mind that P algorithm and the anchoring approach in SLC have been
put together only because the internal mechanism which controls them is similar. In short, in
both cases, this mechanism takes into account a local and a global (regional) information at
the same time. Apart from this analogy, both phenomena are quite different. SLC deals with
the lightness of regions, whereas P algorithm works on the contrast of contours. In particular,
we do not claim to explain SLC by means of P algorithm. This point must be made clear.

9. Conclusion, future developments

Let us come to the conclusion of this very long presentation of P algorithm.
P algorithm is undoubtely a dramatic enhancement of the waterfall transformation: it

eliminates the numerous defects of the initial transform while abiding by the initial
specifications, that is being non parametric and providing an optimized final hierarchical
segmentation. Although it has been shown previously that an inner parametric value is indeed
introduced (the value 2 for the multiplying factor of the contrast increment), it is a natural
choice motivated by common sense.

It has been shown also that perception mechanisms, rules or laws emphasized in
human perception (in particular, in lightness perception) seem to be the counterpart of similar
phenomenons with P algorithm. P algorithm is ruled by a logarithmic law linking contrasts
and hierarchical levels very close to the Weber-Fechner law. Gestalt principles as similarity,
figure/ground separation, thanks to the underlying watershed transform, are obviously
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fulfilled. We saw also that concepts pertaining to the psychology of perception as articulation
and anchoring can also be used to better understand how P algorithm works. The complexity
(articulation) of neighbouring regions have a major influence on the result of the
segmentation, especially when a figure/ground separation is at stake, by modifying
anchoring, that is the contrast values of contours which other contours will be compared to,
to assess their relevance in the image. It appeared also that this anchoring is not a local
process but, on the contrary, a global one involving information collected in the whole image.
The major outcome of this observation is the fact that P algorithm is reduced to a simple
thresholding of the valued gradient watershed followed by the removal of non closed
contours. It may seem strange and surprising that such a complex transformation ends by a
basic operation. It is a long harvest for a little corn. However, it cannot be any other way.
Indeed, let us suppose that the relevance of the contours can be (and must be) assessed
locally by comparing them to their neighbourhood. Then, another question arises: what are
the size and shape of this neighbourhood? It is obvious that the relevance of contours will
hugely depend on these parameters. It is likely that, the smaller the size of the
neighbourhood, the greater the number of relevant contours. At the end, if we assess the
relevance of contours very locally, no doubt that all the contours of the initial watershed
segmentation will be considered as relevant!

(d)(c)

(b)(a)

Fig. 69: (a) Detail of TOOLS image, (b) result of P algorithm segmentation on the entire
image, (c) focus on the coins (the outside is masked), inner contours become relevant and
they appear in a lower level of hierarchy (d).

 Mimic this change of neighbourhood can be done easily by cropping the image and
selecting a small part of it (Fig. 69). When achieving this, new contours become significant.
In fact they correspond to contours appearing in lower segmentation hierarchies. The power
and efficiency of P algorithm is based on the fact that the determination of this unique
threshold value is the result of a complex process where perception rules are applied and
where topological properties of the regions to be segmented are used. This process provides a
set of relevant contours “at first sight” regardless of any semantic consideration. Keep in
mind that P algorithm is not, by any means, a content-based segmentation tool. For this
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reason, anyway, comparing the results provided by P algorithm to Berkeley dataset is, to
some extent, meaningless because, when a human subject is drawing contours of an image,
there is, on the one hand, a large part of semantic knowledge involved and, on the other hand,
drawing needs to focus locally one’s attention on the drawn contour. Fig. 70 illustrates the
fact that finding this right threshold value is not straightforward and that the range of
appropriate values is often quite narrow.

P algorithmThreshold = 50Threshold = 45

Threshold = 40Threshold = 35Threshold = 30Threshold = 25

Threshold = 20Threshold = 15Threshold = 10Threshold = 5

Fig. 70: Successive thresholds and clippings of the gradient-mosaic image of TOOLS. Which
threshold is, in your opinion, the best one? Bottom right image: result of P algorithm (the
corresponding threshold value is 26. The range of thresholds producing the same result is
[26,33]).

However, P algorithm is not a perfect segmentation tool, not by a long way! We
already saw that this algorithm badly handles textured regions in the image. These regions
produce many small and highly contrasted connected catchment basins which are preserved
simply because their contrast levels are far above the contrast anchor value. This feature
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comes also from the fact that an important gestalt rule has not been taken into account in the
algorithms (either standard or P): the area law. According to this law, the greater the area of a
grey shade region in an image, the greater the perceived lightness and contrast of the region.
This area law is, for instance, taken into account in the explanation of the SLC illusion. The
catchment basins areas are not considered in the hierarchical segmentations since the
criterion used is simply the contrast defined by the gradient of the image. However, other
functions could be used in association with P algorithm. For instance, the volumes of the
catchment basins (area x contrast) could be used to control the successive steps of the
hierarchical segmentation. This approach has already been successfully applied [24, 25]. P
algorithm could also be used with other criterion functions, such as quasi-distances and
quasi-distances of the initial gradient image. These functions mix size and contrast
information, allowing by these means to take the Gestalt area law into account [5]. For lack
of time, these approaches have not been tested yet.

More generally, P algorithm could be a valuable approach with multi-criteria or
interactive segmentations [33]. Here again, this path should be further explored. Finally, it is
important to increase the computation speed of P algorithm, as it is set to be used at a first
step tool for solving more complex segmentation applications in image analysis and, in
particular, in domains where real time solutions are the issue (robotics, videosurveillance,
etc.). The use of graph representations has already proved its efficiency for increasing  the
performances of the classical waterfall algorithm [21], but also the standard one [to be
published]. Implementing P algorithm with the help of graph representations is still a
challenge. However, it is not sure, at present time, that these implementations would be more
efficient and faster than implementations using more classical pixel-based operators.

10. References

[1] Betser J., Delest S., Boné R., Cardot H. Unbiased watershed hierarchical 3D
segmentation. VIIP ’05: International Conference on Visualisalization, Imaging and Image
Processing.  Benidorm, Spain. September 2005), pp. 412-417.

[2] Beucher S. Segmentation d'images et morphologie mathématique. Doctorate thesis, Ecole
des Mines de Paris, Cahiers du centre de Morphologie Mathématique, Fascicule n° 10, Juin
1990.

[3] Beucher S. Watershed, hierarchical segmentation and waterfall algorithm. Proc.
Mathematical Morphology and its Applications to Image Processing, Fontainebleau, Sept.
1994, Jean Serra and Pierre Soille (Eds.), Kluwer Ac. Publ., Nld, 1994, pp. 69-76. 

[4] Beucher S. Geodesic reconstruction, saddle zones & hierarchical segmentation. Image
Anal. Stereol., 2001. 20(3): 137-141.

[5] Beucher S. Numerical residues. Image and Vision Computing, Volume 25 ,  Issue 4,
Pages 405-415, April 2007.

[6] Beucher S., Bilodeau M. Road segmentation and obstacle recognition by a fast watershed
transformation. Intelligent Vehicles Symposium'94, Paris, 0ctober 1994, pp. 296-301.

82



[7] Beucher S., Bilodeau M., Yu X. Road segmentation by watershed algorithms.
Proceedings of the Pro-art vision group PROMETHEUS workshop, Sophia-Antipolis,
France, April 1990.

[8] Beucher S., Bilodeau M., Yu X. Road tracking, Lane segmentation and obstacle
recognition by Mathematical Morphology. Proc. Intelligent Vehicles'92 Symposium, Detroit,
USA, 1992.
 
[9] Beucher S., Yu X. Road recognition in complex traffic situations. 7th IFAC/IFORS
Symposium on Transportation Systems: Theory and Application of Advanced Technology,
Tianjin, China, August 24-26 1994, pp. 413-418.

[10] Bressan P. Explaining lightness illusions.Perception, 30, 1031-1046 (2001).

[11] Bressan P. The place of white in a world of grays: a double-anchoring theory of
lightness perception. Psychological Review, 113, 526-553 (2006).

[12] Bressan P. Inhomogeneous surrounds, conflicting frameworks, and the double-anchoring
theory of lightness. Psychonomic Bulletin and Review, 13, 22-32 (2006).

[13] Bressan P. and Actis-Grosso R. Simultaneous lightness contrast on plain and articulated
surrounds. Perception, 35, 445-452 (2006).

[14] Cao F. Application of the Gestalt principles to the detection of good continuations and
corners in image level lines. Computing and Visualisation in Science, 7:3-13, 2004.

[15] Delest S., Boné R. and Cardot H. Fast Segmentation of Triangular Meshes using
Waterfall. Visualization, Imaging, and Image Processing - 2006.

[16] Delest S., Boné R., Cardot H. Hierarchical 3D Segmentation Using Connected Face
Structure. International Journal for Computational Vision and Biomechanics, Vol. 1, No. 2.
(July 2008), pp. 227-235.

[17] Desolneux A., Moisan L., Morel J-M. From Gestalt Theory To Image Analysis, A
Probabilistic Approach.  Interdisciplinary Applied Mathematics, Springer-Verlag Gmbh,
December 2007.

[18] Gilchrist A, Kossyfidis C, Bonato F, Agostini T, Cataliotti J, Li X, Spehar B, Annan V,
Economou E.  An anchoring theory of lightness perception. Psychol Rev. 1999 Oct;
106(4):795-834.

[19] Hanbury A.and Marcotegui B. Waterfall Segmentation of Complex Scenes. Lecture
Notes in Computer Science, Proceedings of ACCV 2006, Vol.3851/2006, Pages 888-897,  
Springer Berlin / Heidelberg, 2006.

[20] Hanbury A., Marcotegui B. Morphological segmentation on learned boundaries. Image
and Vision Computing,Volume 27 ,  Issue 4, Pages 480-488, March 2009.

83



[21] Marcotegui B., Beucher S. Fast implementation of waterfall based on graphs. In
Mathematical Morphology: 40 Years on : Proceedings of the 7th ISMM, Paris, April 18-20,
2005: Dordrecht: Springer, C. Ronse, L. Najman, and E. Decencière (eds.)p. 177-186.

[22] Marion V., Lecointe O., Lewandowski C., Morillon J-G., Aufrere R., Marcotegui M.,
Chapuis R., Beucher S. Robust perception algorithms for road and track autonomous
following. Proceedings of SPIE, Volume 5422,Unmanned Ground Vehicle Technology VI,
Grant R. Gerhart, Chuck M. Shoemaker, Douglas W. Gage, Editors, September 2004, pp.
55-66.

[23] Martin D., Fowlkes C., Tal D., Malik J.  A Database of Human Segmented Natural
Images and its Application to Evaluating Segmentation Algorithms and Measuring
Ecological Statistics" . ICCV 2001.

[24] Meyer F. "Morphological multiscale and interactive segmentation", IEEE-EURASIP
Workshop on Nonlinear Signal and Image Processing, Antalya. Turkey, June 1999.

[25] Meyer F. An overview of morphological segmentation. International Journal of Pattern
Recognition and Artificial Intelligence, 2001. 15(7): 1089-1118. 

[26] Ogor B., Haese-coat V. and Ronsin J. SAR image segmentation by mathematical
morphology and texture analysis. Geoscience and Remote Sensing Symposium, 1996.
IGARSS '96.

[27] Risson V. Application de la Morphologie Mathématique à l'analyse des conditions
d'éclairage des images couleur. Thèse de Doctorat en Morphologie Mathématique, ENSMP,
17 décembre 2001, 203 p.

[28] Shen J. On the foundations of vision modeling : I. Weber’s law and Weberized TV
restoration. Physica D: Nonlinear Phenomena, Volume 175, Issues 3-4, 1 February 2003,
Pages 241-251.

[29] Soares F. New Morphological Waterfall-based Implementation for Line-Features
Segmentation.Proceeding of Signal Processing, Pattern Recognition, and Applications -
2008. 
[30] Soares F., Muge F. Watershed lines suppression by waterfall marker improvement and
line neighbourhood analysis. Proceedings of the 17th International Conference on Pattern
Recognition (ICPR’04).

[31] Valette G., Prévost S.,  Lucas L. Fissurations de surfaces 3D : du terrain à leur
généralisation. Journées de l’Association Francophone d’Informatique Graphique, Bordeaux,
2006.

[32] Wertheimer M. Gestalt Theory (Über Gestalttheorie). Kant Society, Berlin, 7th
December, 1924, Erlangen, 1925.

[33] Zanoguera F., Marcotegui B., Meyer F. A Toolbox for Interactive Segmentation Based
on Nested Partitions. ICIP-99, Kobe (Japan),

84



11. Annex 1: Micromorph programs

The implementation of P algorithm with Micromorph (and soon MambaImage) can be
found only in the internal release of  the document. They have been annexed only for filling
purposes. They are not optimised, although the hierarchisations provided by these operators
are in conformity with the definitions and description provided in this document.
The public release does not contain these programs.

[You are reading the public release]

12. Annex 2: Music soundtrack

The authors are aware that reading such a long and complicated paper could be
tedious. But the reader should also be advised that writing this document has not been an
easy task either! However, this work has been made easier by music listening while carrying
it out. Hoping that this will also make this reading easier, you will find below the music
tracklist which has been abundantly used during this writing. Note that, apart from a few
titles, the main leading thread of this selection is water in all its forms...

Bill Douglas - Riverrun  (from album "Stepping Stones")
Bill Douglas - Island of Woods, Fountain (from album "Circle of Moons")
Bill Douglas - Lake Isle of Innisfree/La isla lacustre de Innisfree (from the album "A
Place Called Morning - Ese Lugar Que Llaman La Manana")
Bill Douglas - Lady of the Lake, The Gardens of Loch Nair (from album "Songs of Earth
and Sky (con el coro Ars Nova)")
Bill Whelan - Riverdance (Music from the show)
Enya - Water Shows The Hidden Heart, Sumiregusa, The River Sings (from album
"Amarantine")
The Angels of Venice - The Reflecting Pool (from album "Music for Harp, Flute and
Cello")
Anuna - Shining Water (from album "Sensation")
Phil Coulter - Loch Lomond ( from album "Scottish Tranquility")
Capercaillie - The Little Cascade (from album "Cascade")
Mychael Danna and Jeff Danna - Evensong, Anchor Dream (from album "A celtic
Romance (The Legend of Liadain And Curithir)")
Nightnoise - The Flight into Egypt (from album "A Celtic Christmas - Peace on Earth")
Snuffy Walden - By The river Shannon (from album "A Celtic Christmas - Peace on
Earth")
Ronan Hardiman - Legend of the Lake (from album "Celtic Myst 5")
Bill Douglas - Sweet Rain (from album "Celtic Twilight volume 1: Heart of Space")
John Boswell - Skye Boat Song (from album "Celtic Twilight volume 1: Heart of Space")
Carlos Nunez - Two shores (from album "Celtic Twilight volume 4")
Mychael Danna and Jeff Danna - The Drowning Plains (from album "Celtic Twilight
volume 4")
Chris Field - Floating (from album "sub-Conscious")
Enigma - 20.000 Miles Over The Sea (from album "A Posteriori”)
Connie Dover - The Water Is Wide (from album "The Border of Heaven")
Connie Dover - The Wishing Well (from album "The Wishing Well")
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Jennifer Cutting's Ocean Orchestra - Song for the Night Sea Journey (from album "Songs
for The Night Sea Journey")
Dan Gibson - Flow Gently Sweet Afton (from album "Celtic Awakening")
Dire Straits - Down to the Waterline (from album "Money For Nothing")
The Doors - Riders on the Storm (from album "Weird Scenes in the Gold Mine")
E.S. Posthumus - album "Cartographer (featuring Luna Sans)", album "Unearthed"
Enya - Orinoco Flow, Watermark, Caribbean Blue ( from album "Romantic Years")
James Horner - The Deep and Timeless Sea (from "Titanic" movie soundtrack)
Eric Serra - Homo Delphinus, Water Works, Watergames (from "Le Grand Bleu" movie
soundtrack)
Fiona Joy Hawkins - Portrait of a Waterfall, Improvisation (from album "Portrait of a
Waterfall")
Gnomusy (David Caballero) - Footprints on the Sea (from album "Ethereality")
John Renbourn - Day at the Seaside ( from album "Another Monday")
Kitaro (Keiko Takahashi) - Hydrosphere (from album "Secret Garden")
Kitaro (Keiko Takahashi) - Impressions of the West Lake (from album "Impressions of
the West Lake")
Lifescapes - Fisherman's Sorrow (from album "Scottish Moors")
Llewellyn - Across the Loch (from album "Moonlore")
Llewellyn - The Secret Waterfall (from album "Pure Relaxation")
Maggie Sansone - Over the Waterfall, Sally Gardens, La Bastrange (from album
"Traditions")
Michael Gettel - Watershed (from album "The Art of Nature")
Nightnoise - A Different Shore (from album "A Different Shore")
Rua - Le Marais (from album "Dream Teller")
Suzanne Ciani - Silver Ship, Open Seas (from album "Silver Ship")
Yann Tiersen - Rue des Cascades (from album "Rue des Cascades")
Jerry Goodman- On the Future of Aviation (from album "Best of New Age")
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