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Abstract

The aim of this paper is to propose tools for statisti-

cal analysis of shape families using morphological op-

erators. Given a series of shape families (or shape cate-

gories), the approach consists in empirically computing

shape statistics (i.e., mean shape and variance of shape)

and then to use simple algorithms for random shape

generation, for empirical shape confidence boundaries

computation and for shape classification using Bayes

rules. The main required ingredients for the present

methods are well known in image processing, such as

watershed on distance functions or log-polar transfor-

mation. Performance of classification is presented in a

well-known shape database.

1. Introduction

Object recognition based on shape information is a

classic problem in image processing. That motivates the

development of tools for statistical analysis of shapes

in R2. In [5] is described a geometric technique to

parametrize curves based on their arc lengths and their

angle function to represent and analyze shapes. Tech-

niques for clustering learning in planar shapes are de-

scribed in [9]. Shape classification problem is referred

as “classify a given shape into one of the predefined

classes”, it can be solved using a shape-probability per

class. Usually the first step towards the design of a

shape classifier is a feature extraction followed by a

shape matching stage. Curvature, chain codes, Fourier

descriptors, tangent space representation [6] and beam

angle statistics (BAS) [2] are examples of contour-

based descriptors. Dynamic programming (DP)-based

shape matching is applied successfully in [8] for shape

matching. Hidden Markov models (HMMs) are also be-

ing explored as one of the possible shape modeling and

classification frameworks [11].

This paper presents an approach to analyze a given

family of shapes based on the computation of mean

shape and associated variance of shape, obtained by

means of a mathematical morphology algorithm. Start-

ing for the empirically obtained mean and variance, it is

introduced a novel methodology of shape classification,

using a training stage producing an associated probabil-

ity map per class. Additionally, random shape gener-

ation and empirical confidence shape boundaries com-

putation are also investigated. All the examples of the

paper are obtained with shape families of the MPEG-

7 database. Additional examples of the different algo-

rithms using the complete database can be found in the

website 1.

2. Statistical Shape Modelling

2.1 Mean shape and variance of shape using
mathematical morphology

Let Xj = {Xj
1 , Xj

2 , . . . , Xj
Nj
} be a family (or col-

lection) of Nj shapes for the class j, for j = 1, . . . , J

where Xj
i ∈ P (E) represents the set (or binary image)

of the shape i in the family of shapes labeled by j, and

the support space E is a nonempty set. Typically for

the digital 2D images E ⊆ Z2. The set Xj
i is a com-

pact set (and typically a closed simply connected set).

The family Xj can be considered as a random variable

of shape, where Xj
i represents a realization of this ran-

dom variable. We make the assumption that each class

of shapes, i.e. the set of shapes that can be identified

with a common concept or object, e.g. fish shapes, are

they are centered, oriented and scaled.

Let us start by the classical definition of the mean of

N samples: µ is the value such that f(c) =
∑N

i (xi −
c)2 is minimal. In the extension to a shape family Xj ,

we start by constructing the sum of distance functions

to the frontier sets Υ(Xj) using the squared Euclidean

distance, or an appropriate squared discrete distance [3]

(∆2
c denote outer distance and ∆2 inner distance). Thus,

the mean shape µXj
∈ P (E) is the compact set associ-

1http://cmm.ensmp.fr/∼velasco/Shape
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Figure 1. Analysis of “bell” shapes using
the proposed approach.

ated to of locally minimal contour of obtained from the

functional:

∆2Xj =
N

∑

i

[∆2
cX

j
i + ∆2Xj

i ] (1)

The contour, or frontier, of the mean shape µXj
will

be denoted by Υ(µXj
). As it was introduced in [1],

this optimal contour can be easily obtained by comput-

ing the watershed line of the inverse (or complement) of

∆2Xj . An example of this analysis is given in Fig. 1.

Additionally, using also the generalization of the clas-

sical statistical notion, the variance of a shape family is

defined for each point in the mean contour as the func-

tion σXj
: Υ(µXj

)→ R
+, given by [7]:

σXj
=

∆2Xj

Nj

(2)

It is important to remark that the variance of shape is

a set of nonnegative values associated to each point in

Υ(µXj
).

(a) Random Shapes (b) ECB for Υ(µXj
)

and α = 0.95

Figure 2. Random shapes and empirical
confidence boundaries for Υ(µXj

) in the
“Butterfly” shapes family

2.2 Random Shapes Generation

A straight statistical application of the representation
(

µXj
, σXj

)

is the generation of random shapes. Our

proposal is to generate a random perturbation of µXj

in its log-polar representation [1], and these stochastic

perturbations must follows the empirical variance σXj
.

More precisely, the approach is detailed in algorithm 1.

Fig.1(e) µp
Xj

gives the log-polar coordinate representa-

tion (superscript p will denote log-polar space) of the

mean shape depicted in Fig.1(d). An example of ran-

dom shape generation according to our algorithm, for

a family of butterflies, is presented in Fig. 2(a). More

examples can be found in the website1.

Input : Family of shape Xj

output: Random shape R(Xj)

Calculate µXj
and σXj

;

Transform to log-polar µp
Xj

and σp
Xj

;

u1 = U(−1, 1), u2 = U(0, 2π) ;

for i← 1 to 2π do
Rp(θi, mod(: +u2, 2π)) = µ

p

Xj
(θi, :) + u1σ

p

Xj
(θi, :);

end

R = polar inverse transformation of Rp;

Algorithm 1: Random Generation of Shapes

2.3 Empirical Confidence Boundaries for
shape mean

Under the assumption of independence gaussian dis-

tribution in each direction of the log-polar transforma-

tion, i.e., N (0, σp
Xj

(θi)), we can define the notion of

Empirical Confidence Boundaries (ECB) of shape. The

idea is to extract a confidence boundary around µXj
us-

ing the percentiles associated to a gaussian distribution.

Technical description of our approach is given in al-

gorithm 2, where ∆ denotes the symmetric set differ-

ence and Φ−1 represents the inverse of the standardized



gaussian cumulative distribution function. Examples of

ECB of shape are showed in Figs. 2(b) and 1(f).

Input : Family of shape Xj , confidence parameter α

output: Boundary CBα

Calculate µXj
and σXj

;

Transform to log-polar µp
Xj

and σp
Xj

;

k1 = Φ−1
(1−α2)

;

k2 = Φ−1
(α2)

;

for i← 1 to 2π do

Sp
1 (θi) = µp

Xj
(θi) + k1σ

p
Xj

(θi);

Sp
2 (θi) = µp

Xj
(θi) + k2σ

p
Xj

(θi);

end

CBα = S1∆S2 ;

Algorithm 2: Empirical confidence boundary of a

shapes family

2.4 Classification in families of shapes

Starting again from the pair
(

µXj
, σXj

)

, the goal

now is to define a probability associated to the family of

shapes Xj . Firstly, we introduce a measure for a point

~vi ∈ R
2 w.r.t. the shape family Xj as follows:

Ψj(~vi) = max
k
N

(

Υ(µXj
)(k),ΣXj

(k)
)

(~vi) (3)

where the bivariate gaussian distribution is centered

at each point k which belongs to the mean contour

Υ(µXj
)(k) and has an uncorrelated covariance matrix

Σk = I(2×2)σXj
(k), where σXj

(k) is the variance value

at point Υ(µXj
)(k). The gaussian distribution in ex-

pression (3) can be clearly substituted for another ellip-

tically contoured distributions or even an asymmetric

distribution to penalize any direction. Fig. 3(a) shows

an illustration of the assumption of bivariate gaussian

distribution at each value of Υ(µXj
). Secondly, given

a set of shapes Xj , their associated probability map

(APM) is defined as

APMj = Ψj(~vi),∀~vi ∈ R
2 (4)

Under bivariate gaussian assumption, the expression (4)

can be calculated for a given point ~v as

APMj = max
k

∫ 2π

0

∫ ck

0

r exp
−r2

2σ2 drdθ

= 1−min
k

{

exp
−c2

k

2σ2

k

}

where c2
k is the distance between ~v and each point k ∈

Υ(µXj
). Fig. 3(b) shows the APMj for the class of

bells. Other examples can be consulted in the website 1.

(a) Bivariate gaussian assumption in

each value of Υ(µX )
(b) APMj

Figure 3. Shape family, mean and variance
contours using proposed approach.

The next step is to use APMj in order to obtain an

analytical expression to calculate the empirical condi-

tional probability per class j for a new shape X∗ ∈
P (E), denoted P [J = j/X∗], knowing the empirical

mean µXj
and variance σXj

. Intuitively, a shape X∗

going through zones of the space with highest probabil-

ity APMj has to accumulate more likely in it. On the

other hand, if
∫

Υ(X∗) ≪
∫

Υ(µXj
), its probability

has to reduce, because we assume that all the shapes are

oriented and rescaled. Therefore, taking into account

these ideas, the a posteriori probability is given by

P [J = j/X∗] =

∫

APMj
X∗

max(
∫

X∗,
∫

Υ(µXj
))

(5)

where
∫

denote the integral over an APM with con-

stant value 1 for every point. Note that the denominator

is comparing lengths between the frontier of the mean

shape in the class j and the frontier of the new shape to

predict.

Consequently, we can use (5) in a Bayes decision

rule to design the following statistical classifier g(·):

g(X∗) = argmax
j

(πjP [J = j/X∗]) (6)

where πj is the a priori probability and it represents the

likelihood for the appearance of the class j in the global

data set.

3. Experiments

The well-known MPEG-7 test database consists of

70 types of objects, each family having 20 different

shapes. The database is challenging due to the pres-

ence of examples that are visually dissimilar from other

members of their class, and examples that are highly



Table 1. Performance comparison of

shape classification for MPEG-7 database

Method Accuracy (%)

Robust Symbols Representation [4] 98.57

RACER [10] 96.80

Our method 96.83

Figure 4. A representation for each class
considered in experimental results

similar to members of other classes. Our experiments

involve a subset of the available shapes. The subset

consists of 600 images: 30 shape categories, 20 images

per category. Shapes have been centered using cen-

ter of gravity, oriented using the principal axis and fi-

nally, their size have been normalized using the minimal

bounding circle in log-polar representation. We con-

sider uninformative a priori probabilities in expression

(6). Fig. 4 shows an example of one shape for all the

classes considered. To evaluate the accuracy of classifi-

cation using the proposed approach, we have used cross

validation Leave-one-Out strategy. Results of ASM
computation and shape classification are presented in

Fig. 5(a) and Table 1 (which includes the comparison

with other published works). Average confusion matrix

is given in Fig. 5(b).

4. Conclusion and Perspectives

A new approach for the statistical analysis of 2-D

shapes has been presented. We have shown how our

methodology can be used for shape classification us-

ing a quite simple probabilistic formulation, by com-

puting an associated probability map per class and using

a simple Bayes classifier as classification rule. The re-

sults indicate that the classification performance is com-

parable to those reported in the literature using others

approaches. Moreover, an algorithm of shape random

generation has been also presented, and an empirical ap-

proach to produce confidence boundaries has been for-

mulated. Finally, we notice that our approach does not

require feature extraction and it is formulated in the nat-

(a) ASM per class (b) Confusion Matrix

Figure 5. Associated probability map and
confusion matrix for MPEG-7

ural form of a shape space. Future work will deal with

a more formal mathematical framework for the notion

of “measure” of this shape space. Random sampling

based in gaussian processes, considering spatial corre-

lation, will be considered in future research.
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