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Abstract. This paper proposes an approach for mathematical morphol-
ogy operators whose structuring element can locally adapt its orientation
across the pixels of the image. The orientation at each pixel is extracted
by means of a diffusion process of the average squared gradient field.
The resulting vector field, the average squared gradient vector flow, ex-
tends the orientation information from the edges of the objects to the
homogeneous areas of the image. The provided orientation field is then
used to perform a spatially variant filtering with a linear structuring el-
ement. Results of erosion, dilation, opening and closing spatially-variant
on binary images prove the validity of this theoretical sound and novel
approach.

1 Introduction

Mathematical morphology is nonlinear image processing methodology based on
the application of lattice theory to spatial structures [1]. Typically, it relies on
a probe set B, called structuring element, which is translated over each pixel of
the image to compute a supremum/infimum operation. Morphological operators
using line segments as structuring elements involve directional filtering effects.
Recent advances in the fast implementation of morphological filters along dis-
crete lines at arbitrary angles have been reported [2]. Other more sophisticated
algorithms for morphological operators on thin structures are the path open-
ings [3].

In this paper we focus on linear orientated structuring elements which are
variable in the space according to a vector field. In mathematical morphology
terms, that involves the notion of spatially-variant transformations. The cor-
responding theoretical aspects were already studied by Serra in [1], and more
recent works deal with some advancements, see for instance [4]. The theoretical
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framework of group morphology by Roerdink [5] deals also with non translation
invariant morphology. Other papers focused specifically on the efficient imple-
mentation of spatially variant morphological operators are [6, 7].

This paper is organized as follows: Section 2 introduces spatially-variant bi-
nary morphology operators; Section 3 addresses the estimation of the orientation
field and its diffusion process. Next, Section 4 contains some results of directional
morphological operators on binary images, and finally conclusions close the pa-
per.

2 Spatially-variant binary morphological operators

In the sequel we assume basic familiarity of the reader with the general concepts
of mathematical morphology. General reference works are the books by Serra [8,
1], or the recent book by Soille [9].

2.1 Background on spatial invariant mathematical morphology

We remind in the section the most classical morphological operators for linear
filtering and orientated structures.

A binary or Boolean image is considered as a set X ⊆ E, or more precisely
as a function X : E → P(E), where P(E) denotes the power set of E com-
prising all subsets of E. The space support E for the image domain can be the
d−dimensional Euclidean space R

d or the equivalent discrete space Z
d.

Choosing a fixed set, B ⊆ E, that one calls the structuring element, the two
basic mappings P(E) → P(E) are the dilation by B, denoted by δB , and given
by

δB(X) = X ⊕ B̌ = {h ∈ E, X ∩ Bh 6= ∅} =
⋃

b∈B̌

Xb =
⋃

x∈X

B̌x, (1)

and the erosion by B, denoted by εB and defined by

εB(X) = X ⊖ B̌ = {h ∈ E | Bh ⊆ X} =
⋂

b∈B̌

Xb. (2)

The structuring element is a subset defined in the origin o ∈ E, then to each
point p of E corresponds the translation mapping o to p, and this translation
maps B onto Bp, i.e.,

Bp = {b + p : b ∈ B}.

We consider in the dilation and the erosion for a fixed structuring element B

all its translations, Bp. This is because we assume that the space E in which
Boolean (or grey-level) images are represented is homogenous under the group
of translations, also called translation invariant domain. In practice, one often
chooses Bp = Bp∩E for p ∈ E. In other words, the structuring element centered
at point p is obtained by choosing a fixed structuring element and restricting the
translations over the point p to points inside the “window” of E. Note that the



dilation and the erosion are computed by using the set B̌, which is the reflection
of B with respect to the origin, i.e., B̌ = {−b|b ∈ B}.

In general, it is not possible to recover the original image after dilation or
erosion, i.e., morphological operators loss information. Starting from the adjunc-
tion pair (δB , εB), two operators are obtained. The (structural) Boolean opening
by the structuring element B is defined as

γB(X) = (X ⊖ B̌) ⊕ B = {h ∈ E | ∃g ∈ E,Bg ⊆ X and h ∈ Bg},

or the more interesting expression:

γB(X) =
⋃

h∈E

{Bh|Bh ⊆ X}, (3)

which allows to interpret the opening as the part of the space where the struc-
turing element B is totally included into X. The dual operator is the (structural)
Boolean closing given by

ϕB(X) = (X ⊕ B̌) ⊖ B = {h ∈ E | h ∈ B̌y ⇒ B̌y ∩ X 6= ∅}. (4)

The binary closing has a dual interpretation for the complement.
In mathematical morphology, the structuring element is the shape probe

which determines the effect of the operator. For the practical application of
morphological filters, the autoreflected (or symmetrical) structuring elements,
i.e., B(x) = B(−x), are specially useful (and easier to implement). In particu-
lar, in Euclidean morphology, two main kinds of “shapes” are used as structuring
elements: a centered circular ball (a disk) of radius r, denoted by Cr; and a cen-
tered line segment of length l and orientation θ, denoted by Ll,θ. The structuring
element Cr is applied when isotropic effects are desired instead of Ll,θ, more ap-
propriate to achieve directional effects. For instance, the opening γLl,θ (X) by the
line segment of given slope θ and length l will remove all white structures of X

except those having this orientation and at least this length. The dual operator
ϕLl,θ (X) removes black orientated structures of X.

Let γi(X) be an opening for every i ∈ I, then
∨

i∈I γi(X) is an opening as
well. Let ϕi(X) be a closing for every i ∈ I, then

∧

i∈I ϕi(X) is a closing as well.
This property is useful to define derived directional operators. For instance, the
linear opening of size l is given by

γLl,Θ (X) = γLl,θ1 (X) ∨ γLl,θ2 (X) ∨ · · · ∨ γLl,θd (X), (5)

where the following directions Θ = {θ1, θ2, · · · , θd} are considered and conse-
quently, the opening γLl,Θ (X) removes bright structures except those having
these orientations and a length upper than l.

The top-hat (resp. dual top-hat) operator is very useful for extracting the
structures which have been removed by an opening γ (resp. a closing ϕ), and it
is defined by the difference of both sets, i.e, th+(X) = X \γ(X) (resp. th−(X) =
ϕ(X) \ X).



Another interesting property of Minkowski addition for the construction of
structuring elements is the following semi-group law: nB ⊕ mB = (n + m)B ⇔
B is compact convex, where nB is the homothetic factor n of the structuring
element B. The disks and the lines are compact convex sets since iteration acts
as a magnification factor of structuring element. For instance, the dilation (resp.
the erosion) by a segment of size l and slope θ reduces to l dilations (resp.
erosions) of a segment of size 1.

2.2 Theoretical generalization to the spatially-variant framework

As detailed above, operators in mathematical morphology are in their classical
definitions translation invariant mappings. However, in this study we need a
more generic formulation where the operators will be variant with respect to
translation in the space. That means that a different structuring element could
be applied at each point and the final operation should verify the properties of
standard operators.

The following classical results from Serra [1] for the Boolean lattice are
needed. Every class B ⊂ P(E) stable under the union and including ∅ char-
acterizes an opening γ on P(E) by the relation

γ(X) = ∪{B | B ⊆ X and B ∈ B}. (6)

The family B is composed of the invariant elements of the opening. It often acts
by means of the generator B0 ⊆ B which does not need to be stable with respect
to the union. Consequently, B0 can be replaced by B in (6). That corresponds
for instance to the circular disk of radius r, Cr, in the Euclidean case. The dual
operation to γ with respect to the complement is the closing ϕ such as

ϕ(X) = γ[(Xc)]c.

When the invariants B0 can be indexed by the points of the space E, i.e., to
associate each point x ∈ E with a corresponding unique B(x), and that indexes
all the elements of the generator B0 of B, then, the opening γ can be decomposed
in an erosion ε followed by its adjunct dilatation δ, with

ε(X) = ∪{x | B(x) ⊆ X ; B(x) ∈ B0}

and
δ(X) = ∪{B(x) | x ∈ X ; B(x) ∈ B0}.

Indeed, the following expression is obtained

δε(X) = ∪{B(x) | x ∈ ε(X) ; B(x) ∈ B0} = ∪{B(x) | B(x) ⊆ X ; B(x) ∈ B0},

which corresponds exactly with (6). Both operations, δ and ε, are linked by the
following duality “by adjunction’

δ(X) ⊆ Y ⇔ X ⊆ ε(Y ). (7)



Inversely, any pair of operators (ε, δ) which verifies (7) will characterize an ero-
sion and a dilation. As we can observe, this duality is very specific and different
of the duality by the complement which is general for any operator on P(E).

The dual of ε by the complement is δ∗, where δ∗(X) = [ε(Xc)]c is composed
of the points y of E such that B(y) hits X. If X is reduced to one point, we have

y ∈ δ∗(x) ⇔ x ∈ B(y) = δ(y). (8)

Both dualities (7) and (8) are independent notions and they can not be expressed
one as function of the other, at least without additional hypothesis. This last is
the case for translation invariant in E = R

n or Z
n, where (8) shows that δ(x)

and δ∗(x) are then symmetrical with respect to the origin.

2.3 Practical definitions of spatially-variant operators

Let 〈Bx〉 be the local structuring element for the point x ∈ E, 〈Bx〉 : E → P(E).
A mapping x → 〈Bx〉 is necessary for each point of E. Now a translation by
vector h of the image, Xh, involves the same translation for the structuring
element at each point 〈Bx〉|h in order to preserve the result of the operation.

Using the results of previous paragraphs, it is obvious that we can generalize
the definition of dilation given in (1), in order to introduce the spatially-variant
Boolean dilation by B, denoted by δ̃〈Bx〉, which can be written as:

δ̃〈Bx〉(X) =
⋃

x∈X

〈B̌x〉. (9)

Using duality, the corresponding spatially-variant Boolean erosion, denoted by
ε̃〈Bx〉, is given by

ε̃〈Bx〉(X) = [δ̃〈Bx〉(X
c)]c. (10)

Starting from the adjunction (δ̃〈Bx〉, ε̃〈Bx〉), the associated spatially-variant Boolean
opening and closing are

γ̃〈Bx〉(X) =
⋃

x∈E

{〈Bx〉|〈Bx〉 ⊆ X}, (11)

and
ϕ̃〈Bx〉(X) = [γ̃〈Bx〉(X

c)]c. (12)

It is obvious that all these spatially-variant Boolean operators verify the same
properties than translation invariant ones. However, it should be remarked that
the implementation of the opening (and the dual closing) needs to verify at each
point x if its structuring element is totally contained in the set X.

3 Directional field

In this section, we focus our discussion on the orientation field estimation of a
binary image, although the method introduced here can be applied to gray-level
images. Firstly we revise the obtaining of the average squared gradient, for in a
second stage, diffusing its vector field to all pixels of the image.



3.1 Average Squared gradient

In order to obtain the orientation of the data in the images, several techniques
based on the gradient have been studied. The use of the gradient and gradient
vector flow (GVF) [10, 11] was discarded because it does not provide the main
orientation of the data. The estimation of the orientation is obtained by using
the average squared gradient (ASG) and the directional field used for spatially
variant mathematical morphology is obtained by a diffusion process of the ASG
field, the ASGVF. Fig 1 shows the vector fields provided by the gradient, GVF,
ASG and ASGVF.

(a) (b) (c) (d)

Fig. 1. Example of vector fields: (a) gradient, (b) gradient vector flow, (c) average
squared gradient, (d) average squared gradient vector flow.

The average squared gradient (ASG) method provides the directional field by
squaring and averaging the gradient vectors [12], [13]. Given an image X(x, y),
ASG uses the following definition of gradient

g =

[

g1(x, y)
g2(x, y)

]

= sign
(

∂X(x,y)
∂x

)

[

∂X(x,y)
∂x

∂X(x,y)
∂y

]

. (13)

Then the gradient is squared (doubling its angle and squaring its magnitude)
and averaged in some neighborhood using the window W :

gs =

[

gs,1(x, y)
gs,2(x, y)

]

=

[
∑

W

(

g2
1(x, y) − g2

2(x, y)
)

∑

W (2 g1(x, y) g2(x, y))

]

. (14)

The directional field ASG is d = [d1(x, y), d2(x, y)]⊤, where its angle is obtained
as

∠d =
Φ

2
− sign(Φ)

π

2
, (15)

which is in the range [−π
2 , π

2 ], being Φ = ∠gs; and the magnitude of d, ||d||, can
be left as the magnitude of gs, or the squared root of gs or, in some applications
(see e.g [14]) and in this work, it can be set to unity.



3.2 Diffused Average Squared gradient

The ASG field of an image has vectors pointing toward the orientation of the
edges, which are parallel (tangent) to the edges at the edges. These vectors are
generally different from zero only near the edges and, in homogeneous regions,
where the gradient is nearly zero, the ASG is also zero (see Fig. 1(c)). In order
to extend the orientation information to pixels where the gradient is nearly zero
a diffusion process is performed, providing the ASG vector flow (ASGVF). The
ASGVF is the vector field v = [v1(x, y), v2(x, y)]⊤ that minimizes the energy
functional:

E(v) = D(v) + αS(v), (16)

where D represents a distance measure given by the squared difference be-
tween the original and the regularized average squared gradient, weighted by
the squared value of the last one,

D(v) =
1

2

∫

E

||d||2||v − d||2 dx dy, (17)

where E is the image support; the energy term S determines the smoothness of
the directional field and represents the energy of the first order derivatives of
the signal:

S(v) =
1

2

∫

E

(

(

∂v1

∂x

)2

+

(

∂v1

∂y

)2

+

(

∂v2

∂x

)2

+

(

∂v2

∂y

)2
)

dx dy (18)

This variational formulation produces a result which is smooth where the
ASG is zero (there is no data). When the magnitude ||d|| of ASG is small, the
energy is dominated by the sum of the squares of the partial derivatives of the
vector field, yielding a slowly varying field, i.e., forcing the field to be slowly-
varying in homogeneous regions. On the other hand, when the magnitude of ASG
is large, the first term dominates the functional (16) and the energy is minimized
by setting the ASGF equal to ASG, i.e., producing the desired effect of keeping
nearly equal to the ASG. The parameter α is a regularization parameter which
governs the trade-off between the smoothness and data-fidelity.

Using the calculus of variations, the ASGF field can be found by solving the
following Euler equations

(v1 − d1)(d
2
1 + d2

2) − α∇2v1 = 0 (19a)

(v2 − d1)(d
2
1 + d2

2) − α∇2v2 = 0 (19b)

or, more compactly
(v − d)|d|2 − α∇2v = 0. (20)

These equations can be solved by treating v as a function of time and consid-
ering the steady-state solution (which is equivalent to use the steepest descent
method):

vt + (v − d)|d|2 − α∇2v = 0. (21)



These equations are known as generalized diffusion equations. To set up the
iterative solution, let the indices i, j, and n correspond to x, y and t, respectively,
and let the spacing between pixels be ∆x and ∆y, and the time step for each
iteration be ∆t. Then the required partial derivatives can be approximated as

vt ≈
vn − vn−1

∆t
(22a)

∇2vi,j ≈
vi−1,j + vi+1,j − 2vi,j

∆x2
+

vi,j−1 + vi,j+1 − 2vi,j

∆y2
(22b)

Considering discrete images (∆x = ∆y = 1) and substituting these approxima-
tions into the equations gives our iterative solution to ASGF as follows:

v
l,n
i,j = v

l,n−1
i,j − ∆tf

l,n−1
i,j +

1

η
(vl,n−1

i+1,j + v
l,n−1
i−1,j + v

l,n−1
i,j+1 + v

l,n−1
i,j−1 − 4v

l,n−1
i,j ) (23)

where f = (vl,n−1
i,j − dl

i,j)|di,j |
2, l is the component index l = 1, 2, n is the

iteration index and η = (α∆t)−1.

4 Results

We have now associated to each 2D image X ∈ P(E), E ⊂ Z
2, x = (x, y) ∈ E,

a regularized directional vectorial field, i.e., Fθ(x) = (v1(x), v2(x)), where the
vectorial field Fθ(x) is defined in E × Z

2 space. Let us consider in fact that
the vectorial field defines a scalar value to each point which corresponds to the
orientation of the data at point x, i.e., θ(x). The corresponding local structuring
element (SE) of a linear segment of size l and orientation θ(x) is denoted 〈Ll,θx

x 〉.
Note that in the examples given in this paper the length of the local structuring
element is constant for all the points, but we can also consider spatially variable
lengths.

We have included three examples of the application of locally orientated mor-
phological operator in order to regularize binary objects: to filter out structures
of small length and to reconnected close linear structures. Two first examples are
given in Fig. 2 and Fig. 3 (size 256 × 256 pixels. The average squared gradient
has been obtained using a flat squared averaging window of size 19 × 19. The
value of the constants for the diffusion process are ∆t = 1 and η = 10−3. In both
cases, the length of the SE for all the morphological filters is l = 11. A more
complex case study is depicted in Fig. 4 (404×599 pixels ). The average squared
gradient has been obtained using a flat squared averaging window of size 27×27
and value of the constant equals η = 10−1. The length of the structuring element
is now l = 15.

One aspect to take into consideration is the size of the SE. A trade-off between
size and angular resolution must be reached. Small SE allows get into small
details of the objects but offers few directions. Bigger SE can not deal with
these small details but offer many directions. In summary, if the linear SE is N

pixel long, the angular resolution is ∆α = 90
N−1 degrees, the discretized angles

being αi = ∆α i, i ∈ [0, 2(N − 1) − 1], as shown in Fig. 5 for N = 11.



(a) X (b) ASGV field

(c) ε̃〈Bx〉(X) (d) δ̃〈Bx〉(X)

(e) γ̃〈Bx〉(X) (f) ϕ̃〈Bx〉(X)

(g) th+(X) (h) th−(X)

Fig. 2. (a) Original image 256×256 pixels, (b) ASGV field using η=0.001, (c) erosion
with a orientated linear structuring element with length 7 pixels, (d) dilation with the
same structuring element, (e) opening, (f) closing, (g) top-hat and (h) dual top-hat.



(a) f(x) (b) ASGV field

(c) ε̃〈Bx〉(X) (d) δ̃〈Bx〉(X)

(e) γ̃〈Bx〉(X) (f) ϕ̃〈Bx〉(X)

(g) th+(X) (h) th−(X)

Fig. 3. (a) Original image 256×256 pixels, (b) ASGV field using η=0.001, (c) erosion
with a orientated linear structuring element with length 7 pixels, (d) dilation with the
same structuring element, (e) opening, (f) closing, (g) top-hat and (h) dual top-hat.



(a) f(x) (b) ASGV field

(c) ε̃〈Bx〉(X) (d) δ̃〈Bx〉(X)

(e) γ̃〈Bx〉(X) (f) ϕ̃〈Bx〉(X)

(g) th+(X) (h) th−(X)

Fig. 4. (a) Original image 404×599 pixels, (b) ASGV field using η=0.1, (c) erosion
with a orientated linear structuring element with length 15 pixels, (d) dilation with
the same structuring element, (e) opening, (f) closing, (g) top-hat and (h) dual top-hat.



Fig. 5. Angular discretization using a linear SE with 11 pixels.

5 Conclusions

After reminding the theoretical elements of spatially-variant mathematical mor-
phology, a new approach of regularization of the directional field of an image has
been described. We have then proved the interest of linear openings for recon-
necting objects of an image described locally by directional information. This
problem concerns many image processing applications, for example, in medicine,
biometrics, metallurgy and geology.

As future works, we intend to generalize our approach to other families of
local anisotropic structuring elements (i.e., ellipses) and to extend the algorithms
to grey level images. The theoretical extension to gray level images, and above
all, the optimized implementation of spatially variant dilations and openings is
still an open field.
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