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Abstract. The aim of this paper is to propose efficient tools for analysing
shape families using morphological operators. The developments include
the definition of shape statistics (mean and variance of shapes, modes of
shape variation) and the interpolation/extrapolation in shape geodesic
paths. The main required ingredients for the operators and the algorithms
here introduced are well known in mathematical morphology such as the
median set, the watershed on distance functions or the interpolation func-
tion. In addition, the projection of shapes in spaces with reduced dimen-
sions using PCA or ISOMAP techniques permits to apply morphological
interpolation techniques in shape manifolds.

1 Introduction

Let X = {X1, X2, · · · , XN} = {Xi}
N
i=1 be a family (or collection) of N shapes,

where Xi ∈ P(E) represents the set (or binary image) of the shape i, and the
support space E is a nonempty set. Typically for the digital 2D images E ⊂ Z

2.
The set Xi is a compact set (and typically a closed simply connected set). The
family X can be considered as a random variable of shape, where Xi represents
a realization of this random variable. The family may also viewed as defined in
a shape space, where X is modelled as a low dimensional manifold embedded in
a higher-dimensional space. The aim of this paper is to propose efficient tools
for analysing shape families using morphological operators. This kind of analysis
includes the definition of shape statistics (mean and variance of shape, modes of
variation of shape) and the interpolation/extrapolation in shape manifolds or in
shape geodesic paths.

Statistical theory of shapes has been studied by Kendall [9], representing the
shapes as a finite number of salient points; and by Grenander [6], considering the
shapes as points on some infinite-dimensional differentiable manifold, under the
actions of Lie groups. More in relation with our study, Klassen et al. [10] pro-
posed statistical shape analysis and shape interpolation by differential geometry
methods, where the shapes are represented by curvature functions. Whitaker [16]
proposed a method for image blending by progressive minimisation of a differ-
ence metric in a variational framework (i.e., a pair of coupled nonlinear PDE),
where the metric is based on computing the distance between level-set shapes
(distance function for binary images). Charpiat et al. [3] and Etyngier et al. [5]
formalised the problem by optimizing mappings based on the Hausdorff metric
and the signed distance functions.
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Background notions. The main required ingredients for the operators and the
algorithms introduced here are well known in mathematical morphology.

Let E be a metric space equipped with a distance dM : E × E → R+, and
let K′ be the class of the non empty compact sets of E. The distance of point

x to set Y is defined as dM (x, Y ) = inf{dM (x, y), y ∈ Y }, x ∈ E and Y ∈ K′.
Then, the distance function of set X according to metric dM is the mapping
∆MX : E → R+, such that

∆MX(x) = dM (x, Xc) = inf{‖x, y‖M : y ∈ Xc}.

We also use in this study the notion of distance between two shapes. Given two
sets X , Y ∈ K′, the most basic mapping K′ × K′ → R+ to compare two sets is
their Euclidean distance, i.e., dE(X, Y ) =

∑
x∈E 1x∈[(X∪Y )\(X∩Y )]. Classically,

it is considered most useful in practice the distance associated to the Jacquard

coefficient :

dJ (X, Y ) = 1 −

∑
x∈E 1x∈(X∩Y )∑
x∈E 1x∈(X∪Y )

=

∑
x∈E 1x∈X△Y∑
x∈E 1x∈(X∪Y )

,

where X△Y = [(X ∪Y )\ (X ∩Y )]. Furthermore, the natural metric to compare
spatial shapes is the Hausdorff distance:

dH(X, Y ) = max

{
sup
x∈X

d(x, Y ) ; sup
y∈Y

d(y, X)

}
.

The Hausdorff distance can also be expressed by means of the dilations by the
balls of space E [14]:

dH(X, Y ) = inf {λ : X ⊆ δλ(Y ); Y ⊆ δλ(X)} ,

with δλ(X) being the dilation of X ∈ K′ by a radius of size λ ∈ R+: δλ(X) =
∪{Bλ(x), x ∈ X}, where Bλ(x) stands for the compact ball of centre x and of
radius λ.

The theory of morphological interpolation was introduced in [11,2,14]. In par-
ticular, the interpolation distance function [11],

Y

interp
X

(x) =
dY

X(x)

dY
X(x) + dX

Y (x)
;

and the morphological median set [2]:

m(X, Y ) = Y △{x :
Y

interp
X

(x) ≤ 0.5},

will be frequently used below. The distance dY
X(x) : E ×E → R+ to set X in set

Y is defined as [13]:

dY
X(x) = n if

(
εn

X(Y ) = 0 and εn−1
X (Y ) = 1

)
,
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(a) (b)

Fig. 1. (a) Four population of cells, each one representing a spatially equivalent shape
family X . (b) Two approaches for computing the mean shape using the median set:
top, merger algorithm and bottom, iterative algorithm.

where ε1
X(Y ) = X ∩ δ1(X ∩ Y ) for points on Y ⊆ X , ε1

X(Y ) = X ∪ ε1(X ∪ Y )
for points on X ⊆ Y ; and εn

X(Y ) = ε1
Xεn−1

X (Y ).
Shape analysis makes no sense without a renormalisation of shapes. We only

consider spatially equivalent shape families: two shapes will be considered as
equivalent if there exists a rotation and a translation transforming one shape
in the other. In practice, the mass center and the angle of orientation of prin-
cipal axis are obtained by computing the second order inertia moments. Then
the shapes are aligned and rotated to impose the same centroid and the same
principal axis of variation, see in Fig. 1(a) four examples of spatially equivalent
shape families. Other algorithms of centring and orientation can be considered,
e.g. embedding which maximises the intersection between the sets [7], or which
minimises the Hausdorff distance between the sets [14].

2 Shape Statistics

Let us start with the basics of shape statistics, the mean shape µX and the
variance of shape σ2

X from a shape family X . These basic statistics are needed for
instance to build prototypes or shape priors in model-based image segmentation
or to define primary grains for Boolean modelling and simulation. We describe
and compare 3 different methods.

2.1 Computation of Mean Shapes

Approach based on the median set µms
X . The morphological median set

is defined only for two sets, i.e., m(X1, X2). The extension to N sets requires
consequently the combination of successive median sets. Fig. 1(b) illustrates
two different cascaded median set operators to compute µms

X . The merger al-
gorithm leads sequentially to a single final shape, whereas the iterative algo-
rithm is applied until that the cumulated distance between sets is lower than
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a fixed threshold (i.e., convergence to the mean set). Both algorithms depend
on the ordering of the operators since the median set is not associative, i.e.,
m(m(X1, X2), X3) �= m(X1, m(X2, X3)). Empirical observations show that the
iterative algorithm depends less upon the ordering of the sets and converges after
a few iterations, however the merger algorithm requires less computation and at
the end the results are quite similar.

Extrinsic mean by thresholding the sum of distance functions µthres
X .

The sum of the distance functions of the sets in X has been widely used in
the literature to build the theory of averaging shapes [4,1], although the asso-
ciated algorithms to estimate the mean shapes are often inefficient. Inspired by
the work [1], we propose to use both the inner and outer distance functions
to estimate two extrinsic means, where the inner distance function of the fam-
ily is ∆X (x) =

∑N
i ∆Xi(x) and the outer distance function is ∆X c (x) =∑N

i ∆Xc
i (x). The algorithm aims at computing an optimal level set in ∆X (x).

Let Xu ∈ P(E) be the set obtained by thresholding the inner distance function
at value u, i.e.,

Xu = {x ∈ E : ∆X (x) ≥ u} , u ∈ [0, max(∆X (x))[.

We define the cumulative distance of shape family X to set Xu by

D∆X (x)(u) =
N∑

i

dM (Xi, X
u),

where dM (·, ·) is the distance between the two sets. Then the inner extrinsic
mean is defined as

µinner
X = argu min D∆X (x)(u),

this minimization problem can be solved by an exhaustive search algorithm (i.e.,
discretization of ∆X (x) in K thresholded sets and selection of the minimum). A
similar outer extrinsic mean µouter

X can be defined from optimal thresholding on
function D∆X c(x)(u). The associated extrinsic mean shape µthres

X is then defined
as the median set between µinner

X and µouter
X . Fig. 2(a) gives an example of the

various elements for an example. An important parameter of this algorithm is
the distance dM (·, ·). We have compared the performance of both the Jacquard
distance and the Hausdorff distance: it appears that the obtained mean shapes
are more interesting when the Jacquard distance is chosen.

Locally optimal mean by watershed of sum of squared distance func-

tions µwshed
X . The previous approach presents two main limitations: i) the inner

and outer distance functions are used separately, ii) the obtained mean shape is
optimal only for a constant level set. A more original and powerful technique to
exploit the sum of distance functions is based on the classical definition of the
mean µ of N samples: µ is the value such that

∑N
i (µ − xi)

2 is minimal, which

leads to
∑N

i (µ − xi) = 0 and consequently to Nµ =
∑N

i xi. In the extension
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∆X (x) D∆X (x)(u) µinner
X m(µinner

X , µouter
X )
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Fig. 2. (a) Computation of extrinsic mean by thresholding the sum of distance func-
tions. (b) Computation of locally optimal mean by watershed of sum of squared dis-
tance functions. X is the population B) of Fig. 1(a), where the last image represents
an intermediate step of the quench function reconstruction.

to the case of the shape family X , we start by constructing the sum of distance
functions to the frontier sets ∂Xi using the squared Euclidean distance, i.e.,

∆2
E∂X (x) =

N∑

i

∆2
E∂Xi(x),

which takes simultaneously the inner/outer distance functions. The locally min-
imal contour of ∆2

E∂X (x) corresponds, by definition, to the mean shape.
This optimal contour can be easily obtained by computing the watershed line

of the inverse of this distance function, i.e.,

∂µwshed
X = Wshed([∆2

E∂X (x)]c, mrk(x)),

where the marker function is mrk(x) = εB(mrkin(x)) ∪ εB(mrkout(x)), with
mrkin = {

⋂
i Xi} and mrkout = [{

⋃
i Xi}]

c
. Fig. 2(b) depicts an example of the

algorithm. Replacing the L2 norm by the L1 norm and calculating the watershed
from the inverse of ∆E∂X (x) leads to the contour of the median shape of the
family.

We have compared the three approaches µms
X , µthres

X and µwshed
X for computing

mean shape from the same family. The three algorithms yield very similar results.
However the last method, summing the squared distance function to the contours
and extracting its thalweg line (watershed of the inverse function) is by far the
most efficient. Moreover, as we show below, it is also useful to compute the shape
variance.
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A) B) C) D) A) & C) & D)

Fig. 3. Mean shapes ∂µwshed

X (in red) and std. dev. of shape σX (in white) for the
populations of cells of Fig. 1(a).

2.2 Variance of a Shape Family

Having defined a mean shape, we can now explore the computation of the vari-
ance of a shape family. In fact, it is more interesting, for the purpose of repre-
sentation as an image, to obtain the standard deviation σX .

If we remind that the variance of a set of points is σ2 = 1/N
∑N

i (µ − xi)
2,

it is evident that the variance can be easily computed from ∆2
E∂X (x). More

precisely, starting from the squared quench function of the family of shapes X ,
which is defined as:

q2
X (x) =

⎧
⎨

⎩

(1/N) · ∆2
E∂X (x) if x ∈ ∂µwshed

X

0 if x ∈ [∂µwshed
X ]c

then, the image representation of the standard deviation of shape is obtained by
the reconstruction of the quench function:

σX =
∨

x∈E

δqX (x)(x).

In Fig. 3 are given the mean shape and the std. dev. of shape for the populations
of cells of Fig. 1(a).

The notion of shape variance can be also obtained using alternative algo-
rithms. For instance, after computing the distance of each shape Xi to their
mean µX , i.e., dXi

µX
(x), the variance on the frontier of the mean shape, ∂µX , can

be approached by 1/N
∑N

i

(
dXi

µX

)2
.

3 Linear Methods for Dimensionality Reduction:

Eigenshapes, Modes of Shape Variation

The computation of the mean shape (and variance of shape) has real sense only
in the case of homogenous shape families since on collections of very heteroge-
neous shapes, the mean tends to be a circle. The application of standard tech-
niques of multivariate data analysis can help the exploration of shape families
(to determine the homogenous subfamilies) and their representation in spaces
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of reduced dimension. The most classical approach is the principal component
analysis (PCA) [8].

The basic idea is to represent the sets as vectors: Xi ∈ P(E) → xi ∈ R
D

(D is the cardinal of discrete space E), thus the shape family is now given
by the following matrix of data X = [x1 x2 · · · xN ]. The covariance matrix

of centred data: CXX = cov(X̂), where X̂ = X − X (if the average X is not
subtracted, the average will appear as the first principal component) summarizes
the variability of the family, analysed by solving the following spectral problem
CXXw = λw, whose eigendecomposition leads to [Λ,W] = eig(CXX), where
Λ is the diagonal matrix of different eigenvalues λj and W is the matrix of
the associated eigenvectors wj . The relative value of λj (i.e., the variance of
shape explained by the axis j) is used to determine the number of significant
dimensions K.

Fig. 4 illustrates the method. First of all, it is possible to produce an image
representation of the K first shape modes {vj}

K
j=1: vj = X̂wj . The correspond-

ing images of the eigenvectors, Vj(x), are the eigenshapes which correspond to
the principal modes of shape variation (see Fig. 4(a)). In addition, the N values
of each eigenvector correspond to the projection of each shape onto this vector
(see Fig. 4(a)). This can be used typically for shape clustering (i.e., unsupervised
classification in shape space in order to identify sub-families of shapes). Another
application is the computation of an intrinsic mean shape as follows:

ν̂X = argk∈1,2,··· ,N min

N∑

i=1

⎛

⎝
K∑

j=1

(sj(i) − sj(k))2

⎞

⎠ ,

where sj(i) = W
T
xi, i.e., ν̂X is the shape which minimises his cumulated dis-

tance to the other shapes in the PCA space (see Fig. 4(b)).
PCA has already been applied to shape analysis [7], but the exploitation of

the eigenshapes has not yet considered in detail. One of the basic objectives
is to decompose the eigenshapes into binary images representing the orthogonal
modes of variation. As we observe in the eigenshapes images Vj(x), the modes are
differentiated by positive/negative structures on a reference intensity. Using the
classical close-holes operator, we can decompose both phases into two different
images:

Vj↓(x) = [CloseHoles(V c
j (x))]c ; Vj↑ = [CloseHoles(Vj(x))].

The objective is to construct two closed binary shapes from Vj↓ and Vj↑, but as
we can observe in Fig. 4(c), the “modes of shape variation” require an additional
“average shape” V0(x), which is obtained from the image of the average: X →
V0(x)). The gradient of each image Vj↓ and Vj↑ is combined by sum with the
gradient of the average image, i.e., g0(x) = δ1(V0)(x) − ε1(V0)(x). Hence, the
two phases of mode of variation j can be now segmented with the watershed
transformation as follows:

Wshed(ĝj↓(x), mrk(x)) ; Wshed(ĝj↑(x), mrk(x)),
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V1(x) V2(x)

V3(x) V4(x)

(a) (b)

V0 V1↓ V1↑

g0(x) ĝ1↓(x) ĝ1↑(x)

mrk(x) Wsd(ĝ1↓, mrk) Wsd(ĝ1↑, mrk)

(c)

Fig. 4. Shape analysis using PCA of family X (population B) of Fig. 1(a)): (a) Four first
eigenshapes. (b) Projection of shapes on the two first components (in red, intrinsic mean
shape). (c) Morphological segmentation of modes of variation from the first eigenshape
(see the text for full details).

where ĝj↓(x) = gj↓(x) + g0(x) with ĝj↓(x) = δ1(Vj↓)(x) − ε1(Vj↓)(x). The ob-
tained images for the example are also given in Fig. 4(c).

Morphological interpolation does not always a good job if two shapes are too
dissimilar; PCA can then be used as a useful preprocessing: the shapes X and Y
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to be interpolated are first projected onto the different K principal components
produced by PCA ; the projections are then are interpolated separately. Finally,
the K interpolated shapes are recombined linearly in order to obtain the final
shape.

4 Isometric Shape Spaces and Geodesic Shape

Interpolation

PCA is based on the covariance matrix of the shape family, which corresponds
to consider a dimensionality reduction using the Euclidean distance of shapes. A
lot of effort has been paid in recent years to introduce nonlinear dimensionality
reduction techniques compatible with other distances between the points of the
space. Particularly interesting for our purposes is the isometric feature mapping
(ISOMAP) [15]. It is a method for estimating the intrinsic geometry of a data
manifold based on a rough positioning of the neighbours of each data point on
the manifold. More precisely, it is a low-dimensional embedding method based on
geodesic distances on a weighted neighbourhood graph, which is then reduced by
multidimensional scaling (MDS). ISOMAP depends on being able to choose the
neighbourhood size (k-nearest neighbours graph) and on a distance to compare
each pair of points (weights of edges of graph). This weighted graph defines the
connectivity of each data point via its nearest neighbours in the high-dimensional
space. The precise algorithm for ISOMAP is described in [15].

In Fig. 5(a) is given the two-dimensional ISOMAP embedding (with the neigh-
bourhood graph) for the four populations of Fig. 1(a). We have compared various
distances to weight the graph, and again the Jacquard distance outperforms the
Hausdorff distance in our examples. Compared to the PCA projection of shape
families, the ISOMAP embedding allows to define geodesic paths between the
shapes, and in addition, the shortest path distances in the neighbourhood graph
are preserved in the two dimensional embedding recovered by ISOMAP. This
property is specially useful for the interpolation of shapes in the family X (see
Fig. 5(b)). For instance, given two shapes Xi and Xj , an Euclidean shape path

[X0 = Xi, X
P = Xj ]

of P −1 intermediate points Xk is classically obtained by thresholding the inter-

polating function interpXP

X0 (x) at values λ = (1/P ) · k, with k = 1, 2, · · · , P − 1.
Now, using the ISOMAP graph, we can define the geodesic shape path

ΠP+1(Xi, Xj) =
(
X0 = Xi, X

1, · · · , XP = Xj

)
,

which includes the Q shapes of the family X belonging to the path. The remain-
ing (P − Q − 1) shapes are computed by the interpolation function according
to their respective geodesic distance, i.e., the number of intermediate shapes
between two successive shapes Xn and Xm ∈ ΠP+1(Xi, Xj) is

(P − Q − 1) · (dgeo(Xn, Xm)/(dgeo(Xi, Xj)),
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(a) (b)

(c)

Fig. 5. (a) Projection of four populations of shapes on the two first ISOMAP dimen-
sions (using the Jacquard distance). (b) Idem. for family X : population B) of Fig. 1(a)).
(c) Morphological shape interpolation of 8 intermediate shapes between X0 and XP (in
red): Top, interpolation along an Euclidean shape path; bottom, interpolation along a
geodesic path (including 3 shapes of the family in blue).

where dgeo(X, Y ) is the geodesic distance between the shapes X and Y . See
example in Fig. 5(c).

Shape interpolation in reduced spaces has been also studied in [5], with a
Delaunay triangulation of the training family of shapes in the reduced space.
When a new shape Y is projected in the trained space (which is a difficult
problem), the corresponding triangle determines the 3 initial sets which can
be used to approach Y by a barycentric-weighted mean shape. This problem
can also be solved in our framework. Let us define the weighting interpolation
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function between sets X and Y as

Y

interp
X

(x; ωX , ωY ) =
ωXdY

X(x)

ωXdY
X(x) + ωY dX

Y (x)
,

where ωX and ωY are the weights (i.e., ωX/ωY corresponds to the speed of
propagation between sets X and Y ). The gravity centre between three sets of
the family Xi, Xj and Xk is obtained as X i,j,k = {x : interpXk

Xi,j (x; 2, 1) ≤

0.5}, where X i,j = {x : interp
Xj

Xi
(x; 1, 1) ≤ 0.5}. The result depends on the

processing order however the differences are negligible in practical examples.
For the interpolation of a not centred shape in a triangle, the coefficient for each
set can be proportionally set up.

5 Conclusions

We have proposed efficient tools for analysing shape families using morphological
operators. Various algorithms for the computation of mean shape and variance of
shape as well as for the construction of shape priors for modes of shape variation
have been introduced. We have also illustrated how the morphological interpo-
lation can be used in shape manifolds to obtain more relevant results. The main
motivation of this study was to define prototypes and shape targets for model-
based morphological segmentation. More generally, the statistical analysis of
shapes families requires the computation of advanced notions such as covariance
and probability distribution in shape spaces. This last point will be the object
of ongoing work.
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