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Abstract. In this paper we present a reconstruction method controlled
by the evolution of attributes. The process begins from a marker, propa-
gated over increasing quasi–flat zones. The evolution of several increasing
and non–increasing attributes is studied in order to select the appropri-
ate region. Additionally, the combination of criteria can be used in a
straightforward way.
We present three applications on image segmentation, adaptive math-
ematical morphology and feature extraction. Firstly, our method suc-
cessfully segments connected objects in range images. Secondly, input–
adaptive structuring elements (SE) are defined computing the propaga-
tion approach for each pixel on a pilot image. Finally, input–adaptive SE
are used to assess shape features on the image.
Compared with other methods, our approach is multi–scale and auto–
dual, it does no require parameter to determine the appropriate region,
and it is useful to extract objects of a given shape. Additionally, our
reconstruction is a connected operator since quasi–flat zones does not
create new contours on the image.

Keywords: mathematical morphology, controlled reconstruction, connected op-
erators, adaptive SE, quasi–flat zones, attribute evolution.

1 Introduction

Local operators constitute powerful techniques in digital image processing. They
are based on the neighborhood of each pixel, defined by a kernel. In general, a
kernel is a ball of radius r centered at the point to be processed. In the digital
case, the kernel is reduced to the definition of a local neighborhood describing
the connections between adjacent pixels. In Mathematical Morphology (MM),
these kernels are called structuring elements (SE) and they are the base of so-
phisticated nonlinear techniques for filtering, feature extraction, detection and
segmentation [1,2,3].

In practice, square SE are preferred. However, several works remark the use-
fulness and necessity of adapting algorithms according to intrinsic variability and



a priori knowledge of the image [4]. Adaptive structuring elements are elegant
processing techniques using non-fixed kernels. Such operators, firstly introduced
by Gordon and Rangayyan [5], vary their shape over the whole image taking
into account local image features. Serra [3] called them structuring functions
and defined erosion and dilation with spatially-varying SE.

In the literature, several works have been carried out with the aim of using
image information in order to locally adapt SE shape and size. An overview on
adaptive MM can be found in [4]. Most works proposed filters that privilege
smoothing in homogeneous regions while preserving edges as well as possible.
With this idea, Perona and Malik [6] proposed anisotropic filters that inhibit
diffusion through strong gradients.

One of the first works using adaptive SE is due to Beucher [7]. He devel-
oped a traffic control application where the SE size depended on the perspective
and varied linearly with the vertical position of the vehicle on a video sequence.
Later, Verly and Delanoy [8] applied adaptive MM to range imagery. Since range
images contain significant shape information, adaptive MM is a natural way to
deal with shapes while correcting perspective distortions. Their approach con-
sists in defining square SE such that their size depends on the distance between
objects and sensor. Shih and Cheng [9] used simple and fast adaptive dilations
with elliptic SE that varies its size and orientation according to local properties.
A more sophisticated solution, proposed by Talbot and Appleton [10], defines
pixel connectivities by complete and incomplete paths. Pinoli and Debayle [11]
proposed a general adaptive neighborhood for MM: given a criterion mapping
h and a tolerance m > 0, at each point x an adaptive neighborhood is defined
containing all points y such that |h(y)− h(x)| < m. Lerallut et al. [12] proposed
adaptive SE, called amoebas. These amoebas take image gradient into account
in order to adapt their shape. Morard et al. [13] proposed adaptive SE based
on a region growing process. These SE have a fixed size but they adapt their
shape by choosing recursively homogeneous pixels with respect to the seed pixel.
Angulo [14] used the notion of counter–harmonic mean in order to propose bi-
lateral filters which assimtotically correspond to spatially-variant morphological
operators. Note that all these works are applied to MM, however they are useful
to any other local operators such as convolution or non-linear filters.

In this work, a reconstruction method controlled by the evolution of a given
attribute is presented (e.g. gray–level statistics, area, geodesic distances, among
others). The process begins from markers, propagated over increasing quasi–flat
zones, avoiding the creation of new contours on the image. Then, the best prop-
agation is selected according to the attribute changes. We show that our method
does no required attribute threshold in order to determine the appropriate re-
gion, it is multi–scale and auto–dual. To demonstrate its usefulness, applications
in image segmentation, adaptive SE and feature extraction are presented.

This paper is organized as follows. Section 2 presents a background on con-
nectivity relations and quasi–flat zones. Section 3 defines propagation controlled
by the evolution of attributes. Section 4 illustrates three applications. And Sec-
tion 5 concludes the paper.



2 Background

Connectivity relations are equivalence relations that naturally lead to partitions
satisfying all conditions of image segmentation, that is: “a segmentation is a
partition into disjoint connected subsets (called segments) such that there exists
a logical predicate returning true on each segment but false on any union of
adjacent segments” [15]. For example, the connectivity relation induced by the
equality of gray–level divides the image into maximal connected components of
constant gray–level, called flat–zones [16]. In most cases, partition in flat zones
results in too many segments. A less restrictive connectivity relation can be
defined adding a threshold λ. It allows to connect adjacent pixels if their gray–
level difference does not exceed λ. This procedure, first introduced in image
processing by Nagao et al. [17], is called quasi–flat (or λ–flat) zones labeling and
it is defined as [18]:

Definition 1. Let f be a digital gray–scale image f : D → V , with D ⊂ Z2 the
image domain and V = [0, ..., R] the set of gray levels. Two neighboring pixels
p, q belong to the same λ–flat zone of f , if their difference |fp − fq| is smaller
than or equal to a given λ value.

The definition of λ–flat zones is very useful in image partition, simplification
and segmentation. However, it suffers from the well–known chaining effect of the
single linkage clustering [19]. That is, if two distinct image objects are separated
by one or more transitions going in steps having a gray–level difference lower
than λ, they will be merged in the same λ–flat zone.

Several works try to restrict quasi–flat zones growth in order to prevent
merging between different regions. For example, Hambrusch et al. [20] proposed
a technique to limit the chaining effect by introducing an additional thresh-
old that limits gray–level variation over the whole connected component rather
than just along connected paths. This relation is reflexive and symmetric, but
not necessarily transitive, so it does not always lead to an image partition in
the definition domain. In [21], Soille reviewed several approaches and proposed a
constrained connectivity called (λ, ω, β)–connectivity. In this approach, a succes-
sion of λ–flat zones is built with increasing slope parameter λ (up to a maximum
λmax), none of which may have gray–level difference greater than ω and connec-
tivity index greater than β. This method has the advantage of providing a unique
partition of the image domain, which is very difficult to achieve in any other way.
This method was successfully applied to hierarchical image partition and sim-
plification. Other solutions include viscous propagations by means of geodesic
reconstruction, as proposed in [22,23].

The main disadvantage of these approaches is how to tune the parameters.
With the aim of simplifying this selection, we propose a non–parametric region
growing approach based on increasing quasi–flat zones. It consists in evaluating
attribute changes during region growing in order to select the appropriate par-
tition. In that sense, our algorithm takes advantage of a priori knowledge and
intrinsic information of the image. Let us explain it in the following section.



3 Attribute controlled reconstruction

The idea comes from the reconstruction of an object from a marker. Let us
describe the problem with the toy example of Figure 1. Consider a marker x
on the upper left corner of Figure 1(a) and its propagation by increasing λ–flat
zones using 4–connected neighborhood. The propagation begins with λ = 0 and
it ends when propagation reaches the whole image at λ = 5.

(a) λ=0 (b) λ=1 (c) λ=2

(d) λ=3 (e) λ=4 (f) λ=5 (g)

Fig. 1. Propagation over increasing λ–flat zones from a marker on the upper left corner.

In the domain of image segmentation, the question is: when should propa-
gation be stopped? Obviously, the answer depends on the specific application.
Intuitively, the evolution of an attribute could be useful to make the decision.

For example, Figure 1(g) presents the evolution of four attributes: area S(X),
geodesic elongation1 E(X), mean gray–level µf (X) and standard deviation of
gray–level σf (X). We propose two criteria in order to select the propagation:

– Maximum attribute: To select the propagation such that the attribute is
maximum.

– Attribute cataclysm: To select the propagation such that the attribute
change between two consecutive λ is maximum.

One one hand, one can see between λ=3 and λ=4 that area increases up to
200% of its value (from 14 to 27 pixels). This great change is called an attribute
cataclysm, and it can be a reason to stop the growing process. Another example
occurs between λ=4 and λ=5, where cataclysms are identified on E(X), µf (X)
and σf (X). On the other hand, the maximum elongation occurs in λ=4. Note
that for increasing attributes (e.g. area) the maximum attribute value always
corresponds to the propagation on the whole image. Therefore, selecting the

1 For details on geodesic elongation definition, see Appendix A.



maximum attribute is only reasonable in the case of non-increasing attributes
(e.g. geodesic elongation). For further information about increasing and non-
increasing criteria, the reader is addressed to [24].

Based on Definition 1, let us introduce formal definitions for the set of in-
creasing λ–flat zones:

Definition 2. For all x ∈ D, let Λx be the set of increasing regions containing
pixel x. For all λ ∈ V and j = [1, ..., n− 1], we define Ax(λ) ∈ Λx as the λ–flat
zone of image f containing x:

Ax(λ) = {x} ∪ {q|∃℘ = (p1 = x, ..., pn = q) such that |fpj − fpj+1
| ≤ λ}

In this work λ–flat zones are arbitrarily used. However, this is not a restrictive
choice since any other hierarchical partition can be used as well. Let us introduce
formal definitions for attribute cataclysm and maximum attribute:

Definition 3. Let Γ (Λx) be an attribute on the family of increasing regions
Λx containing pixel x. We define the maximum attribute MΓ and the attribute
cataclysm CΓ as:

MΓ = argmaxλi∈V |Γ (Ax(λi))|
CΓ = argmaxλi∈V |Γ (Ax(λi))− Γ (Ax(λi+1))|

In this work, we arbitrarily analyze only one attribute at the same time.
However, other statistics or combination of several attributes can be used as
well. Compared with other methods, our main advantage is that no parameter
is required in order to determine the adaptive region, it is a connected operator
since the λ–flat zones do not create new contours on the image [16,25], it is
multi–scale, and it is auto–dual since bright, dark and intermediate gray level
regions are processed at the same time.

4 Applications

We present three applications related to image segmentation, input–adaptive
SE and feature extraction: i) Reconstruction by controlled propagation from
markers in order to segment connected objects in range images. ii) The controlled
propagation is computed on a pilot image and the result is used as neighborhood
of each pixel on the original image, similar to [12,26]. And, iii) Features can be
computed on the input–adaptive SE and they are used to characterize each point
on the image with respect to its neighborhood, similar to [13].

4.1 Image segmentation

Thanks to new 3D data availability, an increasing number of geographic applica-
tions such as Google Earth, Microsoft Virtual Earth, OpenStreetMaps and Geo-
portail is flourishing nowadays. Some of these applications do not only require to
look realistic, but also have to be faithful to reality. Automatic urban structures
segmentation is required in order to build accurate large scale 3D city models. In



this section, we present an automatic facade segmentation method on 3D point
clouds developed as part of TerraMobilita project (http://www.terramobilita.fr).
It consists in four steps:

1. To project 3D data to a range image on a horizontal XY–plane (Figure 2(d)).
2. To find facade markers based on height constraints. Note that facades are

the highest structures in the image.
3. To reconstruct facade from markers without including connected objects such

as motorcycles parked next to them (Figure 2(c)).
4. To reproject the result to the 3D point cloud (Figure 2(g)).

For further details about steps 1, 2 and 4, the reader is referred to [27]. Let us
concentrate on the third step since the other ones are straight–forward and are
out of the scope of this paper. The attribute controlled reconstruction introduced
in Section 3 is used for this purpose. Facades are elongated structures in the range
image. Thus reconstruction stops when the geodesic elongation is maximum.
Figure 2, where three motorcycles are parked next to the facade, exemplifies
the process. Figures 2(a) and 2(b) show color pictures helpful to illustrate the
scene. Figure 2(d) present the range image and the facade markers. Figure 2(f)
shows the geodesic elongation evolution with increasing λ values. Reconstruction
at λ=13 is selected, which corresponds to the maximum elongation. Note that
the maximum elongation (at λ=13) and the elongation cataclysm (at λ=14) are
almost the same connected component, thus the stop criterion is not so critical
for this example. The reconstruction result is shown in Figure 2(e) on the range
image and in Figure 2(g) on the 3D point cloud. One can see that the entire
facade is reconstructed correctly without including connected motorcycles.

With respect to other approaches in which a parameter should be selected,
our method only requires selecting an attribute, then the appropriate propa-
gation is automatically selected. This is useful when segmenting objects with
similar attributes on large databases. For example, facades are always the most
elongated structures. Then, if different λ parameters are required to segment
facades on different images (or even different facades on the same image), our
method will adapts the parameter to the best possible value.

4.2 Adaptive Morphology

Among the different approaches in input–adaptive MM, amoebas [12] appear as a
promising solution. They consist in defining a distance that depends on both the
length and the gray–level differences on a neighborhood. This distance is used to
define structuring elements N(x) = {y : dσ(x, y) ≤ r} for each pixel on the input
image. Because the amoeba distance is an increasing attribute, increasing r leads
to an inclusion property useful to define pyramid of operators [28]. In fact, if the
process consists in successive operators (e.g. an opening is an erosion followed
by a dilation), the SE should be the same for all of them in order to preserve
mathematical properties of morphological filters, as proved by Roerdink [29].
Thus, adaptive SE are computed on a pilot image, the same for the whole process.



(a) Illustrative photo (b) Illustrative photo (c) 3D point cloud

(d) Range image: facade markers (black) (e) Range image: reconstruction (black)

(f) Attribute evolution (g) Segmentated 3D point cloud

Fig. 2. Segmentation of connected objects by controlled propagation from markers.

This pilot image can be the original image or a filtered version of it since the
noise can modify the SE shape.

In a similar way to amoebas, we apply our controlled propagation to define
adaptive SE for each pixel on the pilot image. These adaptive SE are useful to
filter structures according to a given attribute. With respect to amoebas, our
method does no require parameters in order to define the SE shape.

For example, Figure 3 presents an opening with adaptive SE using the max-
imum elongation. Figure 3(c) illustrates the SE shape for two pixels in elon-
gated and non-elongated regions. Figure 3(d) compares the result of an adaptive
opening with respect to the classical one (Figure 3(b)). Note that elongated
structures are preserved while non–elongated structures are merged with their
neighborhood.

Figure 4(b) presents another example using gray–level cataclysm. This is
useful to define SE containing pixels with similar gray–level. Figure 4(b) shows
the SE shape for two different pixels in the image. Figure 4(c) presents the
application of this adaptive SE as kernel of a non–linear filter, the median filter.
Note that homogeneous regions are smoothed and high contrasted structures



(a) Input image (b) Classic Opening

(c) Adaptive SE (d) Adaptive Opening

Fig. 3. Input–adaptive SE using the maximum elongation. In this case, the input and
the pilot image are the same.

are preserved. Compared with amoebas and other similar works, our method is
non-parametric since the SE size only depends on attribute selection.

(a) Input image (b) Adaptive SE (c) Median Filter

Fig. 4. Input–adaptive SE using the gray–level cataclysm. White cross indicates the
seed pixel. In this case, the input and the pilot image are the same.

4.3 Feature Extraction

We present an application to extract features from an image based on the shape
of our input–adaptive SE. To the authors knowledge, this idea was first presented
by Morard et al. [13], who proposed an approach using region growing structuring
elements (REGSE). For each pixel on the image, they defined a neighborhood
of N pixels minimizing a homogeneity function ρ(x) (e.g. gray–level difference)
between adjacent pixels. REGSE can follow any homogeneous structure of a
given size but cannot be multi–scale because all REGSE must have exactly N



pixels. Finally, they used the REGSE shape to compute shape features in the
image.

We propose a similar approach with our propagation method. The main com-
parative advantage is that parameter N is not required, because it is adaptively
defined for each pixel during the propagation from it. In that sense, we use
non–constant size SE that depends on the image intrinsic information. This is
specially useful when the image contains objects at different scales. Addition-
ally, remember that our propagation is a connected operator since λ–flat zones
do not create new contours during propagation. This is not true for REGSE,
where region growing is forced to stop at N pixels.

Consider the four examples of Figure 5. From each pixel, we compute the
adaptive SE using a propagation controlled by the maximal geodesic elongation.
Each pixel on the output image contains the maximal geodesic elongation of its
respective adaptive SE. Note that brighter and darker structures are processed
at the same time. In order to favor one of them, feature image could be weighted
using gray–level input image.

(a) Original image (b) Feature image (c) Original image (d) Feature image

Fig. 5. Feature images using input–adaptive SE controlled by the maximal elongation.

Feature images are useful to assess features and segment structures by simple
thresholding. Compared to geodesic thinnings [30] that uses geodesic elongation
as our method does, our approach has the following advantages: i) Our feature
image contains information about all objects in the scene, while geodesic thin-
ning must be computed every time in order to extract structures at different
elongations. ii) Our method, based on quasi-flat zones, deals with bright, dark
or intermediate gray level regions at the same time whereas geodesic thinning,
based on threshold decomposition of the image focuses only on bright objects.
Figure 6 illustrates this comparison. Figures 6(b) and 6(c) present a geodesic
thinning at E(x)=11 and E(x)=20, respectively. While Figures 6(e) and 6(f)
present a simple thresholding on the feature image at these same values. Colored
regions indicate different objects with elongation greater than selected threshold.



(a) Original image (b) Thinning at E(x)=11 (c) Thinning at E(x)=20

(d) Elongation image (e) Threshold at E(x)=11 (f) Threshold at E(x)=20

Fig. 6. Extraction of elongated structures at different thresholds using geodesic thin-
nings [30] and thresholding on the feature image computed by our method.

5 Conclusions

We present a reconstruction method controlled by the evolution of a given at-
tribute during propagation from markers. This method is a connected opera-
tor since the propagation is done on increasing quasi–flat zones, therefore new
contours are not created. Any other connected hierarchical partition could be
used while preserving this property. Additionally, our method is auto–dual since
bright, dark and intermediate gray level regions are processed at the same time.
When this controlled propagation is computed from each pixel on a pilot image,
input-adaptive SE can be defined. The main advantage of our approach is that
no attribute threshold is required in order to determine the appropriate region.

We present three applications on image segmentation, adaptive MM and
feature extraction. In the first case, controlled propagation from markers is used
to separate connected objects. In the second case, the propagation is computed
from each pixel on a pilot image, then it is used to define input–adaptive SE
that satisfies the properties of morphological filters. Moreover, if an increasing
attribute is used, it satisfies the inclusion property necessary to define pyramid
of operators. Finally, we take advantage of SE shape in order to assess features.

In this paper we have just studied the evolution of some attributes, but the
idea can be extended to other attributes and even a combination of them in a
straightforward way. In our experiments, attribute selection was done based on
a priori knowledge.

Our propagation method is presented for gray–scales images. Future work
will include its extension to color or multi-spectral images, where other metrics
should be used to define propagation rules.



A Appendix: Geodesic elongation

The geodesic elongation E(X) of an object X, introduced by Lantuéjoul and
Maisonneuve [31], is a shape descriptor useful to characterize long and thin
structures. It is defined in Equation 1, where S(X) is the area and L(X) =
supx∈X{lx(X)} is the geodesic diameter [32], that means the longest geodesic arc
of X. The longer and narrower the object, the higher the elongation. The lower
bound is reached with the disk, where E(X) = 1. An efficient implementation
can be found in [30].

E(X) =
πL2(X)

4S(X)
(1)
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