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Abstract An attribute opening is an idempotent, anti-
extensive and increasing operator, which removes from

an image connected components which do not fulfil a
given criterion. When the increasingness property is
dropped, we obtain a – more general – attribute thin-

ning. In this paper, we propose efficient grey scale thin-

nings based on geodesic attributes.

Given that the geodesic diameter is time consum-

ing, we propose a new geodesic attribute, the barycen-
tric diameter to speed up the computation time. Then,

we give the theoretical error bound between these two

attributes, and we note that in practice, the barycentric

diameter gives very similar results in comparison with

the geodesic diameter. Finally, we present the algorithm

with further optimisations, to obtain a 60× speed up.

We illustrate the use of these thinnings in auto-

mated non-destructive material inspection: the detec-

tion of cracks. We discuss the advantages of these oper-

ators over other methods such as path openings or the

supremum of openings with segments.

Keywords Geodesic attributes · geodesic diameter ·
barycentric diameter · elongation · tortuosity ·
thinnings · thickenings · mathematical morphology

1 Introduction

Automated optical inspection for non-destructive test-

ing is an economically important, fast developing do-

main. One of its main tasks, the detection of cracks,
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requires efficient image processing methods. The detec-

tion of cracks (usually long, thin and randomly tortuous

structures) in the presence of noise is a challenging task.

Generally speaking, filtering of unwanted objects

(e.g. noise) while preserving the desired information is

a frequent pre-processing step. Mathematical morphol-

ogy [12,25,26] is based on a set approach and classically

uses structuring elements to obtain information on the

morphology of the objects. In their overview of mor-
phological filtering, Serra and Vincent [27] noticed that
simple openings and closings with square, disk or hexag-
onal structuring elements, are often good enough for

the filtering task. However, noise reduction and feature

enhancement properties can be improved by adapting

the shape and size of the structuring elements to the

image content (see e.g. [2], [3] and [14]). Openings and
closings by reconstruction are also considered as a part
of shape-adaptive morphology. This led Vincent [33] to

propose area openings and later Breen and Jones more

general attribute openings and thinnings [4]. Later, Ur-

bach and Wilkinson [32,34] proposed thinnings based

on the inertia to detect elongated objects in the image.

In order to enhance thin structures of random ori-
entation, one can use the supremum of linear openings

over all orientations. Although this suffices when the

structures have a bounded local curvature, it fails for

randomly tortuous thin cracks. In order to relax the cur-

vature limit, Heijmans et al. [5] introduced path open-

ings. Instead of rigid linear structuring elements, they

use flexible paths inferred from an underlying connec-

tivity graph. The paths are kept if, and only if, their

length is longer than a given constant. Nonetheless, very

tortuous structures still cannot be entirely detected.

The geodesic diameter, initially proposed by Lantué-

joul and Beucher [8], is particularly useful to measure

the length of thin structures. We associated, in Morard
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et al. [13], attribute thinnings and geodesic attributes

to build a new family of operators. These geodesic at-

tribute thinnings increase the shape flexibility by re-

moving any constraint on the tortuosity. Albeit devel-

oped to detect cracks, they can be used to detect other

kinds of similar fibrous structures. Nevertheless, the

geodesic diameter being computationally expensive, it

is unsuitable for time-critical industrial applications.

This paper extends [13], by introducing and deeply

analysing a new, fast and accurate geodesic attribute:

the barycentric diameter. We also propose further ex-

periments, results and an efficient algorithm, which is

faster than path openings and readily usable for time-

critical industrial applications.

We start by reviewing attribute thinnings and geo-
desic binary attributes in sections 2 and 3. Section 4

introduces the barycentric diameter. Section 5 explains
the method to construct geodesic attribute thinnings.
Section 6 illustrates their interests through two appli-

cations and provides a detailed comparison with path

openings, initially developed to solve similar problems.

Lastly, section 7 focuses on an efficient implementation,

the complexity and the timings.

2 Background: attribute thinnings

Even if most definitions used in this paper can be given

in a continuous domain, for practical reasons we con-

sider a discrete domain.

Let I : D →{0; 1} be a binary image, with D a finite
(typically rectangular) subset of Z2. A binary operator

(or operator, when there is no ambiguity) is a function

that transforms a binary image into another binary im-

age. The set X contained in I is X = {x ∈ D|I(x) = 1}
and we denote Xc its complement in D. We associate
to D a local neighbourhood describing the connection

between adjacent pixels. In this study, each pixel is
connected to its eight nearest neighbours. With this
8-connectivity, we introduce the collection of the con-
nected components (CC) of X as {Xi}. From now on,

by object we understand one connected component from

the collection {Xi}.

2.1 Connected components and attributes

We wish to keep or delete the objects in an image ac-

cording to intuitive attributes like length, tortuosity,

elongation or circularity. Given some connected compo-

nent Xi, these attributes will be respectively denoted

L(Xi), T (Xi), E(Xi) and C(Xi). Their definitions will

be given later. These attributes allow to define criteria

like “longer than or equal to” (L(.) ≥ λ), or “less tor-

tuous than” (T (.) < λ), with some λ ∈ R+. Formally, a
criterion χ is a function mapping the set of connected

components of D into {0, 1}, where 0 can be interpreted

as false and 1 as true.

The binary operator based on criterion χ is then

defined as:

ψχ(Xi) =

{

Xi if χ(Xi) is true

∅ otherwise,
(1)

for all CCs Xi included in D.

2.2 Binary attributes thinnings

Based on the binary operator ψχ, the corresponding

attribute thinning of X is

ρχ(X) =
⋃

i

ψχ(Xi). (2)

This is equivalent to scanning, one by one, the different

CCs of X, and either preserving them intact or remov-

ing them, depending on the criterion χ.
Attribute thinnings are anti-extensive and idempo-

tent (see [4] for the proof). Moreover, if the criterion is

increasing, then the corresponding attribute thinning is

also increasing and the operator becomes an attribute

opening.

The dual transform of a thinning is called a thick-

ening, and is obtained using the complementation:

δχ(X) = [ρχ(X
c)]

c
. (3)

In what follows, we restrict our study to thinnings for

simplicity, since the computation of thickenings is straight-

forward with equation 3.

In the next section, we will discuss the extension of

thinnings to grey level images.

2.3 Grey level attribute thinnings

A grey level image f is a mapping from D into V =

{0, . . . ,M − 1}. Image f can be decomposed into a col-
lection of sets obtained by thresholding. Hereafter,Xh(f)

denotes the threshold of f above h ∈ V :

Xh(f) = {x | x ∈ D, f(x) ≥ h}, (4)

and Xh
i (f) the i-th connected component of Xh(f).

Any increasing binary operator, such as an opening,

can be generalised to grey level images by applying it

to all the threshold sets Xh(f), and stacking the results

to recompose the grey-level image again [11]:

(ρdirectχ (f))(x) = ∨{h ∈ V | x ∈ ρχ(Xh(f))}. (5)
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Input Min Max Direct Subtractive

=1

Fig. 1 Results of an attribute thinning with different filter-
ing rules. From left to right: input signal with two CCs that
fulfil the criterion χ (in grey), min, max, direct and subtrac-
tive rules.

However, binary attributes are not necessarily in-

creasing, therefore their extension to grey level images
is not straightforward. Some filtering rules are reported
in the literature to construct this extension [4,23,32],

see Fig. 1:

1. Min rule: A connected component Xi is removed

if χ(Xi) = 0 or if it exists a connected component
Xj such that Xi ⊂ Xj , which is removed.

2. Max rule: A connected componentXi is removed if

χ(Xi) = 0 and if all the CCs Xj such that Xj ⊂ Xi

are also removed.
3. Direct rule: This is the simplest rule available to

extend a binary operator to grey scale images. It
uses the same equation as for the opening, eq. 5.

4. Subtractive rule: A CC Xi is removed if χ(Xi) =

0. All the other connected components such that

Xj ⊂ Xi are lowered by the value of the contrast of

Xi.

Other rules have been introduced for more specific
treatments: the median rule [22] is a pre-filter to im-

prove the robustness of the decision, the Viterbi rule

[23] solves an optimisation problem for the same pur-

pose, finally, the k-subtractive and the k-absorption

rules [19] work with k-flat zones. All these extensions

lead to the same result when applied to increasing op-

erators, such as openings.

The choice of the rule depends on the application.
However, it is shown in [32,31], that the subtractive rule

is preferable. This is the only rule that fulfils two intu-
itive requirements: (i) after filtering, all the structures
that do not meet the criterion are removed; and (ii) the
difference image f − ρχ(f) contains only the structures

that do not meet the criterion.

Furthermore, our final application requires the ex-

traction of the cracks from the background and this

rule is perfectly suitable for this task. Therefore, we

are using the subtractive rule in this paper, to extend
thinnings to grey scale images.

Geodesic attributes and the barycentric diameter

are introduced in the two following sections. They will

be used afterwards to build new attribute thinnings.

(a) (b) (c) (d)

Fig. 2 Illustration of possible definitions of the length of an
object. (a) and (b): the length of the segment between its ends
points. (c) and (d), the measurement of its skeleton. These
definitions are not always suitable.

3 Geodesic attributes

Geodesic attributes can be defined in both continuous

and discrete domains. In this paper, the computations

are done in Z2, with the 8-connectivity.

3.1 Geodesic diameter

Lantuéjoul and Maisonneuve, in [9] asked the question:

“What is the length of an object?” The first idea is to

measure the length of the segment connecting its end

points, Fig. 2(a). However, this definition is not satis-

factory, since this segment is not always included in the

object, Fig. 2(b). Moreover, the definition of the end

points is not trivial. Another possible measurement is
the cardinal of the set of points of a homothetic skele-
ton of the object, Fig. 2(c). However, even though the
skeleton is included in the object, it is not continuous

in the sense that a slight modification of the shape can

introduce important variations to the skeleton (and to

its length), Fig. 2(d). Moreover, the skeleton does not

necessarily span over the entire object (the skeleton of
a disk is its centre).

We sum up below the exposition by Lantuéjoul and

Maisonneuve and we present the generalisation of the
geodesic diameter, proposed by Soille in [28].

Let X be an object (i.e. a connected component)

and let x, y ∈ X. Path connectivity implies that there

exists some paths between these two points, Fig. 3 (a).
Among them, those with the minimal length are the
geodesic arcs from x to y within X, Fig. 3 (b). By def-

inition, they have all the same geodesic length written
dX(x, y). For a given x belonging to X, we can compute

the length of the longest geodesic arcs starting at x:

lx(X) = sup
y∈X

dX(x, y), (6)

which corresponds to the distance to the farthest points
from x, within X (for the geodesic distance).

We can compute lx(X) for all x ∈ X. Any point

x of X where lx(X) reaches its global minimum is a

geodesic centre of X. On the contrary, any couple of

points where dX(x, y) reaches its global maximum are

the geodesic extremities of X.
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X

x y

(a) (c)(b)

x y

(d)

Fig. 3 (a) Two paths between x and y; (b) geodesic arc
between these two points; (c) longest geodesic arc of X, whose
length is the geodesic diameter of X: (d) generalised geodesic
distance, longest geodesic arc.

The geodesic diameter of X is defined as the length

of its longest geodesic arc (Fig. 3 (c)):

L(X) = sup
x∈X

lx(X), (7)

which corresponds to the largest geodesic distance be-

tween any two points of X:

L(X) = sup
x,y∈X

dX(x, y). (8)

The geodesic diameter gives, in our opinion, a nice es-
timation of the intuitive length of an object. It has,

in addition, three advantages [9]: it is a general defini-
tion valid for every object; it is continuous, since a small
change in the shape of the object (excluding any change

of topology) will cause, at most, a small change of the

measure of the geodesic diameter; finally, the compu-

tation of L(X) leads to other attributes, such as the

geodesic elongation and the geodesic tortuosity.

Soille in [28], has extended these notions with the
generalised geodesic distance. First, he uses the Eu-

clidean distance inside the object, inverts this distance

map and finally, computes propagations with the geode-

sic time [29] from all the boundary points of the object.

Therefore, the geodesic diameter tends to follow the me-

dial axis of the object, like in Fig. 3 (d). This increases

the accuracy of the measurement, since it measures the

same length before and after bending a fibre. In prac-

tice though, very similar results are obtained for the

detection of thin objects like cracks (see Fig. 8 for a

comparison of both methods on a fingerprint image),

but the computation times are higher (×2 at least, ta-

ble 2). Therefore, we will not use a generalised geodesic

distance to compute the length of the objects, unless

high precision is required.

It should also be noted that the geodesic distance,

and therefore the geodesic diameter, are defined in the

same way in a n-dimensional space; their generalisation

to higher dimensions is straightforward.

3.2 Geodesic elongation

The geodesic diameter gives a satisfactory definition of

the length of an object but it does not tell much about

its shape. By combining it with the area S(X) of X, we

obtain some information on its elongation. The geodesic

elongation, introduced by Lantuéjoul and Maisonneuve

[9], is computed as follows:

E(X) =
πL2(X)

4S(X)
(9)

The longer and narrower the object is, the higher is the

elongation. The lower bound is reached with the disk1.

Note that this definition can naturally be generalised

to higher dimensions [20].

3.3 A new geodesic attribute: the geodesic tortuosity

We propose a new feature, derived from the geodesic

diameter: the geodesic tortuosity. The pair of points

{x, y} is a pair of geodesic extremities of X if, and

only if dX(x, y) = L(X). Note that some objects may

have more than one pair of geodesic extremities (e.g. a

disk). Let Ξ(X) = {{x0, y0} , {x1, y1} , . . .} be the set
of geodesic extremities of X. Let LEucl(X) denote the

minimal Euclidean distance between geodesic extremi-

ties:

LEucl(X) = min
{x,y}∈Ξ(X)

‖x, y‖ . (10)

We define the geodesic tortuosity as the ratio between

the geodesic diameter and LEucl(X):

T (X) =
L(X)

LEucl(X)
. (11)

In the case of the two-dimensional Euclidian space, the

geodesic tortuosity of convex objects is equal to one.

3.4 Geodesic attributes properties and comments

Provided a rotation-invariant metric is used for the dis-

tances, e.g. the L2, all these attributes are rotation in-
variant in a Euclidean space; the geodesic elongation

and tortuosity attributes are moreover scale invariant.

One can derive other attributes from the geodesic

diameter, such as the geodesic circularity, which is the

inverse of the geodesic elongation: C(X) = 1
E(X) . It is

also scale and rotation invariant. It reaches its upper
bound 1 with the disk. Moreover, we can combine two
attributes together to emphasise different structures.

For instance, the product between the geodesic diam-

eter and the geodesic tortuosity emphasises long and

tortuous structures: LT (X) = L(X)T (X).

1 The normalisation factors are such that in a two-
dimensional Euclidian space, the geodesic elongation of a disk
is equal to 1
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However, the computation of the geodesic diame-

ter is computationally intensive and we are interested
in efficient implementation of the thinnings based on
geodesic attributes. Therefore, we introduce in the next

section the barycentric diameter – a new attribute, ap-

proximating the geodesic diameter, but much faster to
compute.

4 Barycentric diameter

The aim of the barycentric diameter is to replace the

geodesic diameter by a similar measure with a lower
complexity. We first describe the available algorithms
for computing the geodesic diameter. Then, we intro-

duce the new attribute.

4.1 Review on the computation of the geodesic
diameter

The direct approach to compute the geodesic diameter

of an object X consists of computing, for each point of
the border, the geodesic distance within X to all other

points of X (starting from one pixel, this operation
is called a propagation). The highest geodesic distance

computed, is the geodesic diameter. The timings of this

algorithm are high and depend on both the area of the

object and the number of boundary pixels. We notice

that there are many redundant propagations, leading to

an inefficient implementation. Schmitt [24] showed that

it is enough to consider a subset of the border points as
starting points for the propagations. However, despite
the important speed-up thus achieved, still too many

propagations remain to compute.

Maisonneuve and Lantuéjoul designed an efficient

parallel algorithm to compute the geodesic diameter in

a hexagonal grid [9]. Let X be a non-porous connected

component (without “holes”), and Y the set of bor-

der points of X. Using a particular propagation in the

hexagonal grid, starting from Y , the algorithm gives the

geodesic diameter in a single propagation. However, this
algorithm requires that X is not porous. Otherwise, the

propagation never stops, turning infinitely around the
holes in X. This characteristic makes the algorithm in-

adequate for our application. Indeed, a group of cracks
can represent a porous connected object, e.g. Fig. 10(a).

Given that we have not found a method to efficiently

compute the geodesic diameter, we propose what we

consider a convenient - an efficient - approximation of

the geodesic diameter: the barycentric diameter.

4.2 Definition of the barycentric diameter

For any point x of X, we can compute the length lx(X)

of the longest geodesic arc starting at x in a single prop-
agation. Could this value replace L(X)? Is it a good

approximation? How to choose a convenient x?

Let us consider a maximal geodesic arc of X, and let

y1 and y2 be its extremities. This means that dX(y1, y2)

is equal to L(X). Given that the geodesic distance is
a distance [9], thanks to the triangular inequality we

have, for any x belonging to X:

dX(y1, y2) ≤ dX(y1, x) + dX(x, y2). (12)

Moreover, by definition lx(X) is larger than both dX(y1, x)

and dX(x, y2), and smaller than L(X), therefore we fi-

nally obtain:

L(X) ≥ lx(X) ≥ L(X)

2
. (13)

Thus, the relative error (L(X)− lx(X))/L(X) obtained
when approximating L(X) with lx(X) is smaller than

50%.

In order to improve this approximation, it is tempt-

ing to iterate the propagation, starting this time from

the farthest points from x. If Y is the subset of X con-
taining the farthest points from x:

Y = {y | y ∈ X, dX(x, y) = lx(X)}, (14)

we can introduce the iterated maximal geodesic dis-

tance starting from x, defined as:

l2x(X) = sup
y∈Y

ly(X). (15)

One can easily show that:

L(X) ≥ l2x(X) ≥ lx(X) ≥ L(X)

2
, (16)

and more generally that lnx(X) converges, ∀n ∈ Z+:

L(X) ≥ lnx(X) ≥ ln−1
x (X) ≥ L(X)

2
. (17)

Nonetheless, as it will be seen below, the limit is

not necessarily equal to L(X). In practice though, we

observe that the convergence is fast, and that going be-

yond l2x(X) is not interesting. We will come back to

this point at the end of the section. Fig. 4 provides an

example where l2x(X) gives a much better approxima-

tion than lx(X), and where further iterations do not
improve the result.

In the following, the approximations of L(X) will

be based on l2x(X). But we still have to choose x.

Does the choice of x within X have an influence

on the quality of the approximation? Experiments have

shown that indeed it is the case. Several strategies have

been tested:
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Table 1 Summary of the relative error between the geodesic diameter and 5 approximations of this geodesic diameter. These
statistics are computed on 51400 binary shapes on total. The automatic generation of these shapes is presented in the Appendix.

Methods LBar LBarNearest LGeoCentre LGeoCentreNearest LRandom

Mean (%) 0.24 0.24 0.47 0.56 1.92
Convex objects Std (%) 0.85 0.84 1.41 1.53 3.36

Max (%) 10.04 11.20 15.9 17.24 22.59
Mean (%) 0.43 0.40 0.74 0.85 2.68

Pixel aggregation Std (%) 1.09 1.03 1.58 1.71 3.59
Max (%) 10.76 9.27 12.87 12.87 24.59
Mean (%) 0.22 0.22 0.23 0.59 1.21

Ball aggregation Std (%) 0.72 1.26 1.52 2.31 4.53
Max (%) 7.17 12.75 13.84 16.85 28.83
Mean (%) 0.13 0.28 0.24 0.53 1.31

Random walk Std (%) 0.66 1.03 1.08 1.61 3.27
Max (%) 9.97 21.7 21.48 21.48 29.96
Mean (%) 0.12 0.16 0.21 0.40 0.76

Perlin noise Std (%) 0.74 0.80 1.21 1.50 2.61
Max (%) 10.87 10.14 16.55 13.61 31.90
Mean (%) 0.25 0.43 0.34 0.58 0.66

Database MPEG7 Std (%) 1.12 1.93 1.44 1.91 2.38
Max (%) 20.36 22.31 19.16 19.21 30.11

Mean (%) 0.23 0.29 0.37 0.58 1.42
All Objects Std (%) 0.86 1.49 1.37 1.76 3.29

Max (%) 20.36 22.31 21.48 21.48 31.90

B

(a) Input

l cc
y

cc

(b) First propaga-
tion step

l cc
y

2

(c) Second propa-
gation step

Fig. 4 A black and white cherry: illustration of the barycen-
tric diameter. Point B is barycentre of the CC and the start-
ing point of the first propagation (x) is the farthest point from
B. Then, the first propagation gives lx and the second propa-
gation, starting from y, leads to a much better approximation
of the geodesic diameter: l2x

– When x is one of the farthest points from the ba-
rycentre of X, we obtain what we call the barycen-

tric diameter LBar(X). Note that the barycentre of

X does not necessarily belong to X, so we use the

Euclidean distance when looking for these farthest

points. By taking one of the farthest points from

the barycentre, we suppose that it will be close to

an extremity of X (even though it is not always
the case for non-convex shapes). Alternatively, in-

stead of taking one of the farthest points from the

barycentre, we can take one of the closest, thus ob-

taining another approximation: LBarNearest(X).

– A geodesic centre of X can also be used as refer-

ence point, instead of the barycentre. We obtain

then two other approximations, LGeoCentre(X) and

LGeoCentreNearest(X). Note that this strategy is only

proposed for comparison; in practice, computing the

geodesic centre is computationally intensive.

– Finally, we have also considered as starting point

the first point of the object found with a raster scan,

called LRandom(X).

Therefore, five methods are available to approxi-

mate the geodesic diameter with only two propagation

steps. To compare them, we apply them to six differ-

ent sets of binary objects and we compute the geodesic

diameter as well as the approximations defined above.

For each object, we store L(X) and l2x(X) and we fi-

nally compute some statistics for each database : the

mean relative error (L(X)− l2x(X))/L(X), its standard

deviation, and its maximum.

Five sets correspond to realisations from a random

connected component model. Each one contains 10000

realisations. We give in the Appendix further explana-

tions on the automatic generation of these objects. The

sixth set is a standard database of 1400 binary objects

(MPEG7 CE Shape-1 Part B database2).

Table 1 summarises the results. A first general ob-

servation concerns the fact that relative errors are, in

practice, much lower than the 50% theoretical limit. All

mean errors are in fact smaller than 1%. Even the maxi-

mal error is far from reaching the theoretical limit. Note

also that the barycentric diameter achieves the smallest

2 Database available in www.imageprocessingplace.com/

root files V3/image databases.htm
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error for most sets of objects: in average, the error is at
least reduced by 20% compared to the other methods.

The maximal relative error on all 51400 objects ob-

tained with the barycentric diameter is only 20%. Can

the 50% relative error theoretical limit be reached? In

Fig. 5 we exhibit an example, where LBar(X) can be

arbitrarily close to L(X)
2 . Note also that this counter-

example proves that lnx(X) does not necessarily con-

verge towards L(X). Indeed, in this case the limit is
LBar(X), reached after only one iteration.

r r

r r

r - 

r - 

A

B

D

CE
F

L
L
Bar

Fig. 5 Example of an object X, where the barycentric di-
ameter does not converge towards the geodesic diameter.
The geodesic diameter is equal to the distance dX(E,B) +
dX(B,C) + dX(C,D) + dX(D,F ) = 4r + 2ǫ whereas the
barycentric diameter is equal to dX(A,B) + dX(B,C) = 2r.

The relative error is : limǫ→0
L−LBar

L
= limǫ→0

r−ǫ

2r−ǫ
= 0.5

Concerning the convergence speed of the different

approximations, we note that in practice, the barycen-
tric diameter shows also the best performance, as illus-
trated in Fig. 6. This figure presents the convergence

rate of the different approximations on the objects of

the MPEG7 database. Note also that these curves show

that, as stated previously, the second iteration brings

an important improvement, but that further steps do

not seem necessary.

We observe that a high relative error is reached
when the propagation starts from a geodesic centre and

converges towards another geodesic centre. Now, using

the farthest point from the barycentre usually avoids

a geodesic centre as starting point of the propagation.

This observation provides us with some clues to under-

stand why the barycentric diameter is, in practice, close

to the geodesic diameter.

To conclude this section, the barycentric diameter

appears to be, in practice, a very good and efficient re-

placement of the geodesic diameter. Hereafter, geodesic

elongations and geodesic tortuosities are computed us-

ing LBar instead of L. In the next section, new thin-

nings, based on geodesic attributes, are introduced.
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Fig. 6 Convergence of the geodesic diameter approxima-
tions. The relative error (in % and in log scale) is consid-
erably reduced with 2 propagations (from lx to l2x). However
increasing the number of iterations beyond 2 does not bring
a huge improvement on the accuracy of the measurement.
Therefore, we choose l2x with x being the farthest point from
the barycentre. These curves are computed using all the ob-
jects of the MPEG7 database.

5 Geodesic attribute thinnings

To the extent of the authors knowledge, this is the

first time that the geodesic diameter, its approxima-

tion LBar, as well as the derived attributes (geodesic
elongation and tortuosity) are used to build attribute

thinnings.
We recall that ρχ stands for the attribute thinning

using criterion χ. We will consider criteria such as L(X)

≥ λ, where λ is some real value, chosen according to the

application.

5.1 Results on binary images

Fig. 7 is a toy example containing thin, tortuous ob-

jects, and other non-thin objects. We want to separate

these structures with the following criteria:

– Suppress objects whose barycentric diameter value

is smaller than 80 pixels and smaller than 120 pixels

(second column);

– Suppress objects which are not elongated, e.g. whose

geodesic elongation is smaller than 4 and smaller

than 7 (third column);

– Suppress all non tortuous objects, i.e. whose geodesic

tortuosity is smaller than 1.3 and smaller than 2

(fourth column);

– Suppress all objects having a circularity measure-

ment smaller than 0.4 and smaller than 0.6 (fifth

column).

We can observe through this simple experiment that

geodesic attribute thinnings are intuitively parametr-

ised, and provide an interesting tool to classify objects.
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Input

L > 80 E > 4 T > 1.3 C > 0.4

C > 0.6T > 2L > 120 E > 7 
Fig. 7 Filtering with geodesic attributes criteria: (first column) initial image, (second column) barycentric diameter thin-
nings, (third column) geodesic elongation thinnings, (fourth column) geodesic tortuosity thinnings and (fifth column) geodesic
circularity thinnings.

L* > 600

L > 600

E* > 25 T* > 3.5 C* > 0.6

E > 25 T > 3.5 C > 0.6

Input

Fig. 8 Illustration of the thinnings based on geodesic attributes on a grey scale image. The first line uses classical geodesic
distance and the second line presents the results of thinnings based on the generalised geodesic distance [28], written with a ∗
(e.g. L∗, E∗, T∗ and C∗)

5.2 Grey level images

We present some results on the application of geodesic

attribute thinnings to a grey scale image. Fig. 8 shows

a fingerprint with long and tortuous structures, and

the resulting images after application of thinnings with

length, elongation, tortuosity and circularity criteria,

using the subtractive rule. Different structures are en-
hanced and we can make the distinction between long,
elongated or tortuous structures with these filters. Fi-
nally, the circularity attribute naturally erases most

structures from the image.

In section 3, we have presented both the classical

geodesic distance [9] and the generalised geodesic dis-

tance [28]. We compare, in Fig. 8, thinnings with both

methods and we note the similarity of the results; the

main visible difference corresponds to a fingerprint ridge

around the center of the tortuosity image. The gener-

alised geodesic distance is more accurate, but the com-

putation times are longer (see Tab. 2). According to

whether one prefers speed or accuracy, one may choose

the classical or the generalised geodesic distance.

6 Results

First, we propose an application3 where geodesic at-

tribute thinnings are particularly adapted. Fig. 9(a)

shows the image of a DNA molecule acquired with an

electron microscope4. These structures are long, thin,

3 A demonstration version is available http://cmm.ensmp.

fr/~morard/DemoGeoThinnings.html
4 Image from the Institute for Molecular Virology. Univer-

sity of Wisconsin - Madison http://www.biochem.wisc.edu/

faculty/inman/empics/dna-prot.htm
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and extremely tortuous. In order to evaluate the re-

sults we have visually compared them with two other

methods, classically used for this sort of application:

1. The supremum of openings (Fig. 9(b), 60-pixel long

segments oriented every 2 degrees) only preserves

straight parts, and fails with tortuous structures.

Note that the length λ is very low compared to the

other methods. Longer segments (100-pixel long)
would completely remove the molecule. A smaller
length would preserve the background noise.

2. The path opening, see Heijmans et al. [5], (Fig. 9(c),

length 160 pixels), tolerates some tortuosity. It yields
better result than the previous method. The noise is

considerably reduced but some parts of the molecule

are also discarded. This operator is not able to follow

the entire structure, and therefore underestimates

its length.

3. The barycentric diameter thinning (Fig. 9(d), size

600 pixels) yields a better result, since the molecule
is correctly extracted. It relaxes any constraints on

the tortuosity, and offers a better flexibility than
path openings.

4. The geodesic elongation thinning (Fig. 9(e), elon-

gation superior to 50), filters out all the noise and
offers a very efficient detection. Any other non elon-
gated structures are similarly deleted.

5. The geodesic tortuosity thinning (Fig. 9(f), tortuos-

ity superior to 2.5), filters out every structure that
is not tortuous. Hence, this molecule is easily ex-
tracted with this tool.

These attribute thinnings have been used in an in-

dustrial non-destructive material-inspection application

to detect long, narrow and randomly tortuous cracks.

Fig. 10 offers a crack enhancement example with the

same operators. Similar conclusions on the results can

be pointed out: geodesic thinnings yield the best detec-

tion. The tortuosity thinning (Fig. 10(f)) enhances the
crack as well as some noise in the background image.
However, the noise has a lower grey level value than

the crack and a simple threshold suffices to extract the

crack.

7 Algorithm, practical considerations and

optimisation

We describe the algorithm used to build geodesic at-

tribute thinnings. We compare it with the algorithm

previously used by the authors [13], where the geodesic

diameter is computed exhaustively from the contour

points. Furthermore, we propose a comparison with path

openings [5].

7.1 Geodesic attribute thinnings algorithm

Attribute filters are often implemented using a tree rep-

resentation of the image calledmax-tree (see e.g. Salem-

bier et al. [23]). The max-tree creation relies on a recur-

sive flooding procedure starting from the lowest pixel in

the image. Its worst-case time complexity is quadratic

O(N×M), withM the cardinal of the set of values and

N the number of pixels of the image, see [15]. However,
the worst case is rare and in practice, Salembier et al.

algorithm is faster than the algorithm of Najman and

Couprie [15] for 8 bits images, even if the construction

of max-tree is done in quasi linear time with the size of

the image, using an union find approach. Other efficient

implementations exist, see e.g. Ngan et al. [16].

A max-tree structure is adapted for attributes that
can be updated each time a new pixel is aggregated to

a CC. This is not the case of the barycentric diame-

ter which needs to be recomputed and needs to access

all the pixels of a connected component. This requires

some modifications of the max-tree algorithm and pro-

hibits the recursion. The algorithm Najman and Cou-

prie [15] maintains several tree-like structures at a time

and accessing the pixels is uneasy either.

Instead, we start with the relief completely sub-

merged by water, and let the water progressively sink.

As soon as appears the first (global) maximum, its con-

nected component is progressively reconstructed and

tested on χ. When other local maxima appear, they

are not process yet and we reconstruct all connected

component at lower threshold sets that are supersets of

the global maxima (see Fig. 11 component 1). Finally,

other local maxima are processed in the same way but

the aggregation stops when a CC is already processed

(Fig. 11 components 2 and 3).

h
1

2
3

Fig. 11 Illustration of the algorithm principle for a one-
dimensional signal with three local maxima. The components
in light grey (marked by one) are analysed first, followed by
the components marked by 2 and 3.

The Alg. 1 simulates this principle. It uses a prior-

ity queue HQueue that supports operations (modifying

the content), and queries (not modifying the content):

the operation Push(x, p) inserts an element x with a

given priority p, and (x, p) = Pop() retrieves the cur-

rently highest-priority element x and its priority p. The
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(a) Input (b) Opening with rotating segments of
length 60 pixels

(c) Path openings of size 160 pixels

(d) Barycentric diameter thinning (sub-
tractive rule) (L ≥ 600)

(e) Geodesic elongation thinning (sub-
tractive rule) (E ≥ 50)

(f) Geodesic tortuosity thinning (subtrac-
tive rule) (T ≥ 2.5)

Fig. 9 DNA molecule extraction: we compare five different methods to detect this thin structure. We note that path openings
and segment opening completely underestimate the length of this tortuous structure. By opposition, geodesic attribute thinnings
easily enhance this molecule and correctly evaluate its length.

(a) Input (b) Opening with rotating segments of
length 21 pixels

(c) Path openings of size 220 pixels

(d) Barycentric diameter thinning (sub-
tractive rule) (L ≥ 220)

(e) Geodesic elongation thinning (sub-
tractive rule) (E ≥ 4)

(f) Geodesic tortuosity thinning (subtrac-
tive rule) (T ≥ 1.1)

Fig. 10 Crack detection: to detect these thin structures, we use five different methods. Geodesic attribute thinnings yield the
best enhancement.



Efficient geodesic attribute thinnings based on the barycentric diameter 11

queries: p = Prio() returns the currently highest prior-
ity, and Empty() tests the emptiness of HQueue.

In the beginning, the output image g is initialised

by the input f , and the local maxima of f are extracted

by a function FindLocalMax (code lines 4 and 5). The

list LocalMax contains one pixel per every maximum,
and is sorted by decreasing order of the level.

The for cycle (lines 8 to 28) runs over all the local

maxima to process. Line 9 reads from LocalMax the
position p of next maximum to process. The repeat-until

cycle (lines 14 to 28) simulates the decreasing water
level to progressively reconstruct the associated com-
ponent associated, and tests it against χ (line 26). The

extraction of the component uses two auxiliary flag ar-

rays State : D → Z and Level : D → V (lines 2 to 3),

initialised to 0 for all image pixels (lines 6 to 7). State
receives −1 whenever a pixel is pushed in the queue

(line 11), and later the index of the local maximum to
which component it belongs to (line 18), cf. Fig. 11.

We initialise the region growing algorithm by push-

ing p in the hierarchical queue with the priority f(p)
(line 10), by marking this pixel (lines 11 to 12) and
by initialising CC to the empty set. Then, a region-

growing algorithm (code lines 15 to 25) extracts a con-
nected component CC to which the pixel p belongs to.

Criteria χ based on the barycentric diameter LBar need

to access the connected component as a set. When the
region growing at this level is finished (line 25), CC con-
tains all pixels of this connected component such that

f(x) ≥ h, ∀x ∈ CC. Then, if the test χ(CC) is false,
we apply the subtractive rule by removing the contrast

of this connected component for all pixels belonging to

CC. The function contrast(CC) returns the difference

between the level h and the highest grey level of the

neighbours of CC.

The same process is repeated until all regional max-

ima are processed.

The Fnct. LBar illustrates how to compute the ba-

rycentric diameter when χ is based on this attribute.
First, it computes the barycentre p of CC, i.e. the mean

of the coordinates (code line 1). Then, it searches one

of the farthest point from the barycenter with the Eu-

clidean distance (line 2). Finally, it computes twice the

geodesic distance inside CC (see Eq. 6, and lines 3 and

4), and returns the result l2X of the second iteration.

Note : Algorithm 1 is set up to compute the sub-

tractive rule. However, if one wants to apply the di-

rect rule, only two modifications of the algorithm are

required: the output image is initialised with 0 and if

χ(CC) is true, we write the CC in g by taking the max-

imum value between h and g.

Algorithm 1: g ← GeoAttrThinning (f , χ)

Input: f : D → V - input image
χ - criterion

Result: g : D → V - output image

/* Declare auxiliary variables */

1 HQueue = {} /* Init HQueue to empty */

2 State : D → Z
3 Level : D → V

/* Initialize */

4 g = f

5 LocalMax = FindLocalMax(f) /* get sorted list

of local maxima */

6 State(:) = 0
7 Level(:) = 0

/* Run over all local maxima */

8 for i = 1 . . .Card(LocalMax) do

9 p = LocalMax(i)
10 HQueue.Push(p, f(p))
11 State(p) = −1 /* pixel enqueued */

12 Level(p) = f(p)
13 CC = {}

/* Simulate decreasing water level */

14 repeat

/* Extract a CC to test on χ */

15 repeat

16 (q, h) = HQueue.Pop()
17 CC = CC ∪ {q}
18 State(q) = i

19 foreach n ∈ Neighbour(q) do

20 if f(n)>Level(n) and State(n) 6=i then

21 hmin = min(h, f(n))
22 HQueue.Push(n, hmin)
23 State(n) = −1 /* pixel enqueued */

24 Level(n) = hmin

25 until h < HQueue.Prio()

26 if not χ(CC) then

27 g(CC) = g(CC)− contrast(CC)

28 until HQueue.Empty()

Function l2x ← LBar(CC)

Input: CC - A connected component
Result: l2x: Barycentric diameter of CC

1 1l2x ← LBar(1)l
2
x ← LBar

2 b = p, p ∈ CC

3 x = argmaxy∈CC ||y, b||
4 x1 = arg supy∈CC dCC(x, y)

5 x2 = arg supy∈CC dCC(x1, y)

6 l2x = dCC(x1, x2)
7 return l2x

7.2 Complexity

The complexity analysis is split into two parts; the com-

plexity of the CC’s extraction (Alg 1) and the complex-

ity of the computation of the attribute.
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Table 2 Running times for different images of size 256x256
for a geodesic diameter thinning or thickening for λ = 20.
See section 7.4 for details. Timings are in seconds. Laptop
computer: Intel Core2 Duo T7700 @ 2.40GHz

From [13] From this paper
Images Lno opt Lopt LBar L∗

Bar

Coffee 36 0.079 0.0028 0.0062
Eutectic 37 0.015 0.0029 0.0069
Grains 3650 5.4 0.041 0.328
Macula 3850 2.7 0.031 0.220
Relief 1024 0.99 0.022 0.139
Retina 1820 1.56 0.024 0.136

First, we detail the complexity of Alg. 1. The func-

tion FindLocalMax fills the array LocalMax using a re-
gion growing process with a queue, and sorts the ar-

ray LocalMax with a linear complexity radix sort [17],
which gives a complexity of O(N) for this function

(N = Card(D)). Finally, from the local maxima, we use

a relief emerging approach using a hierarchical queue,

which adds log(M) in the complexity. Every local max-

imum is processed sequentially and the worth case is

a highly nested signal. Then, for the worst signal, a

pixel is analysed N/4 times in average, which leads to
a complexity of O(N2 log(M)), just like the algorithm

presented by Breen and Jones [4]. We note however,

that the computation times are very far from this upper

bound5 and in practice, we observe a linear evolution

of the computation time with the number of pixels.

All geodesic attributes are based on the length mea-

surement. Therefore, all attributes are computed with

the complexity of Fcnt l2x ← LBar.

For a connected component having n pixels, the

computation of the attribute value is done in 4 steps.

The barycenter and the farthest point both require one

scan over all pixels, giving O(n). Then, two propaga-

tions are performed to get the barycentric diameter.
For the propagation step, according whether L1 or L2

is used for the distance, one needs a queue (or a priority
queue, resp.) giving a complexity of O(1) (or O(log(m)

resp.) per pixel, with m the mean number of elements

in the priority queue.

This is an improvement in comparison with the com-

plexity of the geodesic diameter. With a propagation

from all boundary points, the complexity is O(n2) (the
worst case is a thin line, which needs n propagations).
With the Schmitt’s method, the number of boundary

points is reduced however, the worth case still requires√
n propagations (for a disc).

5 We made an experiment on more than 100 natural im-
ages showing that a pixel is processed less than two times in
average.

(a) Eutectic (b) Coffee (c) Grains

(d) Macula (e) Relief (f) Retina

Fig. 12 Images used to build table 2. They have all the same
size: 256× 256 pixels.

7.3 Optimisations

The first and probably, the most important optimisa-

tions is that we can stop the propagation step whenever

the criterion value is reached. This acceleration is only

available for the barycentric diameter, or the geodesic

elongation and it does not change the complexity of the
algorithm.

The acceleration also comes from other optimisa-

tions, which are computer’s tricks:

– We compute simple attributes such as the barycen-
tre or the area during the region growing process,

in order to avoid useless scan of all the pixels of CC

in Fnct. l2x ← LBar.
– We also compute the contrast of the CC during the

region growing process.

– In Fnct. l2x ← LBar, we remove the distance map

during the propagation step. Instead, we enqueue

the distance value with its position whenever a pixel

is stored in a queue or in the hierarchical queue.
– We manage our own queue, which is specialised for

this algorithm. Therefore, we can remove all the el-

ements from a queue in only one assignation.

– For 8 bits images, we can merge the buffers State

and Level. Then, we use the first byte to store the

buffer Level and the other bytes for the variable

State. Then, we get the value of two variables in
only one access of the memory.

These optimisations does not change the complex-
ity of this algorithm, however, the timings have been

reduced by a very large factor, as shown in the next

section.

7.4 Timings

We compare in this section all the benefits brought by

the optimisations, accelerations presented in section 7
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and the barycentric diameter (section 4). Table 2 col-
lects the timings for the images of Fig. 12, where we

compare four methods: a thinning based on the geodesic
diameter with no optimisation (Lno opt), the geodesic

diameter with the stop of the propagation when the

front wave is larger than λ (Lopt), the barycentric di-

ameter with all the discussed optimisations (LBar) and
the barycentric diameter using the generalised geodesic

distance (L∗
Bar).

Timings have been reduced by a large factor be-

tween thinnings using Lopt and LBar (around 60 in av-
erage for these 6 images). Moreover, using a generalised

geodesic distance increases the computation time by at

least a factor of 2, in comparison with LBar. The over-

head is introduced by the computation of the distance

map for every connected component. This distance map

also cuts down the benefits of the optimisation, where

the propagation step is stopped if the criterion is ful-
filled during the propagation.

7.5 Efficiency comparison with path openings

Path openings [5] have been developed to solve applica-

tions similar to those treated in this paper. In section 6,

it has been shown that they provide indeed interesting

results, even if they cannot detect objects as tortuous

as those detected by geodesic attributes thinnings. For

the comparison to be complete, we now compare their

computational performance.

In Fig. 13, we plot a comparison between the thin-

nings based on geodesic attributes (barycentric diam-

eter) and an efficient implementation of path openings

[30,6]. The timings were computed on the image pre-

sented in Fig. 10(a). On this crack image (768x576 pix-

els), thinnings are faster than path openings and this

tendency is the same for other images.

Finally, we can state that the resulting implemen-
tation of geodesic attribute thinnings is at least as effi-

cient as other operators that have been designed with

similar objectives, which makes them interesting for a

large number of industrial applications.

8 Conclusion and future work

A new geodesic attribute is introduced, the barycentric
diameter to approximate the costly geodesic diameter.
We give the theoretical upper error bound of this ap-

proximation, and show that the typical error is negligi-

ble.

This, as well as other shape attributes, such as the
geodesic length, elongation and circularity, is combined
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Fig. 13 Benchmark on a crack image (768x576 pixels, 8 bits)
with regard to the size of the attribute, for path openings
and thinnings based on the barycentric diameter with the
subtractive rule.

with attribute thinnings to obtain a new family of oper-

ators. They are ideal for characterising long, elongated

or tortuous objects. We show that their shape flexibility

is superior to that of classical linear openings or path

openings.

We use the subtractive filtering rule, proposed by

Urbach and Wilkinson [32], and we provide an effi-

cient algorithm for computing the resulting operators.

We report competitive timings, which allow using these

operators in time-critical, industrial applications. The
geodesic attribute thinnings are not only more flexi-
ble than path openings, but also faster. Furthermore,
geodesic attribute thinnings readily generalise to 3-di-

mensional images, by only changing the connectivity.

At present, geodesic thinnings fail to extract thin,

curvilinear structures disconnected by noise. Indeed,

their length will be underestimated. A possible solu-

tion shall consist in using a generalised connectivity,

like the second generation connectivity introduced by

Ouzounis and Wilkinson [18].

Future work will concern the generalisation of the

proposed algorithm to efficiently compute other oper-

ators based on geodesic attribute thinnings. On the

one hand, morphological pattern spectra [10] estimate

the size and shape distribution of the searched struc-
tures. On the other hand, ultimate openings [1,7] ex-
tract structures with the highest contrast. Typically,
these operators require the computation of a family of

thinnings of increasing size. Using this algorithm, we

can compute pattern spectra and ultimate thinnings

within only one “relief emerging” process.
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Appendix: random connected component mod-

els

Many strategies exist to generate random binary shapes. The
results of the comparison between the geodesic diameter and
its approximations are linked to the method used to generate
these shapes. Therefore, we use five different methods to have
a high variety of objects. For each method, 5 realisations are
presented in Fig. 15. The size of the support of these random
shapes is a 500 by 500 pixels square.

Convex shape

A random number of points (between 10 and 100) are ran-
domly and uniformly picked on D. The final connected com-
ponent is the convex hull of these points.

Pixel aggregation

This method is used to generate relatively dense objects,
which are almost convex. The set is initialised with a sin-
gle point. At each iteration, a randomly chosen neighbour
point is added to the set. The procedure is iterated a random
number of times.

Ball aggregation

This method uses the same process as the pixel aggregation
method, except that we iteratively aggregate a ball instead
of a point to the set. The ball radius is chosen randomly
between 5 and 40 pixels, for each ball. The generated shapes
are much more complex than the shapes generated using the
pixel aggregation method.

Random walk

We start from a ball in the centre of the domain. Then, we
use a Brownian motion to choose the next location of the ball.
At each iteration, the radius of the ball is chosen randomly.

Perlin noise

Perlin noise [21] is a procedural texture primitive. It has a
pseudo random appearance that is highly controllable and
multiscale. Fig. 14 provides an illustration of a realisation
of this noise. By thresholding this image, we get a set of
objects and we select the biggest CC of this set (Fig. 14).
Some resulting objects can be very smooth, whereas others
can have a high tortuosity.

Fig. 14 Object generation with Perlin noise. Left to right:
Perlin noise, thresholding, selection of the biggest CC.

(a) Convex

(b) Pixel aggregation

(c) Ball aggregation

(d) Random walk

(e) Perlin Noise

(e) Data base MPEG7

Fig. 15 Examples of random connected components, ob-
tained with five different models.


