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ABSTRACT

This paper proposes new adaptive structuring elements in

the framework of mathematical morphology. These struc-

turing elements (SEs) have a fixed size but they adapt their

shape to the image content by choosing, recursively, simi-

lar pixels in gray-scale, with regard to the seed pixel. These

new SEs are called region growing structuring elements

(REGSEs).

Then, we introduce an original method to obtain some

features by analyzing the shape of each REGSE. We get a

powerful set of operators, which is able to enhance effi-

ciently thin structures in an image.

We illustrate the performance of the proposed filters

with an application: the detection of cracks in the frame-

work of non-destructive testing. We compare these meth-

ods with others, including morphological amoebas and

general adaptive neighborhood structuring elements and we

see that these operators, based on REGSE, yield the best

detection for our application.
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1 Introduction

In the framework of mathematical morphology [11], fea-

ture enhancement and noise reduction are two tasks of great

importance. This work is a part of an industrial project

where our goal is to extract automatically all crack-like de-

fects from metallic pieces. These cracks are long, narrow

and the approach used in this paper, filters out the noise

while preserving the entire crack. Classical translation in-

variant morphology uses SEs of a fixed shape, to probe

an image at different places. This rigid shape turns out

to be a disadvantage for enhancing curvilinear thin struc-

tures. Therefore, adaptive structuring elements constitute

an elegant solution to our problem. These SEs are called

structuring functions by Serra in [12], where he defined the

erosion and the dilation with adaptive structuring elements.

In the literature, there are several ways to suppress

the translation invariance of classical SEs. The first one

consists in adjusting their sizes and shapes to their location

in the image as used by Beucher et al. in [1], in a traffic

camera control application. The size of the SEs depends on

the perspective and varies linearly with the vertical position

of the vehicle in the image.

Another possibility is to adapt the morphology of the

SEs to the image content. Gordon and Rangayyan, in [7],

introduced the notion of Adaptive Neighborhood. The size

of the SEs is chosen by maximizing a contrast function

for each pixel. This led Braga-Neto, in [4] and later, De-

bayle and Pinoli, in [6], to present the General Adaptive

Neighborhood Structuring Elements (GANSE). The struc-

turing elements are defined in terms of mth order connec-

tivity. Another approach was followed by Lerallut et al. in

[9]. They proposed the morphological amoebas, which are

balls defined with a special geodesic distance. Recently,

Grazzini and Soille took the same principle and introduced

structuring elements using the notion of geodesic time [8].

In [13], Tankyevych et al. worked with linear SEs to detect

thin structures, which adapt their orientations to the local

orientation of the objects. Alternative approaches were in-

troduced by Salembier in [10], Cheng and Venetsanopou-

los in [5] and others. The theoretical aspects of the adaptive

structuring elements were studied by Bouaynaya et al. in

[2, 3].

Among the different approaches proposed in the lit-

erature, morphological amoebas introduced by Lerrallut

et al. appeared as a promising solution. The amoe-

bas tend to have a circular shape but can adapt lo-

cally to the image content. Their shapes are driven by

a generalized, gradient-weighted, distance. Let σ =
{x0, . . . , xi, xi+1, . . . , xn} be a path between two points

x0 and xn. The length of this path is defined by L(σ) =
∑

1≤i≤n (1 + λdpixel(xi−1, xi)) where dpixel is the gray-

scale difference between two pixels and λ the gradient

penalty parameter. Therefore, the amoebas distance be-

tween two pixels x and y is defined as follows:

dλ(x, y) = min
σ∈P (x,y)

L(σ), (1)

where P (x, y) is the set of paths linking x and y. In our

framework, it is necessary to continue further in the same

idea, to relax any shape constraints for the sake of total

adaptability to the image content. Debayle and Pinoli have

followed the same idea, where the SEs have no shape and



no size constraints. The only parameter m ∈ Z+ con-

trols the homogeneity of the SE. Let x be the central pixel

and xi be a pixel connected to x with a path σ, such that

∀xi ∈ σ, |f(xi)− f(x)| ≤ m. Hence, the SE is a con-

nected component composed of pixels xi connected by a

path to x. The complexity of this algorithm depends on the

image content and is potentially very high as the SE can be

arbitrary large. Moreover, this filter does not remove im-

pulsive noise since strong gradients prevent the growth of

the SEs.

Therefore, we impose a size constraint to address

these drawbacks and to obtain interesting operators capa-

ble of filtering or feature enhancement. These new SEs are

called region growing structuring elements (REGSE).

With REGSEs, the SEs have no shape constraint,

which is fully driven by the image content. Hence, by ana-

lyzing the shape of each REGSE, we get some information

on the underlying structures. To the authors’ knowledge,

this is the first time that the shape of the adaptive structur-

ing elements is used to assess features.

Section 2 introduces the concept, the definition and

the properties of REGSEs. Section 3 presents the definition

of a new set of operators, which is based on the shape anal-

ysis of the adaptive SEs. Then, section 4 focuses on appli-

cations that highlight both the noise reduction and the fea-

ture enhancement skills of these operators. Finally, section

5 is reserved to the practical considerations of this method,

where we propose an implementation example.

2 REGSE : adaptive SE

2.1 Definition

Let f be a gray-scale image, f : D → V with D ⊂ Z2,

the domain and V = [0, . . . ,M ], the set of values. For all

x ∈ D let Ax be the set of SEs such that Ax ∈ Ax if and

only if:

Ax ⊆ D,

x ∈Ax,

Ax connected.

(2)

Further, we shall denote by AN
x , a SE belonging to

Ax, having exactly N pixels: Card(AN
x ) = N . The con-

struction of these structuring elements will be done recur-

sively with a region growing process: x is considered as the

seed and Card(AN
x ) = N is the stopping criterion:

A1
x = {x}

A2
x = A1

x ∪ {y2}
...

AN
x = AN−1

x ∪ {yN} ,

(3)

where yi is one of the neighbor pixels of Ai−1
x , selected

through the minimization of a homogeneity function ρ,

written :

∀a, b ∈ D, ρ(a, b) = |f(a)− f(b)| . (4)

Then, yi is given by:

yi ∈ argmin
yj∈N (A

j−1

x )

ρ(x, yj), (5)

whereN (.) denotes the neighborhood relation (detailed be-

low). Figure 1 presents the shape of 4 REGSEs (white

pixels generated from the crosses) on a given picture. We

notice the SEs are very flexible. Thus, the structuring el-

ements can be spread over the entire image (the third SE

of figure 1 follows a constant-level curve of the input sig-

nal). We can see here the main advantage of this method,

since the structuring elements can follow any thin struc-

tures, even one-pixel wide. Another important observation

is that, on large flat zones, the shape of the SEs is a square

(SE 1 on the top left). This is due to the region growing im-

plementation. On flat zones, ρ is equal to zero and equation

5 is reduced to arbitrarily choosing a pixel from the neigh-

borhood of AN−1
x : (yi ∈ N (AN−1

x )). Classically, a region

growing process is based on a queue. Associated to an 8

connectivity, this leads to a propagation following a square

shape. In what follows, we will use this 8 connectivity,

which is formally written: N (x) =
{

y, ‖x− y‖L∞

= 1
}

.

This ensures the regular shape of AN
x on flat zones. Later,

we will use this important property to build new operators

based on the shape of the REGSEs (see section 3).

1

2

3 4

Figure 1. Four region growing structuring elements with

N = 506 pixels. The central pixels of each SE (the seeds),

are referenced by the crosses.

2.2 Mathematical morphology

With these adaptive SEs, we are able to build the elemen-

tary operators of mathematical morphology. By taking for

each pixel of the image f the minimum over the REGSE,

we obtain the erosion ǫ:

ǫNf(x) =
∧

xi∈AN
x

f(xi). (6)

The dilation adjunct to the erosion is given by:

δNf(x) =
∨

xi|x∈AN
xi

f(xi). (7)



Recall that the transposition of spatially variant SE

is not a geometric set reflection (as for the translation-

invariant SE), but rather the so-called set of descendants

(see [12], Section 2.2 for details). Hence, using the adjunc-

tion allows to compute openings and closings, respectively

written γN and ϕN . We have seen that a REGSE can adapt

its shape to any structure. This is a major advantage be-

cause it can follow one-pixel wide and tortuous structures.

However, in some conditions, this could be considered as a

drawback since thin structures could be found in the noise.

Just like morphological amoebas, it is sometime useful to

define a pilot image to compute the shape of the REGSE

[9]. The pilot image can be the initial image blurred by a

Gaussian filter of size 1 or 2. Recall that an opening (or

closing) by adjunction requires the same pilot image for

the erosion and for the dilation. Using a pilot image to con-

struct REGSEs reduces the sensitivity to the noise pattern,

which improves the noise reduction capabilities of this fil-

ter.

The result of an opening and a closing are presented

in figures 5(b) and 5(c) with a Gaussian pilot image of stan-

dard deviation equal to 1. These filters preserve the bound-

aries of the image except when the size of the REGSE is

bigger than the size of the analyzed structures. Indeed, in

the following section, we will see that openings and clos-

ings with REGSEs behave similarly to area openings and

closings.

2.3 Properties

For binary images, the REGSE opening of size N is equiv-

alent to an area opening of the same size. This behavior

comes from the construction of a REGSE: Card(AN
x ) =

N . Therefore, the REGSE must have exactly N pixels and

every object smaller than N is suppressed. By duality, clos-

ings are equivalent to area closings.

This equivalence between a REGSE opening and an

area opening is not true anymore for gray-scale images.

Figure 2 points out some differences for a one-dimensional

signal. Here, the area opening of size 3 does not change

the input signal, whereas an opening based on REGSEs of

size 3, deletes the small step referred as pixel x6. By con-

struction, the REGSE of pixel x6 is A3
x6

= {x6, x7, x8}.
During the erosion process, only one pixel is changed. The

pixel x6 took the value of the pixel x7. Afterward, the di-

lation by adjunction does not change anything since pixel

x6 does not belong to any others REGSEs. Here, we get

γREGSE ≤ γTI and this is always true for 1D signals. With

this example, we have noticed that this filter is useful to

clean these small steps between boundaries.

At the first glance, these filters based on REGSEs

seem to be connected operators. However, figure 3 gives

a simple counter example where a new boundary is cre-

ated during the opening process. The pixels x1, x2, and

x3 have the same adaptive structuring elements: A4
x =

{x1, x2, x3, x4} just like pixels x6, x7, and x8: A4
x =

{x5, x6, x7, x8}. Then, during the dilation by adjunction,

the flat zone made by pixels from x1 to x3, propagates its

value to x4 whereas x5 does not change. Hence, they are

not connected operators.

Another property, which is not immediately intuitive,

is illustrated in figure 4. An opening of size 5 is locally

higher than an opening of size 6 (pixel x6). This implies

that the family of openings based on REGSE, is not a gran-

ulometry, as defined by Serra in [12].

x x x x x x x x x x x

Input
Area Op
Op REGSE

1 2 3 4 5 6 7 8 9 10 11

Figure 2. 1D signal and its corresponding area opening and

REGSE opening. Size 3 pixels.

x   x   x   x   x   x   x   x   x   x   x

Input
Opening N=4

1      2      3      4      5      6      7      8      9     10     11

Figure 3. 1D signal and its corresponding REGSE opening

of size 4 pixels.

x x x x x x x x x x x

Input
Opening N=5
Opening N=6

1 2 3 4 5 6 7 8 9 10 11

Figure 4. 1D signal and its corresponding REGSE openings

of size 5 and 6 pixels.

The REGSEs have no shape constraint however, the

size is fixed and the region growing process preserves a

regular shape on flat zones. In the following section, new

operators are introduced that analyze the shape of the adap-

tive SEs.



(a) Input (b) Opening (REGSE of size 35) (c) Closing (REGSE of size 35)

(d) Mean (REGSE of size 35) (e) Median (REGSE of size 35)

Figure 5. Noise reduction filter based on REGSEs of a size N = 35. The pilot image is initial image blurred with a Gaussian

filter of standard deviation equal to 1.

3 New operators based on the shape of the

SEs

A new powerful set of operators can be defined based on

adaptive structuring elements. They use the shape infor-

mation of each structuring element for shape-controlled

feature enhancement. The proposed operators are general

and can be adapted to many adaptive structuring elements.

However, they are especially built for REGSEs, as their size

is constrained but not their shape. Hence, we will describe

these new operators using REGSEs.

3.1 Inertia operator

The Inertia operator computes, for each pixel, the moment

of inertia of the adaptive SE:

IN (x) =
1

N

∑

xi∈AN
x

‖xi − x̄‖22 , (8)

with x̄ = 1
N

∑

xi∈AN
x
xi, the barycenter of the structuring

element. Therefore, when the seed pixel is on a thin struc-

ture, the REGSE’s shape will be elongated and the answer

of this operator will be strong. Hence, this is a very useful

operator to detect elongated structures in the image.

3.2 Extension operator

Another operator, namely the Extension operator, has

roughly the same behavior as the inertia operator. Instead

of computing the inertia of the REGSE’s shape, we find the

maximal distance from the REGSE’s barycenter (Equation

9). This operator is dependant on the image’s scale whereas

the Inertia operator is scale invariant.

ExtN (x) = max
∀xi∈AN

x

‖xi − x̄‖2 . (9)

These two operators detect elongated structures in the

image, no matter their gray-scale values. To focus on a

given type of structures, we introduce a parameter p that de-

pends on the average gray-scale value of the structuring el-

ement. p(x) = 1
N

∑

xi∈AN
x
f(xi) to highlight bright struc-

tures and p(x) = 1
N

∑

xi∈AN
x
(M − f(xi)) for dark struc-

tures. Therefore, these weighted operators can efficiently

enhance bright or dark thin structures. The usefulness of

these operators is shown through examples presented in the

next section.

4 Experiments

REGSEs can be used for many linear and non-linear oper-

ators. Here, we describe some of them for gray-scale im-

ages with a Gaussian pilot image of standard deviation of



1. Then, we compare them with morphological amoebas

and with GANSE. Finally, a real application is proposed.

4.1 Mean, median and rank filters

By construction, REGSEs are reluctant to cross object

edges since, they are composed of pixels having similar

intensity level. By replacing the output seed pixel by the

mean value of AN (mean filter), we increase the signal

over noise ratio, without misplacing the boundaries of the

image. The more general rank filters sort the pixel values

from the REGSE, and assign the output seed pixel with a

value from the sorted list of AN . The minimum value is the

erosion, the maximum is the dilation and the middle value

is the median filter. Little blur is introduced and like a clas-

sical median filter, the salt and pepper noise is suppressed.

Figures 5(d) and 5(e) present a mean and a median

filter on the image cameraman. The noise is considerably

reduced without excessively blurring the boundaries of the

image.

4.2 Comparison with other methods

We compare the REGSE with morphological amoebas and

with GANSE respectively introduced by Lerrallut et al. and

by Debayle and Pinoli. These two methods are explained

in the introduction, as well as the signification of the tuning

parameters. Figure 6(a) is a simple material image used

for illustration purposes. We want to filter out the white

artifacts in the center of the cells.

With amoebas, the radius is chosen to match the num-

ber of pixels of the REGSE (r = 5 pixels). However, there

is another parameter to work out: the gradient penalty λ

for the tonal distance. This is not an easy parameter to set.

With a very small value of λ, the filter behaves just like

a translation invariant SE (the image content is not taken

into account). On the contrary, a high value of λ will pre-

vent the amoebas to grow up, unable to cross any gradient

and leaving the initial image unchanged. Empirically, we

choose λ = 0.08. Figure 6(b) is an opening with amoebas

and we notice that the noise is highly reduced. However,

the boundaries are blurred and the artifacts are not removed

completely.

The GANSE method involves only one parameter m.

If m is small, the GANSE is unable to grow up whereas, a

high value will allow the SE to cross large gradients. How-

ever, the gradient between the artifact and the background

is the same as the gradient between the cells boundaries and

the background. Then, this filter is relatively inefficient to

filter out the artifacts in this case.

With the REGSE, the parameterization is straightfor-

ward and the value of N is chosen by analyzing the largest

structures to suppress (N = 25 pixels). A REGSE open-

ing, preserves correctly the boundaries, while suppressing

the artifacts.

The filter based on REGSE, are able to adapt fully

their shapes to the image content. Moreover, the size con-

(a) Input (b) Amoebas (r = 5, λ = 0.08)

(c) GANSE (m = 35) (d) REGSE (N = 25 pixels)

Figure 6. Comparison of openings with different adaptive

structuring elements.

straint is a key parameter for feature enhancement, where

this filter outperforms the other methods. In the next sec-

tion, we apply these operators on a real application and

we compare and discuss the performance of the operators

based on REGSE.

4.3 Application to the detection of cracks

The idea of this filter came from picture 7(a). The extrac-

tion of these very thin cracks is easier if the structuring

elements adapt their shapes to the image content. Relax-

ing the distance constraint adds more flexibility to the SE

shape, which can now follow any crack with no restriction

on its tortuosity. Therefore, an opening with REGSEs of

approximately the size of the structure to detect, allows the

enhancement of this structure. Figure 7 presents the results

of an opening with a REGSE, with a segment of line as

SE, and with amoebas. The supremum of openings with

a segment of line in all orientations allows removing the

noise. However, it only enhances the straight parts of the

cracks. The amoebas SEs are not able to extract thin lines

whereas, an opening based on REGSE with a size of 150

pixels yields a good enhancement of these structures.

Even more interestingly, the Inertia and the Extension

operators, built with the shape of each REGSE, offer a very

good detection (7(e) and 7(f)). A direct threshold on the

resulting image is even possible and leads to a correct seg-

mentation and a good crack extraction.



(a) Input (b) Opening based on REGSEs, N = 150 pixels

(c) Amoebas (radius of 5, λ = 0.025) (d) Opening with rotating segments of length 21 pixels. Lines are ori-

ented every 1
◦.

(e) Weighted inertia operator based on REGSEs, N = 80 pixels pixels (f) Weighted maxima extension operator based on REGSEs, N = 80 pix-

els pixels

Figure 7. Comparison of methods with different structuring elements.



5 Practical considerations

The construction of the REGSE turns out to be a com-

putationally intensive method. Therefore, having an effi-

cient implementation is of great importance. Equation 3

describes a recursive construction of the SE. Hence, we

introduce an adapted data structure to simulate the recur-

sion. In this section, we will speak about this data struc-

ture, and how we can apply it to create REGSEs. We will

finally make some remarks on the execution time between

REGSE, amoebas, and GANSE.

5.1 Data structure

The data structure used is a hierarchical queue (HQ). This

HQ will be composed of M queues (fifo) ordered by de-

creasing priority (One for each gray tone of f ). Hence,

HQ(0) and HQ(M) have respectively the highest and the

lowest priority. The insertion of a pixel xi into the HQ is

done with the priority ρ(x, xi), with x being the seed pixel.

Thus, the operation inserting the pixel xi into the HQ is

written HQ(ρ(x, xi)).push back(xi) and then, removing

a pixel having the highest priority is made with a pop as

described in the algorithm 1. This data structure used here

is computationally efficient, since we avoid the sorting step.

Algorithm 1 Calculate y = Pop(HQ)

Require: HQ is not empty

1: for i = 0 to M do

2: if HQ(i) is not empty then

3: return HQ(i).pop()

4: end if

5: end for

Algorithm 2 Calculate REGSE = Find REGSE(f,x,N)

Require: N ≥ 1, x ∈ D,Card(D) >= N

1: State← NOT PROCESS

2: AN ← ∅

3: HQ← Init(0)
4: HQ(0).push back(x)
5: State(x)← PROCESS

6: loop

7: y ← Pop(HQ)
8: AN =AN ∪ y

9: if card(AN ) == N then

10: return AN

11: end if

12: for all p ∈ N (y) do

13: if State(p)==NOT PROCESS then

14: STATE(p)← PROCESS

15: HQ(ρ(p, x)).push back(p)
16: end if

17: end for

18: end loop
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Figure 8. Linear w.r.t. n: Computation time of an erosion

with REGSEs as function of the number of pixels in the

image and for different size of SEs. This benchmark was

made on a computer Intel Core (i7-870) CPU @2.93GHz

using a multithreaded C++ implementation. (Images: Lena

of increasing size)

5.2 Implementation

The computation of the REGSE’s shape is described in al-

gorithm 2. This function returns a set of N pixels corre-

sponding to AN . We consider the N first pixels that are

popped from the HQ as our structuring element (Line 8).

Using a HQ avoids a computationally intensive sorting step

and figure 8 shows that the computation time is linear with

reference to the number of pixels of the image and with the

size of the structuring element.

5.3 Comparison with amoebas and GANSE

In comparison with amoebas, the complexity of REGSEs is

almost the same. In practice however, the construction of

REGSEs is faster than amoebas. This is due to the compu-

tation of the amoebas’ distance, which is time consuming

in comparison with the extraction of the closest pixels in

gray-scale for the REGSEs.

The complexity of GANSE’s algorithm is more diffi-

cult to handle as it depends on the value of the parameter

m and on the content of the image. There is no size con-

straint and each structuring element can potentially grow

up through the entire image. In the general case however,

GANSEs are usually much slower than REGSEs.

We store the computation time required to build figure

6. We use only one core of our Intel Core 2 Duo (T7700)

CPU, @2.4GHz and we use the same image processing li-

brary. We get 0.87s, 2.05s and 201s respectively for com-

puting an opening with REGSEs, amoebas and GANSEs.



6 Conclusion and future work

We have presented here new adaptive structuring elements

used to build morphological operators. The structuring ele-

ments can have any shape as long as it is a connected com-

ponent, with a fixed area. This is the main advantage of

filters based on REGSE. Any one-pixel wide structure can

be extracted, whereas other structuring elements cannot fit

in the object and therefore destroy it. All classical morpho-

logical operators based on structuring elements can be used

with REGSEs. Openings and closings, with region growing

structuring elements offer possibilities of very fine filtering,

while preserving the boundaries of the image. The param-

eterization of this algorithm is also very easy. The only pa-

rameter to handle is the number of pixel of the structuring

elements. This is a clear advantage compared with other

filters.

Furthermore, we introduce new and efficient tools

to enhance thin structures of the image. To the authors’

knowledge, this is the first time that the shape of the SEs

is analyzed to obtain some features. The Inertia and Exten-

sion operators are powerful tools and they offer many new

possibilities. These operators are built for REGSEs but they

can be adapted to all other adaptive structuring elements.

These operators are faster than GANSE and amoebas

and they are fast enough for many applications. However,

we are currently working on a fast and accurate approx-

imation of the REGSEs and on another representation of

the image, which is based on graphs, to speed up the com-

putation time.

Future work will include the extension of these filters

to color images. Classically, we could apply independently,

a filter on each channel and then combine the results to ob-

tain the filtered image. The use of more perceptual dis-

tances in the LAB or HLS color space, would improve the

quality of the result by reducing the false color artifacts.

We will also extend the operators based on the shape of the

SEs.

This framework is general as we can apply it to lin-

ear and non linear filters with images of any dimension

(1D, 2D, . . . , nD). Therefore, it offers new perspectives

for noise reduction and features enhancement.
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